Breaking Symmetries in Matrix Models: A Brief Overview

Pierre Flener!, Alan M.Frisch?, Brahim Hnich?, Chris Jefferson?
Zeynep Kiziltan!, Ian Miguel?, Justin Pearson' and Toby Walsh?

1 Introduction

Many real life problems can be formulated as constraint
satisfaction problems (CSP). When a problem is formu-
lated as a CSP, often there are symmetries, either from
the original problem or introduced during the transfor-
mation into a CSP. When we attempt to search for a
solution to the problem the search tree will be much
larger due to having to search symmetric sections of tree
(which may or may not contain solutions). There are
many different kinds of symmetry that can appear, and
there are different ways of trying to remove some or all
of the symmetries that appear. Here we are going to
overview our work on index symmetry (also known as
row and column symmetries of matrices in the two in-
dex case) and our methods to break this by adding extra
constraints to the problem formulation.

A finite CSP (the type we shall consider here) con-
sists of a finite set of variables each of which has a finite
domain of values it can take and a set of constraints,
each of which specify allowed assignments of values to
some subset of the variables. We shall talk about a vari-
able assignment being a mapping to each variable from
its domain of possible values. A solution of a CSP is
a variable assignment where each constraint is satisfied.
Throughout this paper we will refer to comparing values
of variables with <, however any total ordering would do
(the most obvious example being >). Using another or-
dering may allow easier computation or may fit in better
with some other part of the problem.

The most common method of solving a CSP is search-
ing the space of partial assignments, that is we recur-
sively choose a variable and then branch on each value
in the domain of that variable. We continue until either
we find a solution or we exhaust the search tree. It is
possible to improve this search by trying to identifying
parts of the tree where there can be no solution, and not
search them. The most common way of doing this is by
domain pruning algorithms. These look at the values the
variables can currently take and try to find values which
can never be part of a consistent solution. For example
if we have two variables, z which can take the values
{1,2,3} and y which can take the values {0,1,2,3,4}
and the constraint x < y then clearly y can never take
the values 0 or 1 whatever z is.

For a single constraint the strongest form of domain

'Department of Information Technology, Box 337, SE-751
05 Uppsala, Sweden

2AI Group, Department of Computer Science, University
of York, York, England

3Cork Constraint Computation Center, University College
Cork, Ireland

“Information Science Department, Box 512, S-751 20 Up-
psala, Sweden

reduction is generalized arc consistency (GAC), where
we remove every value from the domains of the variables
in that constraint which can never satisfy that constraint
given the current domains of the other variables. Note
that this does not mean that the search for a solution
becomes trivial; this does not tell us there is some assign-
ment of values to variables which satisfy all constraints.

A wariable symmetry of a CSP is a bijective mapping
of the set of variables to itself which maps solutions of
the CSP to solutions and non-solutions to non-solutions.
It is simple to show that the set of variable symmetries
of a CSP form a group under function composition [1].

We define a symmetry class of an assignment to the
variables of a CSP by the set of other assignments which
are equivalent to it. There are various methods of try-
ing to reduce the amount of symmetry in the problem.
The one we shall consider here is imposing extra con-
straints. Clearly we do not want to lose solutions, so
we shall define a set of symmetry breaking constraints
to be consistent if at least one variable assignment from
each class of symmetries satisfies the constraints. A set
of symmetry breaking constraints is total if it allows only
one variable assignment from each class of symmetries.

Often all or a subset of the variables of a CSP have a
natural representation as indexed variables (that is they
can be represented as a set {z;}, {;;}, etc.) In this
situation a common form of symmetry is index symme-
try. Index symmetry of the j* index implies that for
any two values a and b that index could take, swapping
the values of all the variables with a as their j** index
and those with b is a variable symmetry.

As an example we can consider a single index prob-
lem, where we have 3 variables zp,z; and z» where
each variable takes a integer value from the range 0 to
9 and together satisfy the constraint xg + x1 + x> = 9.
This problem obviously has index symmetry which leads
to symmetric solutions (zo = 1,21 = 2,25 = 7 and
xo = 7,21 = 2,x2 = 0 for example) and in fact every
solution is symmetric to as many as 5 other solutions.
Also we will search large sections of the space of par-
tial solutions which are equivalent. We can reduce both
the size of the search and the number of solutions found
by imposing the consistent and total symmetry breaking
constraints z; < xs and zs < x3.

2 Symmetry in “two index” problems

The most studied variable index representation is where
we have two indices, that is we can represent the vari-
ables as a set {2; ;|0 <i < n,0 <i< m}. Note that this
also gives us a natural representation of the variables as
a matrix, where we place the value of variable z; ; in the
i" row and j'* column. We can have symmetry on either
the first or second index (referred to as row and column

symmetry). First index (or row) symmetry means that
for any 7 and j if we swap the values of the pairs of vari-
ables z; ; and z;; for 0 < k < m in a solution then we
also get a solution. Second index symmetry is defined in
the obvious manner.

If we have just row symmetry then we can perform to-
tal and consistent symmetry breaking in a similar fash-
ion to the single index problem by imposing the con-
straints {(2i,0, - Zi;m—1) Ztex (Tit1,05- Tix1,m—1)]0 <
i <n—1} where <., constrains the two vectors of vari-
ables to be ordered lexicographically. There exists an
O(m) algorithm to which can perform GAC on this con-
straint [4].We can construct a similar set of constraints
for column symmetry.

Things become much less trivial if we consider having
both row and column symmetry at the same time. This
would mean we could swap any two rows, or any two
columns and transform solutions into solutions.

Looking at the work we have already done the most
obvious solution would be to try to add lexicographic
constraints to both the rows and the columns. The prob-
lem with this is that the lexicographic order of the rows
of a matrix is effected by lexicographically ordering the
columns. Is constraining both the rows and columns a
consistent or total set of symmetry breaking constraints?

It turns out that we can always find a matrix that
satisfies lexicographic ordering on both the rows and
columns as long as we constrain the rows and the
columns either both with the lexicographically largest
first, or lexicographically least first. If we constrain
them in different ways the constraints are not consistent
(proofs and examples of this are included in [3]). How-
ever even when this is a consistent symmetry breaking
method it turns out to not be total in all cases (although
there are some cases where it is).

We may wonder if there is a total symmetry breaking
set of constraints for where we have both row and column
symmetry. There is in fact a method of consistently and
totally breaking any variable symmetry by the introduc-
tion of lexicographic constraints [6], however the method
of breaking the symmetry described in that paper (which
is the current best for this, and many other symmetry
groups) involves the introduction of O(v!) constraints
where v is the number of variables involved in the sym-
metry.

We have proved that for all ¢, the set of con-
straints {(zo,0,---, Zo,m—1) < Y|Y is a permutation of
(Yi,0, s Yim—1)} along with <;., on both the rows and
columns is consistent (but still not total). This set of
constraints is of factorial size so appears too large to im-
pose. However we have created an efficient (O(mlogm))
algorithm for enforcing arc consistency on the entire set
of constraints {X <j., Y'|Y' is a perm of Y} for two
equal length vectors of variables X and Y, which we
shall refer to as X <perm Y. Unfortunately we cannot
apply <perm to both the rows and the columns at the
same time without losing consistency.

While applying <., and possibly <pem, as well, cre-
ates an algorithm for breaking many of the symmetries
quickly, it is difficult to analyze exactly which elements
of the symmetry classes are removed by these constraints
as the <j.; constraints on the rows, the <;., constraints
on the columns and the <., constraints effect each
other and interact in complex ways. It is therefore worth
looking to see if there are other algorithms we could use

to break symmetries.

Instead of constraining each index lexicographically,
we could instead use constraint the vectors of variables
under the multiset ordering (referred to by the constraint
<ms) [2]. At first glance multiset looks less efficient.
Even if we only have row (or column) symmetry, impos-
ing multiset ordering on the rows (or columns) is not
sufficient to break all the symmetries. However the ma-
jor advantage of multiset is that constraining one index
under the multiset ordering does not directly place any
constraint on any other index, as the multiset order does
not use the order of the elements it constrains. There-
fore trivially we know we will get a consistent system
when we apply multiset over multiple indices. While the
current best algorithm for imposing multiset ordering on
two vectors of variables is not as efficient as the algorithm
for lexicographic ordering, it is still efficient enough to
be used in large problems.

This work has been generalized to more than two in-
dices. The best set of total symmetry breaking con-
straints we know of is still O(v!) in size, but it can be
shown we can impose <, or <,,s on all of the indices (if
there is symmetry there of course) and have a consistent
although not total set of symmetry breaking constraints,
and we can impose <pey, as well as <;¢; on just one of
the indices.

3 Partial Symmetry

Many problems have only partial rather than full index
symmetry, that is there is one or more disjoint subsets
of the values some index can take for which we can in-
terchange the values and map solutions to solutions. For
example in the steel mill problem [5] the rows represent
slabs of steel, some of which are equivalent. We have
shown that these partial symmetries can also be broken
by using the <;., and <,,s constraints discussed earlier
but now rather than applying these between all adjacent
pairs of index values we apply them only to pairs from
each of the sets of interchangeable index values. It is also
possible to use the <, ordering here although only on
one of the sets of interchangeable values.
Acknowledgments

This project and the sixth author are supported by EPSRC
Grant GR/N16129. The eighth author is supported by Sci-

ence Foundation Ireland. Authors one, three, five and seven
are supported by VR grant 221-99-369.

References

[1] J. Crawford. A theoretical analysis of reasoning by symmetry in first-
order logic, 1992.

[2] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking row and column symmetries in matrix models, 2002.

[3] Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel,
Justin Pearson, and Toby Walsh. Symmetry in matrix models. Technical
Report 2001-022, 2001.

[4] Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby
Walsh. Global constraints for lexicographic orderings. In Proceedings
of CP’02, 2002.

[5] Alan M. Frisch, Ian Miguel, and Toby Walsh. Symmetry and implied
constraints in the steel mill slab design problem.

[6] E.Luks and A. Roy. Symmetry breaking in constraint satisfaction, 2002.

