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tionMany real life problems 
an be formulated as 
onstraintsatisfa
tion problems (CSP). When a problem is formu-lated as a CSP, often there are symmetries, either fromthe original problem or introdu
ed during the transfor-mation into a CSP. When we attempt to sear
h for asolution to the problem the sear
h tree will be mu
hlarger due to having to sear
h symmetri
 se
tions of tree(whi
h may or may not 
ontain solutions). There aremany di�erent kinds of symmetry that 
an appear, andthere are di�erent ways of trying to remove some or allof the symmetries that appear. Here we are going tooverview our work on index symmetry (also known asrow and 
olumn symmetries of matri
es in the two in-dex 
ase) and our methods to break this by adding extra
onstraints to the problem formulation.A �nite CSP (the type we shall 
onsider here) 
on-sists of a �nite set of variables ea
h of whi
h has a �nitedomain of values it 
an take and a set of 
onstraints,ea
h of whi
h spe
ify allowed assignments of values tosome subset of the variables. We shall talk about a vari-able assignment being a mapping to ea
h variable fromits domain of possible values. A solution of a CSP isa variable assignment where ea
h 
onstraint is satis�ed.Throughout this paper we will refer to 
omparing valuesof variables with �, however any total ordering would do(the most obvious example being �). Using another or-dering may allow easier 
omputation or may �t in betterwith some other part of the problem.The most 
ommon method of solving a CSP is sear
h-ing the spa
e of partial assignments, that is we re
ur-sively 
hoose a variable and then bran
h on ea
h valuein the domain of that variable. We 
ontinue until eitherwe �nd a solution or we exhaust the sear
h tree. It ispossible to improve this sear
h by trying to identifyingparts of the tree where there 
an be no solution, and notsear
h them. The most 
ommon way of doing this is bydomain pruning algorithms. These look at the values thevariables 
an 
urrently take and try to �nd values whi
h
an never be part of a 
onsistent solution. For exampleif we have two variables, x whi
h 
an take the valuesf1; 2; 3g and y whi
h 
an take the values f0; 1; 2; 3; 4gand the 
onstraint x < y then 
learly y 
an never takethe values 0 or 1 whatever x is.For a single 
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redu
tion is generalized ar
 
onsisten
y (GAC), wherewe remove every value from the domains of the variablesin that 
onstraint whi
h 
an never satisfy that 
onstraintgiven the 
urrent domains of the other variables. Notethat this does not mean that the sear
h for a solutionbe
omes trivial; this does not tell us there is some assign-ment of values to variables whi
h satisfy all 
onstraints.A variable symmetry of a CSP is a bije
tive mappingof the set of variables to itself whi
h maps solutions ofthe CSP to solutions and non-solutions to non-solutions.It is simple to show that the set of variable symmetriesof a CSP form a group under fun
tion 
omposition [1℄.We de�ne a symmetry 
lass of an assignment to thevariables of a CSP by the set of other assignments whi
hare equivalent to it. There are various methods of try-ing to redu
e the amount of symmetry in the problem.The one we shall 
onsider here is imposing extra 
on-straints. Clearly we do not want to lose solutions, sowe shall de�ne a set of symmetry breaking 
onstraintsto be 
onsistent if at least one variable assignment fromea
h 
lass of symmetries satis�es the 
onstraints. A setof symmetry breaking 
onstraints is total if it allows onlyone variable assignment from ea
h 
lass of symmetries.Often all or a subset of the variables of a CSP have anatural representation as indexed variables (that is they
an be represented as a set fxig, fxi;jg, et
.) In thissituation a 
ommon form of symmetry is index symme-try. Index symmetry of the jth index implies that forany two values a and b that index 
ould take, swappingthe values of all the variables with a as their jth indexand those with b is a variable symmetry.As an example we 
an 
onsider a single index prob-lem, where we have 3 variables x0; x1 and x2 whereea
h variable takes a integer value from the range 0 to9 and together satisfy the 
onstraint x0 + x1 + x2 = 9.This problem obviously has index symmetry whi
h leadsto symmetri
 solutions (x0 = 1; x1 = 2; x2 = 7 andx0 = 7; x1 = 2; x2 = 0 for example) and in fa
t everysolution is symmetri
 to as many as 5 other solutions.Also we will sear
h large se
tions of the spa
e of par-tial solutions whi
h are equivalent. We 
an redu
e boththe size of the sear
h and the number of solutions foundby imposing the 
onsistent and total symmetry breaking
onstraints x1 � x2 and x2 � x3.2 Symmetry in \two index" problemsThe most studied variable index representation is wherewe have two indi
es, that is we 
an represent the vari-ables as a set fxi;j j0 � i < n; 0 � i < mg. Note that thisalso gives us a natural representation of the variables asa matrix, where we pla
e the value of variable xi;j in theith row and jth 
olumn. We 
an have symmetry on eitherthe �rst or se
ond index (referred to as row and 
olumn



symmetry). First index (or row) symmetry means thatfor any i and j if we swap the values of the pairs of vari-ables xi;k and xj;k for 0 � k < m in a solution then wealso get a solution. Se
ond index symmetry is de�ned inthe obvious manner.If we have just row symmetry then we 
an perform to-tal and 
onsistent symmetry breaking in a similar fash-ion to the single index problem by imposing the 
on-straints f(xi;0; :::; xi;m�1) �lex (xi+1;0; :::; xi+1;m�1)j0 �i < n�1g where �lex 
onstrains the two ve
tors of vari-ables to be ordered lexi
ographi
ally. There exists anO(m) algorithm to whi
h 
an perform GAC on this 
on-straint [4℄.We 
an 
onstru
t a similar set of 
onstraintsfor 
olumn symmetry.Things be
ome mu
h less trivial if we 
onsider havingboth row and 
olumn symmetry at the same time. Thiswould mean we 
ould swap any two rows, or any two
olumns and transform solutions into solutions.Looking at the work we have already done the mostobvious solution would be to try to add lexi
ographi

onstraints to both the rows and the 
olumns. The prob-lem with this is that the lexi
ographi
 order of the rowsof a matrix is e�e
ted by lexi
ographi
ally ordering the
olumns. Is 
onstraining both the rows and 
olumns a
onsistent or total set of symmetry breaking 
onstraints?It turns out that we 
an always �nd a matrix thatsatis�es lexi
ographi
 ordering on both the rows and
olumns as long as we 
onstrain the rows and the
olumns either both with the lexi
ographi
ally largest�rst, or lexi
ographi
ally least �rst. If we 
onstrainthem in di�erent ways the 
onstraints are not 
onsistent(proofs and examples of this are in
luded in [3℄). How-ever even when this is a 
onsistent symmetry breakingmethod it turns out to not be total in all 
ases (althoughthere are some 
ases where it is).We may wonder if there is a total symmetry breakingset of 
onstraints for where we have both row and 
olumnsymmetry. There is in fa
t a method of 
onsistently andtotally breaking any variable symmetry by the introdu
-tion of lexi
ographi
 
onstraints [6℄, however the methodof breaking the symmetry des
ribed in that paper (whi
his the 
urrent best for this, and many other symmetrygroups) involves the introdu
tion of O(v!) 
onstraintswhere v is the number of variables involved in the sym-metry.We have proved that for all i, the set of 
on-straints f(x0;0; :::; x0;m�1) � Y jY is a permutation of(yi;0; :::; yi;m�1)g along with �lex on both the rows and
olumns is 
onsistent (but still not total). This set of
onstraints is of fa
torial size so appears too large to im-pose. However we have 
reated an eÆ
ient (O(m logm))algorithm for enfor
ing ar
 
onsisten
y on the entire setof 
onstraints fX �lex Y 0jY 0 is a perm of Y g for twoequal length ve
tors of variables X and Y , whi
h weshall refer to as X �perm Y . Unfortunately we 
annotapply �perm to both the rows and the 
olumns at thesame time without losing 
onsisten
y.While applying �lex, and possibly �perm as well, 
re-ates an algorithm for breaking many of the symmetriesqui
kly, it is diÆ
ult to analyze exa
tly whi
h elementsof the symmetry 
lasses are removed by these 
onstraintsas the �lex 
onstraints on the rows, the �lex 
onstraintson the 
olumns and the �perm 
onstraints e�e
t ea
hother and intera
t in 
omplex ways. It is therefore worthlooking to see if there are other algorithms we 
ould use

to break symmetries.Instead of 
onstraining ea
h index lexi
ographi
ally,we 
ould instead use 
onstraint the ve
tors of variablesunder the multiset ordering (referred to by the 
onstraint�ms) [2℄. At �rst glan
e multiset looks less eÆ
ient.Even if we only have row (or 
olumn) symmetry, impos-ing multiset ordering on the rows (or 
olumns) is notsuÆ
ient to break all the symmetries. However the ma-jor advantage of multiset is that 
onstraining one indexunder the multiset ordering does not dire
tly pla
e any
onstraint on any other index, as the multiset order doesnot use the order of the elements it 
onstrains. There-fore trivially we know we will get a 
onsistent systemwhen we apply multiset over multiple indi
es. While the
urrent best algorithm for imposing multiset ordering ontwo ve
tors of variables is not as eÆ
ient as the algorithmfor lexi
ographi
 ordering, it is still eÆ
ient enough tobe used in large problems.This work has been generalized to more than two in-di
es. The best set of total symmetry breaking 
on-straints we know of is still O(v!) in size, but it 
an beshown we 
an impose �lex or �ms on all of the indi
es (ifthere is symmetry there of 
ourse) and have a 
onsistentalthough not total set of symmetry breaking 
onstraints,and we 
an impose �perm as well as �lex on just one ofthe indi
es.3 Partial SymmetryMany problems have only partial rather than full indexsymmetry, that is there is one or more disjoint subsetsof the values some index 
an take for whi
h we 
an in-ter
hange the values and map solutions to solutions. Forexample in the steel mill problem [5℄ the rows representslabs of steel, some of whi
h are equivalent. We haveshown that these partial symmetries 
an also be brokenby using the �lex and �ms 
onstraints dis
ussed earlierbut now rather than applying these between all adja
entpairs of index values we apply them only to pairs fromea
h of the sets of inter
hangeable index values. It is alsopossible to use the �perm ordering here although only onone of the sets of inter
hangeable values.A
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