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Abstract We reconsider the idea of structural symmetry breaking for constraint
satisfaction problems (CSPs). We show that the dynamic dominance checks used
in symmetry breaking by dominance-detection search for CSPs with piecewise
variable and value symmetries have a static counterpart: there exists a set of con-
straints that can be posted at the root node and that breaks all the compositions of
these (unconditional) symmetries. The amount of these symmetry-breaking con-
straints is linear in the size of the problem, and yet they are able to remove a
super-exponential number of symmetries on both values and variables. Moreover,
we compare the search trees under static and dynamic structural symmetry break-
ing when using fixed variable and value orderings. These results are then gener-
alised to wreath-symmetric CSPs with both variable and value symmetries. We
show that there also exists a polynomial-time dominance-detection algorithm for
this class of CSPs, as well as a linear-sized set of constraints that breaks these
symmetries statically.

1 Introduction

Symmetry breaking for constraint satisfaction problems (CSPs) has been the topic
of intense research in recent years, as symmetries naturally arise in many real-life
applications. Substantial progress was achieved in many directions, often exhibit-
ing significant speedups, for instance in configuration and network design. It is
outside the scope of this introduction to review the wealth of research in this area.

! Most of the work by this author was done while on leave of absence in 2006/07 as a
Visiting Faculty Member and Erasmus Exchange Teacher at Sabancı University.



However, it is important to highlight some recent research avenues to position this
paper properly.

One of the interesting developments has been the design of general symmetry-
breaking schemes such as symmetry breaking by dominance detection (SBDD)
and symmetry breaking during search (SBDS). SBDD [3,7] is particularly appeal-
ing for our purposes as it combines low memory requirements with a number of
dominance checks linearly proportional to the depth of the search tree. It then be-
came natural to study which classes of symmetries for CSPs are tractable, i.e.,
admit polynomial-time dominance-detection algorithms. This issue was first stud-
ied in [18], where symmetry breaking for various classes of value symmetries
was shown to take constant time and space. In [16], this result was generalised
elegantly to all value symmetries. We next revisited the issue for CSPs with si-
multaneous piecewise variable and value symmetry in [17], where a polynomial-
time dominance-detection algorithmwas given and the name ‘structural symmetry
breaking’ was coined. The same paper also presented intractability results for set-
CSPs under variable and value interchangeability, leaving open whether wreath
symmetric CSPs (formally defined later in this paper) with variable and value sym-
metries were tractable with respect to symmetries. Moreover, some recent interest-
ing results (see [19,12]) have indicated the possibility of automatically detecting
certain classes of symmetries. These results taken together offer an opportunity to
address the need for more automation, which was presented as one of the main
challenges faced by constraint programming in industry [11].

In parallel, researchers have investigated, and this for many years (e.g., [10])
static symmetry breaking, which consists in the idea of adding constraints to a
CSP in order to remove symmetries. That is, by breaking symmetries statically,
we mean the addition of constraints that leave exactly one representative solution
in each equivalence class of solutions. Lexicographic constraints [2] are one tradi-
tional way of breaking symmetries in this way.

This paper is an extension and revision of our [5]. It addresses two open is-
sues in structural symmetry breaking. First, it reconsiders CSPs with piecewise
interchangeable variables and values and studies whether the polynomial-time
dominance-detection algorithm of [17] has a static counterpart. In other words,
it studies whether there exists a set of constraints that, when added to the CSP
at hand, produces a symmetry-free search tree. Second, the paper studies wreath
symmetric CSPs with interchangeable variables and values. Note that throughout
this paper we focus on unconditional (or global) symmetries, that is we do not
handle any symmetries that appear during search. The results of this paper can be
summarised as follows:

– We show that the polynomial-time dominance-detection algorithm of [17] has
a static counterpart, namely that there exists a set of constraints for CSPs with
piecewise symmetric variables and values that, when added to the CSP, results
in a symmetry-free search tree.

– We establish a clear link between this static structural symmetry breaking
(SSSB) scheme and the dynamic structural symmetry breaking (DSSB) scheme
of [17] by comparing their search trees under various forms of consistency for
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the symmetry-breaking constraints whenever the variable and value orderings
are fixed.

– We show that wreath symmetric CSPs, with piecewise interchangeable vari-
ables and wreath interchangeable values, pose a tractable dominance detection
problem. The dominance check is rather complex, but we also provide a set of
constraints that break all these symmetries.

– To our knowledge, this is the first time that, for some classes of symmetries for
CSPs, static symmetry breaking has been shown capable of breaking all com-
positions of variable and value symmetries at the same time, using an amount
of symmetry-breaking constraints that is polynomial in the size of the prob-
lem, and yet removing, in general, a super-exponential number of symmetries
on both values and variables. In fact, the number of constraints is even linear
in the size of the problem.

– With the case of wreath values closed, the only classes of symmetries for which
intractability results have been proven [17] involve variable and value sym-
metries over set CSPs or 0/1 representations of these as matrix models. The
tractability results in this paper thereby also improve our understandingof what
can and what cannot make symmetry breaking hard.

The remainder of the paper is organised as follows. Section 2 reviews the ba-
sic concepts. Section 3 presents the symmetry-breaking constraints for CSPs with
piecewise variable and value interchangeability. Section 4 then establishes a link
between static and dynamic symmetry breaking for such piecewise symmetric
CSPs. Sections 5, 6, and 7 present the analogous, generalised concepts and results
for wreath symmetric CSPs. Finally, Section 8 concludes the paper and discusses
future research directions.

2 Basic Concepts

In this section, we fix some standard notation that we will use throughout the
paper. Particularly, we define what we understand by piecewise variable and value
symmetry, and what in this context we mean by dominance detection.

Definition 1 (CSP, Assignment, Solution)

– A constraint satisfaction problem (CSP) is a triplet 〈V, D, C〉, where V denotes
the set of variables,D denotes the set of possible values for these variables and
is called their domain, andC : (V → D) → Bool is a constraint that specifies
which assignments of values to the variables are solutions.

– An assignment for a CSP P = 〈V, D, C〉 is a function α : V → D.
– A partial assignment for a CSP P = 〈V, D, C〉 is a function α : W → D,
where W ⊆ V . The scope of α, denoted by scope(α), is W .

– A solution to a CSPP = 〈V, D, C〉 is an assignment σ forP such thatC(σ) =
true. The set of all solutions to a CSP P is denoted by Sol(P).

We want to reason about a special class of CSPs, namely those where subsets
of variables or values are pairwise interchangeable. For instance, imagine an actor
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scheduling problem where days are divided into morning and afternoon sessions;
actors probably have strong preferences (and thus different fees for the morning
and afternoon sessions) but the day of the session may not matter. To provide a
formal definition, we first define:

Definition 2 (Partition) Given a set S and a set of sets P = {P1, . . . , Pn} such
that S =

⋃
i Pi and the Pi are pairwise non-overlapping, we say that P is a

partition of S and that each Pi is a component, and we write S =
∑

i Pi.

Piecewise interchangeability implies that any reshuffling of variables or values
within each component results in the same problem. Consequently, the correspond-
ing permutations cannot mingle elements from different components:

Definition 3 (Piecewise Bijection) Let S =
∑

i Pi be a partitioned set. A bijec-
tion b : S → S is a piecewise bijection over

∑
i Pi if and only if {b(e) | e ∈ Pi} =

Pi.

Equipped with this notion, we can now define formally:

Definition 4 (Piecewise Symmetric CSP) A CSP P = 〈
∑

k Vk,
∑

" D", C〉 is
a piecewise symmetric CSP if and only if, for each solution α ∈ Sol(P), each
piecewise bijection τ over

∑
" D", and each piecewise bijection σ over

∑
k Vk, we

have τ ◦ α ◦ σ ∈ Sol(P).

Piecewise symmetric CSPs were studied in [17], where a polynomial-time al-
gorithm was devised to detect symmetric dominance between two partial assign-
ments:

Definition 5 (Dominance Detection) Given two partial assignments α and β for
a piecewise symmetric CSP P = 〈

∑
k Vk,

∑
" D", C〉, we say that α dominates

β if and only if there exist piecewise bijections σ over
∑

k Vk and τ over
∑

" D"

such that α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α). Then, we call the problem of
determining whether α dominates β the dominance detection problem.

Dominance detection constitutes the core operation of symmetry breaking by
dominance detection (SBDD) [3,7], and its tractability immediately implies that
we can efficiently limit ourselves to the exploration of symmetry-free search trees
only. For piecewise symmetric CSPs, [17] showed that dominance detection is
tractable. This was accomplished by dynamic structural symmetry breaking (DSSB),
where structural abstractions, so-called value signatures, generalise from an exact
assignment of values to variables by quantifying how often a given value is as-
signed to variables in each component:

Definition 6 (Signature)Given a partial assignment α for a piecewise symmetric
CSP P = 〈

∑
k Vk,

∑
" D", C〉, the signature of value d under α is the tuple that

counts, for each variable component Vk, by how many variables in the component
the value is taken in α:

sigα(d) := (|{v ∈ Vk ∩ scope(α) | α(v) = d}|)k

where k indexes the different variable components.
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In [17], we showed how this structural abstraction allows us to check domi-
nance between partial assignments α and β: We set up a bipartite graph where,
for each value d, there is one node on the left and one node on the right. An edge
connects two nodes with associated values d and e from the same value component
if and only if sigα(d) ≤ sigβ(e), where ≤ denotes the point-wise ordering of two
sequences (and not their lexicographic ordering). Then, α dominates β if and only
if the bipartite graph contains a perfect matching.

Example 1 Consider the piecewise symmetric CSP 〈{v1, v2, v3, v4} + {v5, v6},
{1, 2} + {3, 4}, C〉 and the partial assignments α = {v1 )→ 2, v2 )→ 2, v3 )→
3, v5 )→ 2} and β = {v1 )→ 1, v2 )→ 1, v3 )→ 1, v4 )→ 3, v5 )→ 1, v6 )→ 4}.
The signatures of the values 1, 2, 3, 4 are (0, 0), (2, 1), (1, 0), (0, 0) under α and
(3, 1), (0, 0), (1, 0), (0, 1) under β. See the bipartite graph G of Figure 5 later in
this paper (and ignore its caption). The rounded boxes indicate the components of
the partition of the value set. There is an edge (d, e) whenever sigα(d) ≤ sigβ(e).
As there exists a perfect matching inG, given by the solid edges, we conclude that
α dominates β.

Based on this dominance-detection algorithm, DSSB filters values from do-
mains if and only if setting the respective variable to some value would lead to
a symmetric choice point. Since symmetry-based filtering anticipates when vari-
able assignments will result in symmetric configurations, within DSSB we have to
distinguish two different types of filtering: ancestor-based filteringwhere we com-
pare extensions to the current partial assignment with previously fully expanded
search nodes, and sibling-based filtering where we compare extensions to the cur-
rent partial assignment with other such extensions.

When employing these filtering techniques,DSSB leads to symmetry-free search
trees while causing only polynomial-time overhead. For a more detailed descrip-
tion of the method and a worst-case asymptotic runtime analysis, we refer the
reader to [17].

3 Static SSB for Piecewise Symmetric CSPs

We now show how the idea of structural symmetry breaking, i.e., dominance detec-
tion based on signature analysis, can be used to devise a set of symmetry-breaking
constraints for piecewise symmetric CSPs. For the first time, we will show that
a polynomial, and even linear, amount of symmetry-breaking constraints is able
to simultaneously break super-exponentially many compositions of variable and
value symmetries efficiently.

3.1 Symmetry-Breaking Constraints

Consider a piecewise symmetric CSP 〈
∑a

k=1 Vk,
∑b

"=1 D", C〉, with V = {v1, . . . ,
vn} =

∑a
k=1 Vk a set of piecewise interchangeable variables and D = {d1, . . . ,

dm} =
∑b

"=1 D" a set of piecewise interchangeable values. Assume a total order-
ing of the variables V and the valuesD.
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As it is commonly done in the literature, we can break the variable symmetries
within each variable component by requiring that earlier variables take smaller
or equal values. To break the value symmetries, we resort to the same structural
abstractions as DSSB, namely value signatures, which generalise from an exact as-
signment of values to variables by quantifying how often a given value is assigned
to variables in each component. Let the frequency

fk
i = |{v ∈ Vk | α(v) = di}|

denote how often each value di is taken under solution α by the variables in each
variable component Vk. For a solution α, we then denote by

sigα(di) := (f1
i , . . . , fa

i )

the signature of di under α. Then, for all consecutive values d i, di+1 in the same
value component,we require that their signatures are lexicographically non-increasing,
i.e., sigα(di) ≥lex sigα(di+1). So the problem boils down to computing the signa-
tures of values efficiently. Fortunately, this is an easy task when using the existing
global cardinality constraint (gcc) [15].

We summarise the resulting structural symmetry-breaking constraints:
– For each variable component Vk = {vp, . . . , vq}, there is a variable ordering
chain:

vp ≤ · · · ≤ vq (1)
hence a total of n − a ordering constraints.

– For each value di and each variable component Vk = {vp, . . . , vq}, the fre-
quencies

fk
i = |{v ∈ Vk | α(v) = di}|

under partial assignment α are calculated by the constraints

gcc(vp, . . . , vq, d1, . . . , dm, fk
1 , . . . , fk

m) (2)

for each Vk, hence a total of a global cardinality constraints.
– For each value component D" = {dp, . . . , dq}, there is an ordering chain for
the value signatures:

(f1
p , . . . , fa

p ) ≥lex · · · ≥lex (f1
q , . . . , fa

q ) (3)

hence a total ofm − b lexicographic ordering constraints.
Note that the number of constraints added is linear in the size of the problem,
unlike in the more general method in [13], and yet that they are able to break
super-exponentially many compositions of variable and value symmetries.

Although value signatures are here defined in essentially the same way as in
Definition 6 in the framework of dominance detection, for static symmetry break-
ing we require them to be lexicographically rather than point-wise ordered. Indeed,
in dynamic dominance detection, we are not interested in constructing the lexico-
graphically minimal solution of any class of symmetrically equivalent solutions,
but just in detecting specialisation of partial assignments. Also, in static struc-
tural symmetry breaking, we require a total order between value signatures, but
the point-wise order is not total.
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3.2 Example

Consider scheduling study groups for two sets of five indistinguishable students
each. There are six identical tables with four seats each. Let {v1, . . . , v5}+{v6, . . . ,
v10} be the partitioned set of piecewise interchangeable variables, one for each
student. Let the domain {t1, . . . , t6} denote the set of tables, which are fully inter-
changeable. The structural symmetry-breaking constraints are:

v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5

v6 ≤ v7 ≤ v8 ≤ v9 ≤ v10

gcc(v1, . . . , v5, t1, . . . , t6, f1
1 , . . . , f1

6 )
gcc(v6, . . . , v10, t1, . . . , t6, f2

1 , . . . , f2
6 )

(f1
1 , f2

1 ) ≥lex · · · ≥lex (f1
6 , f2

6 )

Consider the assignment α = {v1 )→ t1, v2 )→ t1, v3 )→ t2, v4 )→ t3, v5 )→
t4} ∪ {v6 )→ t1, v7 )→ t2, v8 )→ t2, v9 )→ t3, v10 )→ t5}. Within each vari-
able component, the ≤ ordering constraints are satisfied. Having determined the
frequencies using the gcc constraints, we observe that the≥ lex constraints are sat-
isfied, because

(2, 1) ≥lex (1, 2) ≥lex (1, 1) ≥lex (1, 0) ≥lex (0, 1) ≥lex (0, 0).

If student 10 moves from table 5 to table 6, producing a symmetrically equivalent
assignment because the tables are fully interchangeable, the ≥ lex constraints are
no longer satisfied, because

(2, 1) ≥lex (1, 2) ≥lex (1, 1) ≥lex (1, 0) ≥lex (0, 0) -≥lex (0, 1).

If students 9 and 10 swap their assigned tables, producing a symmetrically equiv-
alent assignment because both students are of the same student component, the
signatures do not change and the ≥ lex constraints remain satisfied; however, we
then have v9 -≤ v10.

3.3 Analysis

We now establish the correctness and completeness of the introduced symmetry-
breaking constraints. The key observation that we need to make is captured by the
following lemma:

Lemma 1 Given an assignment γ to a piecewise symmetric CSP 〈
∑

k Vk,
∑

" D",
C〉, let the associated tuple of signature multisets be TSMγ := ({sigγ(d) | d ∈
D"})". It holds that assignments α and β are symmetric if and only if TSMα =
TSMβ .

Proof⇒: Assume there exist piecewise bijectionsσ over
∑

k Vk and τ over
∑

" D"

such that α = τ ◦ β ◦ σ. Recall that signatures just count how many variables
in each component take a given value. Therefore, the permutation of variables
within a component cannot change the signatures of values. It follows that
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TSMα = TSMτ◦β◦σ = TSMτ◦β . But the permutation of values within the
same componentD" does not affect the signature multiset {sigβ(d) | d ∈ D"}.
Hence TSMα = TSMτ◦β = TSMβ .

⇐: Now assume that TSMα = TSMβ . By reversing the previous argument, there
exists a piecewise bijection τ over

∑
" D" such that sigα(d) = sigτ◦β(d) for

all d ∈ D. Thus, according to [17], there also exists a piecewise bijection σ
over

∑
k Vk such that α = τ ◦ β ◦ σ.

Theorem 1 For every solutionα to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the structural symmetry-breaking constraints.

Proof At least one: We first show that, for every solution to the original CSP, there
exists at least one symmetric solution that also obeys all the additional symmetry-
breaking constraints. Denote by τα,k the function that ranks the indices of the val-
ues in Dk = {dp, . . . , dq} according to the signatures over some solution α, i.e.,
sigα(dτα,k(p)) ≥lex · · · ≥lex sigα(dτα,k(q)). We obtain a symmetric solution β
where we re-order the values in eachDk according to τα,k. Then, when we denote
by σβ,k the function that ranks the indices of the variables in Vk = {vp, . . . , vq}
according to β, i.e., β(vσβ,k(p)) ≤ · · · ≤ β(vσβ,k(q)), we can re-order the variables
in each Vk according to σβ,k, and we get a new symmetric solution γ. As we al-
ready argued in the proof of Lemma 1, the re-ordering of the variables within each
component has no effect on the signatures of the values, i.e., sig γ(d) = sigβ(d)
for all d ∈ D. Thus, γ is also a solution to the original CSP that also obeys all
symmetry-breaking constraints.

At most one: Now assume there are two solutions α and β to the piecewise
symmetric CSP that both obey all the symmetry-breaking constraints, and such
that there exist piecewise variable and value bijections σ and τ such that α =
τ ◦ β ◦ σ. According to Lemma 1, it then holds that TSMα = TSMβ . Because
of the lexicographic ordering constraints (3) on the value signatures, this implies
that the signatures under α and β are identical for all d ∈ D. However, with the
signatures of all the values thus fixed, and with the ordering constraints (1) on the
variables, there exists exactly one assignment that gives these signatures. Hence α
and β must be identical. 01

What we have achieved with Theorem 1 is the ability to break statically all
piecewise variable and value symmetries in a given CSP. It is very important to
note that this theorem is about solutions, rather than about partial assignments,
hence the level of consistency enforced on the symmetry-breaking constraints does
not affect the result.

4 Static versus Dynamic SSB for Piecewise Symmetric CSPs

The advantage of a static symmetry-breaking method lies mainly in its ease of use
and its moderate costs per search node. Constraint propagation and incrementality
are inherited from the existing ≥ lex and gcc constraints. On the other hand, it is
well-known that static symmetry breaking can collide with dynamic variable and
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v1=1
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v1=3
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##
##

##
## v3=4

$$
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$$

◦
v2=4

%%
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%%
%%

%
v2=3

##
##

##
##

! ! ! v3 = {}

Fig. 1 DSSB search tree. The black-box nodes (!) mark the three solutions; all non-
depicted assignments are obtained by propagation.

value orderings, whereas dynamic methods such as SBDD do not suffer from this
drawback.

We were interested in studying how dynamic (DSSB) and static structural sym-
metry breaking (SSSB) actually relate to one another. Particularly, we were curi-
ous to know how dynamic structural symmetry breaking (DSSB) and static struc-
tural symmetry breaking (SSSB) relate to one another when variable and value
orderings are fixed. Before stating our main results, let us consider an insightful
example. First, it demonstrates that, when static variable and value orderings are
used, DSSB can discard a partial assignment explored by SSSB when the static
symmetry-breaking constraints are only used to prune the search tree, i.e., when
the symmetry-breaking constraints are only used to detect that a partial assign-
ment already violates one of the constraints, but not for filtering (in fact, The-
orem 3 will show that the DSSB tree is in general a non-strict subtree of such
an SSSB tree). Second, it shows that SSSB can discard a partial assignment ex-
plored by DSSB when hyper-arc consistency is enforced on the conjunction of the
symmetry-breaking constraints (in fact, Theorem 2 will show that such an SSSB
tree is in general a non-strict subtree of the DSSB tree).

Example 2 For both cases, we use the piecewise symmetric CSP 〈{v1, v2, v3} +
{v4}, {1, 2}+ {3, 4}, C〉, where the constraints C are:

– v1, v2, v3 ∈ {1, 2, 3, 4}, v4 ∈ {1, 2}.
– All variables together must take values 1 and 2 at most once.
– All variables together must take values 3 and 4 at most twice.

The problemonly has the following three solutions up to symmetry:{v 1 )→ 1, v2 )→
3, v3 )→ 3, v4 )→ 2}, {v1 )→ 1, v2 )→ 3, v3 )→ 4, v4 )→ 2}, and {v1 )→ 3, v2 )→
3, v3 )→ 4, v4 )→ 1}.

Consider the SSSB tree when using static symmetry breaking constraints for
pruning only. Clearly, the assignment {v1 )→ 2} needs to be checked. However,
DSSB completely discards this assignment as a symmetric sibling of {v1 )→ 1}.

Now consider the DSSB tree after exploring all partial assignments up to α =
{v1 )→ 3, v2 )→ 4}. This node has to be explored by DSSB since neither of the
nogoods {v1 )→ 1} and {v1 )→ 3, v2 )→ 3} dominates it (see Figure 1).
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v1=3
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◦
v3=3

((
((

((
(( v3=4

))
))

))
))

!
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Fig. 2 SSSB search tree when hyper-arc consistency is enforced on the conjunction of the
symmetry-breaking constraints; note that it is a subtree of the DSSB tree in Fig. 1.

On the other hand, when using SSSB and enforcing hyper-arc consistency on
the conjunction of the symmetry-breaking constraints at the node {v 1 )→ 3}, there
is no support for v2 )→ 4 and hence the node α = {v1 )→ 3, v2 )→ 4} is not
explored (see Figure 2).

In the following first comparison theorem, we claim that SSSB explores a sub-
tree of the DSSB tree when we enforce hyper-arc consistency on the conjunction
of the symmetry-breaking constraints. By Example 2, we even know that, in that
setting, SSSB sometimes explores a strict subtree of the DSSB tree.

Theorem 2 For piecewise symmetric CSPs, given a fixed variable and value or-
dering, and posting the symmetry-breaking constraints accordingly, SSSB explores
a subtree of the tree explored by DSSB when we enforce hyper-arc consistency on
the conjunction of the symmetry-breaking constraints.

Proof To show that a node β in an SSSB tree with hyper-arc consistency on the
conjunction of the symmetry-breaking constraints is also in the DSSB tree, we
prove the contrapositive: that is, β -∈ DSSB implies that β -∈ SSSB.

Assume that some partial assignment β = {v1 )→ d1, . . . , vt )→ dt} -∈ DSSB.
This means that there is some partial assignment α, explored before, that domi-
nates β. We look at the first (in depth-first order) such node α that dominates β.

The fact that α dominates β means that for all v ∈ scope(α) we have that
α(v) = τ ◦ β ◦ σ(v) for some piecewise variable and value bijections σ and τ .

As a reminder, given a conjunctionC of constraints, a value d from the domain
of a variable v is not filtered while achieving hyper-arc consistency on C iff there
exists a solution α to C such that α(v) = d and α(w) ∈ dom(w) for all variables
w. The assignment α is often referred to as the support of v )→ d. A hyper-arc con-
sistency algorithm thus essentially ensures that there exist supporting assignments
for all variables and all values in their domains.

Thus, to prove that β -∈ SSSB, we have to show that vt )→ dt has no support,
i.e., that no full extension β ′ of β satisfies the symmetry-breaking constraints. We
prove this by contradiction.

Assume such a β′ exists. Then, applying τ and σ to β ′ yields a second full
assignment:

α′ = τ ◦ β′ ◦ σ
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that is symmetric to β ′. Moreover,α′ agrees with α for all v ∈ scope(α) and hence
is a child of α. According to Lemma 1, it then holds that TSMα′ = TSMβ′ .

Now, consider the first variable v ∈ Vk (recall that we assume that variables are
being assigned in order) where α and β disagree, i.e., α ′(w) = α(w) = β(w) =
β′(w) for all w < v and when we set d := α(v) = α′(v) and e := β(v) = β′(v),
we have that d -= e. Since α was explored before β and values are also assigned in
order, we can infer that d < e. However, as TSMα′ = TSMβ′ and all variables in
earlier variable components have been assigned in accordance between α and β,
this implies that sigα′(f)h = sigβ′(f)h for all values f and variable components
h < k, and also sigα′(d)k >lex sigβ′(d)k . As β′ satisfies constraints (1) and (3),
there is no match for the signature sigα′(d) in the signature multiset {sigβ′(f) |
f ∈ D"} when d ∈ D". Therefore,TSMα′ -= TSMβ′ . Contradiction. 01

Note that it has been shown that achieving this level of consistency is NP-
hard [20]. On the other hand, it is easy to check if a partial assignment violates
any individual symmetry-breaking constraint. In our following second compari-
son theorem, we claim that DSSB explores a subtree of the SSSB tree when we
use static symmetry-breaking constraints for pruning purposes only. Example 2
showed a case where, in that setting, DSSB explores a strict subtree of the SSSB
tree.

Theorem 3 For piecewise symmetric CSPs, given a fixed variable and value order-
ing, and posting the symmetry-breaking constraints accordingly, DSSB explores a
subtree of the tree explored by SSSB when symmetry-breaking constraints are only
used to prune the search tree.

Proof Proof by contradiction. Assume there exists a node in the DSSB search
tree that is pruned by SSSB. Without loss of generality, we may consider the first
node in a depth-first search tree where this occurs. We identify this node with the
assignment β := {v1, . . . , vt} → D.

First assume a variable ordering constraint is violated, i.e., β(v j) < β(vi)
for some 1 ≤ i < j ≤ t where vi and vj are interchangeable. Consider α :
{v1, . . . , vi} → D such that α(vk) := β(vk) for all 1 ≤ k < i, and α(vi) :=
β(vj). Then, due to the fixed variable and value orderings, α is a node that has
been fully explored before β, and α dominates β, which is clear by mapping v i to
vj . Thus, β is also pruned by DSSB.

Now assume a lexicographic ordering constraint on the value signatures is vi-
olated. That is, there is some pair of values di and dj , with 1 ≤ i < j such that
sigβ(di) <lex sigβ(dj). This means that there is some variable component Vk

such that f k
i > fk

j . We pick the first such β in the search tree that violates the
lexicographic ordering constraint. We now know that sigβ(di)[&] = sigβ(dj)[&]
for all & <k and sigβ(di)[k] + 1 = sigβ(dj)[k] (if sigβ(di)[k] + 1 < sigβ(dj)[k]
then there exists an earlier β in the search tree violating the lexicographic or-
dering constraint). With s := max{p | p < t & β(vp) = di}, we set
α : {v1, . . . , vs+1} → D with α(vr) := β(vr) for all r ≤ s and α(vs+1) := di.
Again, due to the fixed variable and value orderings,α is a node that has been fully
explored before β, and α dominates β, which is clear simply by mapping d i to dj

and permuting variables accordingly. Hence, β is also pruned by DSSB. 01
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Note that Theorems 2 and 3 together revise Theorem 2 of our [5], where we
wrongly claimed that the two search trees were always identical when the variable
and value orders are fixed. Indeed, we had overlooked the fact that two different
levels of consistency were assumed in the two proof directions.

In summary, we conclude that dynamic symmetry breaking draws its strength
from its ability to accommodate dynamic variable and value orderings, but causes
an unnecessary overhead when these orderings are fixed. In this case, static sym-
metry breaking offers a much more light-weight method for piecewise symmetric
CSPs. This view is also supported by the practical experiments carried out in [9].

5 Wreath Symmetry

We now wish to extend our ability to accommodate more complex symmetry
classes than piecewise symmetry only. To this end, we consider a class of CSPs
that assign a pair of values (d1, d2) from a domain D1 × D2 to each variable,
where the values inD1 are piecewise interchangeable and, for a given value inD 1,
the values in D2 are piecewise interchangeable as well. These problems are here
called wreath value-symmetric CSPs, because the symmetry group corresponds to
a wreath product of groups [1].

Such problems arise naturally in a variety of applications, e.g., in resource
allocation and scheduling. Consider, for example, the problem of scheduling a
meeting where different groups must meet some day of the week in some room,
subject to constraints. The days are interchangeable and, on a given day, the rooms
are also interchangeable. Problems like this can be modelled as wreath value-
interchangeable CSPs:

Definition 7 (Wreath Bijection) Given two partitions S1 =
∑

p S1
p and S2 =∑

q S2
q , let S = S1 × S2 denote their Cartesian product. A bijection τ : S → S

is a wreath bijection over S1 × S2 if and only if there exists a piecewise bijection
τ1 over

∑
p S1

p and piecewise bijections τ s
2 over

∑
q S2

q for each s ∈ S1, such that
τ(〈s, t〉) = 〈τ1(s), τs

2 (t)〉.

Definition 8 (Wreath Value Symmetry) Given domain partitions D1 =
∑

p D1
p

andD2 =
∑

q D2
q , a CSP P = 〈V, D1×D2, C〉 is called wreath value-symmetric

CSP if and only if, for each solution α ∈ Sol(P) and each wreath bijection τ over
D1 × D2, we have τ ◦ α ∈ Sol(P).

Note that the notion of wreath symmetry allows us to tackle much more refined
symmetries than what can be expressed by piecewise symmetries only. In Figure 3,
we show an example that illustrates the increased expressiveness of wreath value
symmetry.

The reader should not confuse wreath variable symmetry (not discussed in
this paper, but in [6]) with piecewise row and column symmetry [4] in a matrix
of variables: under wreath variable symmetry, the rows are piecewise interchange-
able (as under piecewise row symmetry), but the cells of each row are piecewise
interchangeable in independent fashion (contrary to piecewise column symmetry),
such as the groups of each week in the social golfer problem [3].
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<2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2>

(a)

<2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2>

(b)

Fig. 3 Permutations on the domain {1, 2} ×{ 1, 2}. With the help of wreath symmetry,
we can express that the permutation (a) is a valid symmetry while (b) is not. Piecewise
symmetry does not allow us to make that distinction.

6 Dynamic SSB for Wreath Symmetric CSPs

In the following, we present, illustrate, and analyse a dominance detection algo-
rithm for CSPs with piecewise variable symmetry and wreath value symmetry,
simply called wreath symmetric CSPs hereafter.

6.1 The Dominance Detection Algorithm

Consider a wreath symmetric CSP 〈
∑a

k=1 Vk, D1 × D2, C〉, with V = {v1, . . . ,
vn} =

∑a
k=1 Vk a set of piecewise interchangeable variables andD1×D2 a set of

wreath interchangeable values, withD1 = {d1, . . . , dm1} andD2 = {e1, . . . , em2}
each having piecewise interchangeable elements.

Given partial assignments α and β, the dominance detection algorithm at-
tempts to construct a piecewise bijection σ over

∑a
k=1 Vk and piecewise bijec-

tions τ1 and τ e
2 for all e ∈ D1 such that α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α),

where τ denotes the wreath bijection based on τ1 and the τ e
2 . By definition, if the

algorithm succeeds in finding such piecewise bijections, then α dominates β. Our
algorithm will be based on the following core observation:

Remark 1 The piecewise bijection τ1 can map τ1(e1) = d1 only if there exists a
piecewise bijection τ e1

2 such that

sk
β(e1, e2) := |{v ∈ Vk | β(v) = 〈e1, e2〉}|

≥ |{v ∈ Vk | α(v) = 〈d1, τ
e1
2 (e2)〉}| =: sk

α(d1, τ
e1
2 (e2))

for all k, where sk
γ(a, b) denotes the number of variables in component Vk that

partial assignment γ maps to 〈a, b〉.

Now, for any partial assignment γ and values f1 ∈ D1 and f2 ∈ D2, we define

sigγ(〈f1, f2〉) := (s1
γ(f1, f2), . . . , sa

γ(f1, f2)).

Then, in order to compute the subset of possible mappings that τ 1 could make, for
each p and every pair d1, e1 ∈ D1

p, our algorithm sets up the bipartite graph with
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Initialise Ḡ as the empty graph
for all value components p do
for all values d, e ∈ Sp do
ifG(d, e) contains a perfect matching then
Add (d, e′) to Ḡ

end if
end for

end for
Return true if and only if Ḡ contains a perfect matching

Algorithm 1: Dominance detection for wreath symmetric CSPs.

the node setsN1(d1, e1) := {d | d ∈ D2} = D2 andN2(d1, e1) := {e′ | e ∈ D2}
as the set of primed copies of the values inD2, and with the edge set

A(d1, e1) := {(d2, e′2) ∈ N1(d1, e1) × N2(d1, e1) |
∃ q : d2, e2 ∈ D2

q & sigα(〈d1, d2〉) ≤ sigβ(〈e1, e2〉)}.

With Remark 1, observe that τ1(e1) = d1 is only ever feasible if a perfect matching
in the bipartite graph G(d1, e1) := (N1(d1, e1) + N2(d1, e1), A(d1, e1)) exists.
Consequently, to compute τ1, we set up the bipartite graph Ḡ := (N̄1 + N̄2, Ā)
with the node sets N̄1 := {d | d ∈ D1} = D1 and N̄2 := {e′ | e ∈ D1} as the set
of primed copies of the values inD1, and with the edge set

Ā := {(d1, e
′
1) ∈ N̄1×N̄2 | ∃ p : d1, e1 ∈ D1

p & G(d1, e1) has a perfect matching}.

The algorithm decides that α dominates β if and only if Ḡ contains a perfect
matching. The procedure is summarised as Algorithm 1.

6.2 Example

Assumewe are given a wreath symmetric CSP 〈{v1, v2, v3, v4}+{v5, v6}, ({1, 2}+
{3, 4}) × ({1, 2, 3} + {4}), C〉 and partial assignments α = {v1 )→ 〈2, 3〉, v2 )→
〈2, 1〉, v3 )→ 〈3, 1〉, v5 )→ 〈2, 1〉} and β = {v1 )→ 〈1, 4〉, v2 )→ 〈1, 1〉, v3 )→
〈1, 3〉, v4 )→ 〈3, 2〉, v5 )→ 〈1, 3〉, v6 )→ 〈4, 4〉}.

Now assume that we consider to have τ1 map the first-component value 1
to value 2. What are, for instance, the signatures of value 〈2, 3〉 under α and of
value 〈1, 3〉 under β? We see that α assigns exactly one variable to 〈2, 3〉, and
this variable is in component {v1, v2, v3, v4}. According to our definition, it there-
fore holds that sigα(〈2, 3〉) = (1, 0). On the other hand, β assigns two variables
to 〈1, 3〉, one from {v1, v2, v3, v4} and one from {v5, v6}. Thus, sigβ(〈1, 3〉) =
(1, 1).

When setting τ1(1) = 2, all the signatures and the entire graph G(2, 1) are
shown in Figure 4(a), which also depicts a perfect matching in G(2, 1), which
means that the edge (2, 1′) is part of the first-component graph Ḡ, given in Fig-
ure 5. In contrast to this existing edge, consider setting τ1(4) = 3. The correspond-
ing graphG(3, 4) is shown in Figure 4(b): since the node 1 corresponding to value
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<1,3’>

<2,2>

<2,1> <1,1’>

<1,2’>

<2,4> <1,4’>

<2,3>

(1,1)

(0,0)

(1,0)

(0,0)

(1,0)

(0,0)

(1,1)

(1,0)

(a)

<4,3’>

<3,2>

<3,1> <4,1’>

<4,2’>

<3,4> <4,4’>

<3,3>

(1,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)

(0,1)

(b)

Fig. 4 (a) The bipartite graph G(2, 1) constructed to assess whether τ1(1) = 2 is feasible.
(b) The bipartite graph G(3, 4) constructed to assess whether τ1(4) = 3 is feasible. An
edge between 〈d1, d2〉 and 〈e1, e

′
2〉 indicates that sigα(〈d1, d2〉) ≤ sigβ(〈e1, e2〉). The

signatures are given next to the value pairs. The rounded boxes indicate the components of
the partition ofD2. Perfect matchings, if any, are given by the solid edges.

〈3, 1〉 has no adjacent edge at all, there is no perfect matching in the graph. In-
deed, we see that, when setting τ1(4) = 3, the assignment α(v3) = 〈3, 1〉 finds no
v ∈ {v1, v2, v3, v4} and no e ∈ {1, 2, 3} such that β(v) = 〈4, e〉. Consequently,
the edge (3, 4′) is not part of Ḡ. However, we see in Figure 5 that Ḡ contains the
perfect matchingM = {(1, 2′), (2, 1′), (3, 3′), (4, 4′)}.

Now, the perfect matchingM on Ḡ gives us the bijection τ1 such that τ1(1) =
2 (from the edge (2, 1′)), τ1(2) = 1 (from edge (1, 2′)), τ1(3) = 3, and τ1(4) =
4. Under this setting, we define τ 1

2 based on the perfect matching in G(2, 1) by
τ1
2 (1) = 3, τ1

2 (2) = 2, τ1
2 (3) = 1, and τ 1

2 (4) = 4 (see Figure 4). Note that this
assignment implicitly permutes the variables v for which β(v) = 〈1, e〉 for some
e ∈ {1, 2, 3, 4} while obeying the variable components. In our case, we implicitly
get the partial variable bijection σ with σ(v1) = v4, σ(v2) = v1, σ(v3) = v2, and
σ(v5) = v5. Note that we never actually need to compute the variable bijection σ
that we get by combining the individual re-orderings.

1

2

4

2’

1’

4’

3 3’

Fig. 5 The first-component bipartite graph Ḡ, containing an edge (d, e) for each feasible
mapping τ1(e) = d. The rounded boxes indicate the components of the partition of D1.
As there exists a perfect matching in Ḡ, given by the non-dotted edges, we conclude that α
dominates β.
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6.3 Analysis

With the help of this method for dominance detection via structural symmetry
breaking, we can show:

Theorem 4 The dominance detection problem for CSPs with wreath value symme-
try and piecewise variable symmetry is tractable.

Proof First, let us show that the algorithm above is correct, i.e., that it does not
detect dominance when there is none. Clearly, the perfect matchingM in Ḡ gives
us a piecewise bijection τ1 over D1 by setting τ1(e1) := d1 for all (d1, e1) ∈ M .
Moreover, for each edge (d1, e1) in M , the corresponding perfect matching in
G(d1, e1) gives us a piecewise bijection τ e1

2 overD2 that is consistent with setting
τ1(e1) := d1. Note that τ e1

2 implicitly assigns one variable from the set {v ∈ Vk |
∃ e2 : β(v) = 〈e1, e2〉} to each variable in {v ∈ Vk | ∃ d2 : α(v) = 〈d1, d2〉}.
This implies that the implicit variable bijections for all matching edges (d1, e1) in
M do not collide as they map variables from disjoint subsets into disjoint subsets
of V . Consequently, we can construct one global piecewise variable bijection σ
and one wreath bijection τ such that α(v) = τ ◦ β ◦ σ(v) for all v ∈ scope(α).

Now, regarding the completeness of our algorithm, assume that α actually
dominates β. Denote the corresponding bijections by σ, τ 1, and τ e

2 as before.
Under the piecewise variable bijection σ, we find that, for each τ1(e1) = d1,
τe1
2 (d2) = e2, and variable component Vk, there must exist at least as many vari-
ables in Vk that α maps to 〈d1, d2〉 as variables in the same Vk that β maps to
〈e1, e2〉. Consequently, we have that sigα(d1, d2) ≤ sigβ(e1, e2), which implies
that τe1

2 defines a perfect matching inG(d1, e1). Then, for each τ1(e1) = d1, there
exists the edge (τ1, d1) in Ḡ, which shows that Ḡ has a perfect matching. Thus,
our algorithm finds that α dominates β.

Finally, we note that at most |D1|2 + 1 matchings need to be solved by the
algorithm. Consequently, it runs in polynomial time. 01

Theorem4 is theoretically strong in that it subsumesmany of previously proven
results regarding the tractability of symmetry breaking. As a matter of fact, all
the tractability results on breaking piecewise value or variable symmetry of CSPs
considered in [18,17,6] follow from Theorem 4. However, from a practical per-
spective, the algorithm presented is very costly, especially when compared with
constant overhead methods for breaking only value symmetries like the ones pre-
sented in [18,6]. Consequently, while the point here was to show that, with DSSB,
it is even possible to efficiently handle wreath value symmetry and piecewise vari-
able symmetry, in practice one is of course well advised to choose the dominance-
detection algorithm just so that it can handle the symmetries that need to be broken.

Note that the dominance checker that we outlined in the proof above can be
generalised for wreath tuples with k entries. However, the runtime then turns out
to be exponential in k.

Finally, the following new intractability result for set-CSPs follows fromCorol-
lary 1 of [17] (intractability of dominance detection for piecewise symmetric set-
CSPs), because wreath value interchangeability is piecewise value interchange-
ability when |D2| = 1:

16



Corollary 1 The dominance detection problem for set-CSPs with wreath value
symmetry and piecewise variable symmetry is NP-hard.

7 Static SSB for Full Wreath Symmetric CSPs

We now show that structural symmetry breaking can also be used to devise struc-
tural symmetry-breaking constraints for wreath symmetric CSPs. For simplicity,
we do so only for piecewise variable symmetry and full wreath value symmetry,
that is where Definition 7 is restricted to the case where the underlying piecewise
bijections are all full bijections. We call such CSPs full wreath symmetric CSPs in
this paper. It would be easy to generalise this to piecewise bijections, but we do
not do so here to keep the notation simple.

7.1 Symmetry-Breaking Constraints

Consider a full wreath symmetric CSP 〈
∑a

k=1 Vk, D1×D2, C〉, with V = {v1, . . . ,
vn} =

∑a
k=1 Vk a set of piecewise interchangeable variables andD1×D2 a set of

wreath interchangeable values, withD1 = {d1, . . . , dm1} andD2 = {e1, . . . , em2}
each having fully interchangeable elements. Assume a total ordering of the vari-
ables V , the elementsD1, and the elementsD2. Here are the structural symmetry-
breaking constraints:

– For each variable component Vk = {vp, . . . , vq}, there is a variable ordering
chain:

vp ≤lex · · · ≤lex vq (4)

hence a total of n − a lexicographic ordering constraints.
– For each value (di, ej) and each variable component Vk = {vp, . . . , vq}, the
frequencies

fk
i,j = |{v ∈ Vk | v ∈ scope(α) & α(v) = (di, ej)}|

under partial assignment α are calculated by the constraints

gcc(vp, . . . , vq, (d1, e1), . . . , (dm1 , em2), fk
1,1, . . . , f

k
m1,m2

) (5)

for each Vk, hence a total of a global cardinality constraints.
– For each element di, there is an ordering chain for what we call the signatures
of the (di, ej) values:

(f1
i,1, . . . , f

a
i,1) ≥lex (f1

i,2, . . . , f
a
i,2) ≥lex · · · ≥lex (f1

i,m2
, . . . , fa

i,m2
) (6)

hence a total ofm1 chains ofm2 − 1 lexicographic ordering constraints each.
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– There is an ordering chain for what we call the compound signatures of the d i

elements:

(f1
1,1, . . . , f

a
1,1, f1

1,2, . . . , f
a
1,2, . . . , f1

1,m2
, . . . , fa

1,m2
)

≥lex

(f1
2,1, . . . , f

a
2,1, f1

2,2, . . . , f
a
2,2, . . . , f1

2,m2
, . . . , fa

2,m2
)

≥lex · · · ≥lex

(f1
m1,1, . . . , f

a
m1,1, f1

m1,2, . . . , f
a
m1,2, . . . , f1

m1,m2
, . . . , fa

m1,m2
)

(7)

hence one chain ofm1 − 1 lexicographic ordering constraints.

Again, we find that the number of constraints added is linear in the size of the
problem (note thatm1 · m2 is linear in the input size when the domains are given
explicitly), and yet they are able to break super-exponentially many compositions
of variable and value symmetries as we shall show later in this section.

Note that these constraints specialise into (a specialisation for full value sym-
metry of) the symmetry-breaking constraints of Section 3.1 for piecewise sym-
metric CSPs. Indeed, the compound signature ordering chain (7) is vacuously true
when m1 = 1 while the signature ordering chains (6) then amount to the sin-
gle signature ordering chain (3). Conversely, the signature ordering chains (6) are
vacuously true when m2 = 1 while the compound signature ordering chain (7)
then amounts to the signature ordering chain (3). In any case, the variable ordering
chains (4) trivially specialise into (1) as we essentially deal with 1-tuples, and the
global cardinality constraints (5) trivially specialise into (2).

Finally, note that the constraints above can be adapted to accommodate piece-
wise rather than full wreath value symmetry: The only difference is that the order-
ing constraints (6) and (7) on the signatures then do not apply at value partition
boundaries.

7.2 Example

Consider scheduling study groups for ten students divided into two categories of
five indistinguishable students each. There are six tables with four seats each, di-
vided over two rooms containing three tables each. The rooms are indistinguish-
able, and, within each room, all tables are indistinguishable. Let {v 1, . . . , v5} +
{v6, . . . , v10} be the set of piecewise interchangeable variables, one for each stu-
dent. Let the domain {r1, r2}×{ t1, t2, t3} denote the set of tables, which are fully
wreath interchangeable. The structural symmetry-breaking constraints are:

v1 ≤lex · · · ≤lex v5

v6 ≤lex · · · ≤lex v10

gcc(v1, . . . , v5, (r1, t1), . . . , (r2, t3), f1
1,1, . . . , f

1
2,3)

gcc(v6, . . . , v10, (r1, t1), . . . , (r2, t3), f2
1,1, . . . , f

2
2,3)

(f1
1,1, f

2
1,1) ≥lex (f1

1,2, f
2
1,2) ≥lex (f1

1,3, f
2
1,3)

(f1
2,1, f

2
2,1) ≥lex (f1

2,2, f
2
2,2) ≥lex (f1

2,3, f
2
2,3)

(f1
1,1, f

2
1,1, f1

1,2, f
2
1,2, f1

1,3, f
2
1,3) ≥lex (f1

2,1, f
2
2,1, f1

2,2, f
2
2,2, f1

2,3, f
2
2,3)
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Consider the assignment

α = {v1 )→ 〈r1, t1〉, v2 )→ 〈r1, t1〉, v3 )→ 〈r1, t1〉, v4 )→ 〈r1, t2〉, v5 )→ 〈r1, t2〉,
v6 )→ 〈r2, t1〉, v7 )→ 〈r2, t1〉, v8 )→ 〈r2, t1〉, v9 )→ 〈r2, t2〉, v10 )→ 〈r2, t3〉}.

The ≤lex variable ordering constraints are satisfied. Having determined the value
frequencies using the gcc constraints, we observe that the≥ lex (compound) signa-
ture ordering constraints are all satisfied, because

(3, 0) ≥lex (2, 0) ≥lex (0, 0) & (0, 3) ≥lex (0, 1) ≥lex (0, 1) &
(3, 0, 2, 0, 0, 0) ≥lex (0, 3, 0, 1, 0, 1).

If the two student groups swap their table/room assignments, producing a symmet-
rically equivalent assignment, namely

β = {v1 )→ 〈r2, t1〉, v2 )→ 〈r2, t1〉, v3 )→ 〈r2, t1〉, v4 )→ 〈r2, t2〉, v5 )→ 〈r2, t3〉,
v6 )→ 〈r1, t1〉, v7 )→ 〈r1, t1〉, v8 )→ 〈r1, t1〉, v9 )→ 〈r1, t2〉, v10 )→ 〈r1, t2〉},

the ≤lex variable ordering constraints are still satisfied, but the ≥ lex (compound)
signature ordering constraints are now violated, because

(0, 3) ≥lex (0, 1) ≥lex (0, 1) & (3, 0) ≥lex (2, 0) ≥lex (0, 0) &
(0, 3, 0, 1, 0, 1) -≥lex (3, 0, 2, 0, 0, 0).

7.3 Analysis

Analogously to the case of piecewise symmetric CSPs, we find:

Lemma 2 Given a full wreath symmetric CSP 〈
∑a

k=1 Vk, D1 × D2, C〉, and an
assignment γ, let the associated multiset of signature multisets be MSMγ :=
{{sigγ(〈d, e〉) | e ∈ D2} | d ∈ D1}. It holds that two assignments α and β
are symmetric if and only if MSMα = MSMβ .

Proof⇒: Assume α and β are symmetric. We observe once more that the permu-
tation of variables within variable components does not affect the signatures of
values. Then, for each d ∈ D1, the permutation of values inD2 only permutes
elements in {sigβ(〈d, e〉) | e ∈ D2}, which leaves the multiset as a whole
unchanged. The same holds for the permutation of values inD 1 andMSMβ .

⇐: Now assume thatMSMα = MSMβ . By reversing the previous argument, there
exist a permutation τ1 overD1 and for each d ∈ D1 a permutation τ d

2 overD2

such that sigα(〈d, e〉) = sigβ(〈τ1(d), τd
2 (e)〉) and such that {sigα(〈d, e〉) | e ∈

D2} = {sigβ(〈τ1(d), τd
2 (e)〉) | e ∈ D2}. Then it is easy to construct σ and τ

such that α = τ ◦ β ◦ σ.

Equipped with this insight, we can now establish the counterpart of Theorem 1
for full wreath symmetric CSPs:

Theorem 5 For every solution α to a full wreath symmetric CSP, there exists ex-
actly one symmetric solution that obeys the structural symmetry-breaking con-
straints.
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Proof At least one: Given a solution α, we show that there exists at least one sym-
metrically equivalent solution that also satisfies all the symmetry-breaking con-
straints. First, for each d, determine a full bijection τ d : D2 → D2 such that all
the lexicographic ordering constraints (6) on the signatures are satisfied. This can
be seen as a wreath bijection acting as the identity on the first component. Second,
determine a full wreath bijection τ such that all the lexicographic ordering con-
straints (7) on the compound signatures are satisfied, the trick at this stage being to
carry over the τ d bijections obtained in the first stage. Doing this will not violate
any of the already satisfied constraints (6). Finally, we observe that reordering the
variables so that they satisfy all the lexicographic ordering constraints (4) has no
effect on any of the signatures, so there exists a solution α ′ that is symmetric to α
and that satisfies all the structural symmetry-breaking constraints.

At most one: Now we prove that any two solutions that satisfy all the structural
symmetry-breaking constraints must be identical. According to Lemma 2, there is
a fixed multiset of signature multisets MSMγ for all solutions that are symmet-
ric to solution γ. However, for all d ∈ D1, the elements in the signature multiset
{sigα(〈d, e〉) | e ∈ D2} are ordered by the lexicographic ordering constraints (6)
on the value signatures.Moreover, the lexicographic ordering constraints (7) on the
compound signatures enforce an ordering of all the elements inMSM γ . In combi-
nation with the variable ordering constraints (4), there is but one assignment that
fulfils all these constraints for each fixed multiset of signature multisets MSMγ .
01

8 Conclusions

We have shown the great power of structural symmetry breaking on complex cases
of simultaneous value and variable interchangeability in CSPs. The results on dy-
namic symmetry breaking are theoretically significant in that they subsume many
of previously proven results regarding the tractability of dominance detection.
From a practical perspective, the dynamic algorithms presented are very costly,
though, especially when compared with constant-overhead methods for breaking
only value symmetries like the ones presented in [18,6]. Consequently, we have
exploited the idea of structural symmetry breaking to devise sets of symmetry-
breaking constraints that simultaneously break all the compositions of piecewise
variable and piecewise or wreath value symmetries. To our knowledge, these are
the first identified classes of symmetries for CSPs where a polynomial, yet even
a linear number of static symmetry breaking constraints suffices to break a super-
exponential number of variable and value symmetries. We have then shown that,
in case of static variable and value orderings, the search tree explored by static
structural symmetry breaking (SSSB) is a subtree of the one explored by dynamic
structural symmetry breaking (DSSB) when we achieve hyper-arc consistency for
the conjunction of symmetry breaking constraints, and that the DSSB search tree is
a subtree of the SSSB tree whenwe use constraints for pruning purposes only. Note
that the first result implies that SSSB is, in principle, able to guarantee symmetry-
free search trees. This is a clear indication that using SSSB is the way to go when-
ever fixed variable and value orderings can be expected to work well.
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With respect to future work, the following questions arise. Can we find general
conditions under which a static symmetry-breaking method leads to symmetry-
free search trees? Can static structural symmetry breaking be usefully combined
with the dynamic lexicographic ordering constraints of [14]?
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of ECAI’04, pages 211–215. IOS Press, 2004.

17. M. Sellmann and P. Van Hentenryck. Structural symmetry breaking. In Proceedings of
IJCAI’05. 2005.

18. P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren. Tractable symmetry breaking
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