
Supplemental Material to
A Propagator Design Framework for Constraints over Sequences

Jean-Noël Monette and Pierre Flener and Justin Pearson
Uppsala University, Dept of Information Technology

751 05 Uppsala, Sweden
FirstName.LastName@it.uu.se

Abstract

This supplemental material gives the extended definitions of
the tuple operations, lists the definition of some transfor-
mation operators, details the examples about DEVIATION,
SEQBIN, and LONGESTPLATEAU, and describes the exper-
imental protocol for the experiments.

1 Extended Definitions of Tuple Operations
The projection 〈vi1 , . . . , vik〉 of a tuple 〈v1, . . . , vn〉
onto a subset of its components i1, . . . , ik is written
πi1,...,ik(〈v1, . . . , vn〉). The projection πi1,...,ik(S) of a tu-
ple set S is the set of the projections of the tuples in S
(πi1,...,ik(S) = {〈vi1 , . . . , vik〉 | 〈v1, . . . , vn〉 ∈ S}).

The concatenation of two tuples is defined as
〈v1, . . . , vn〉 · 〈w1, . . . , wm〉 = 〈v1, . . . , vn, w1, . . . , wm〉.
The Cartesian product of two tuple sets is the pointwise
lifting of the concatenation: S×T = {s ·t | s ∈ S∧t ∈ T}.

The restriction (written σ) of a tuple set S is the subset
containing the tuples whose projection on some components
i1, . . . , ik is contained in another set T : σi1,...,ik;T (S) =
{s | s ∈ S ∧ πi1,...,ik(s) ∈ T}.

The selection operator in the article can be defined in
terms of the projection and restriction operators: ρv(S) =
π2(σ1;{v}(S)). In this appendix, we make use of a
slightly more general selection operator: ρii,...,ikv (S) =
πi1,...,ik(σ1;{v}(S)).

2 Transformation Operators
We list here a few transformation operators used in the
refinement of pruning rules (beside the ones described in
the main text).
smap o filter(λ 〈〉 . e, λt . true, 〈〉) e (Simplification)
smap o filter(λ 〈〉 . e, λ 〈〉 . b, 〈〉) if b then e else ∅
(Simplification)
〈k, z〉 ∈ dom(XY) z ∈ ρ2k(dom(XY)) (Isolation of a
variable)
max(A,B) bmax(〈A,B〉) (Grouping)
C1 ∧ C2 C1 (Weakening)
S1 ∩ S2 S1 (Weakening)
lift[v1 = S2] v1 ∈ S2 (Lifting of equality from values to
sets)
lift[S1 = S2] S1 ∩ S2 6= ∅ (Lifting of equality from

values to sets)

3 Simplified DEVIATION Example
This is DEVIATION using the following DP formulation as
in Examples 1, 2, and 3 of the main text:

S0 = 0 ∧D0 = 0 (CF)(
Si = Si−1 +Xi ∧

Di = Di−1 + |Xi −m|

)
i ∈ 1..n (Ci)

Sn = m · n ∧Dn = D (CL)

After introduction of the SDi tuple variables, it becomes:

SD0 = 〈0, 0〉 (CF)
SDi = SDi−1 + 〈Xi, |Xi −m|〉 i ∈ 1..n (Ci)

SDn = 〈m · n,D〉 (CL)
SDi = 〈Si, Di〉 i ∈ 0..n (CAi

)

Constraint CAi
and variables Si and Di can be removed,

assuming Si and Di are not used in any other constraint.
We now describe a complete non-incremental and stateless
propagator. To reproduce an incremental version is beyond
the scope of this appendix. The propagator makes use of
a preprocessing step. This preprocessing is used to reduce
the domain of the variables using a weaker domain repre-
sentation and weaker pruning rules. In practice, we intro-
duce a SDp

i tuple variable with domain representation I2,
while the original SDi variable has a domain representation
E → I. The preprocessing corresponds to the cutoff pre-
sented in (Pesant 2011), which is useful to achieve the given
time complexity. The propagator is described as follows.
The individual pruning rules are described below.

filter SDp
n based on CL with rule rp1

for i = n down to 1
filter SDp

i−1 based on Ci with rule rp2
filter SD0 based on CF with rule r1
for i = 1 to n

filter SDi based on Ci and SDp
i with rule r2

filter SDn based on CL with rule r3
filter D based on CL with rule r4
for i = n down to 1

filter SDi−1 based on Ci with rule r5
filter Xi based on Ci with rule r6

The link between the two tuple variable domain represen-
tations is performed in pruning rule r2 by enforcing that
π1(SDi) is a subset of π1(SDp

i). We present all prun-
ing rules in the form “Y in e”, meaning that the domain of
variable Y must be restricted to become a (non-strict) sub-
set of expression e. The preprocessing pruning rules are the
following ones:

SDp
n in {m · n} × bnd(D) (rp1)

SDp
i−1 in SDp

i − (bnd(Xi)× |bnd(Xi)−m|) (rp2)

where bnd(X) is the smallest interval enclosing the do-
main of an integer variable X (i.e., it is a shortcut for
min(dom(X))..max(dom(X))). The other pruning rules
are:

SD0 in {〈0, 0〉} (r1)
SDi in smap o filter((r2)

λ 〈xi, si−1〉 . {si−1 + xi} ×
(ρ2si−1

(dom(SDi−1)) + {|xi −m|}),
λ 〈xi, si−1〉 . (si−1 + xi) ∈ π1(SDp

i),
dom(Xi)× π1(dom(SDi−1)))

SDn in {m · n} × dom(D) (r3)
D in π2(dom(SDn)) (r4)
SDi−1 in smap o filter(λ 〈xi, si〉 . {si − xi} × (r5)(

ρ2si(dom(SDi))− {|xi −m|}
)
,

λt . true, dom(Xi)× π1(dom(SDi)))
Xi in smap o filter((r6)

λ 〈xi, si−1〉 . {xi},
λ 〈xi, si−1〉 . ρ2si−1

(dom(SDi−1)) + {|xi −m|} ∩
ρ2(si−1+xi)

(dom(SDi)) 6= ∅,
dom(Xi)× π1(dom(SDi−1)))

4 Complete DEVIATION Example
The DP formulation of DEVIATION used in Examples 1, 2,
and 3 of the main text as been simplified for ease of pre-
sentation. (Pesant 2011) actually implicitly uses another DP
formulation than the one of Example 1, namely:

S0 = 0 ∧Df
0 = 0 ∧Db

0 = D ∧Dt
0 = D (CF)

Si = Si−1 +Xi ∧
Df

i = Df
i−1 + |Xi −m| ∧

Db
i = Db

i−1 − |Xi −m| ∧
Df

i +Db
i = Dt

i ∧
Dt

i = Dt
i−1

 i ∈ 1..n (Ci)

Sn = m · n ∧Df
n = D ∧Db

n = 0 ∧Dt
n = D (CL)

where Df
i is the partial deviation for the variables from 1 to

i, Db
i is the partial deviation for the variables from i + 1

to n, and Dt
i is the total deviation. All Dt

i are equal to
each other and to D. The 4-tuple link variable SDi repre-
sents Si,D

f
i ,Db

i , andDt
i , and we use domain representation

(E → I2) × I. As we use a Cartesian product to separate
Dt

i from the rest of the tuple, an implementation can ensure
that the domains of all Dt

i are implemented by a unique ob-
ject (as they are all equal). To simplify presentation, we will
leave the Dt

i out of the formulation and use D in their place.

Hence from now on, SDi represents Si, D
f
i , and Db

i , with
domain representation E → I2. The DP formulation after
introduction of the tuple variables is:

SD0 = 〈0, 0, D〉 (CF)(
SDi = SDi−1 + 〈Xi, |Xi −m| ,− |Xi −m|〉

∧ π2(SDi) + π3(SDi) = D

)
i ∈ 1..n

(Ci)
SDn = 〈m · n,D, 0〉 (CL)

The control is the same as in the simplified version. We
use the symbol U (representing the universe set, i.e., Z or a
subset thereof) when some component of a tuple variable is
not restricted by a pruning rule. Here are the pruning rules:

SDp
n in {m · n} × U2 (rp1)

SDp
i−1 in (π1(SDp

i)− bnd(Xi))× U2 (rp2)
SD0 in {〈0, 0〉} × dom(D) (r1)
SDi in smap o filter((r2)

λ 〈xi, si−1〉 . {si−1 + xi} ×
(ρ2si−1

(dom(SDi−1)) + {|xi −m|})× U ,
λ 〈xi, si−1〉 . (si−1 + xi) ∈ π1(SDp

i),
dom(Xi)× π1(dom(SDi−1)))

SDn in {m · n} × dom(D)× {0} (r3)
D in π2(dom(SDn)) (r4)
SDi−1 in smap o filter(λ 〈xi, si〉 . {si − xi} × (r5)

U × (ρ3si(dom(SDi)) + {|xi −m|}),
λt . true, dom(Xi)× π1(dom(SDi)))

Xi in smap o filter((r6)
λ 〈xi, si−1〉 . {xi},
λ 〈xi, si−1〉 . ρ2si−1

(dom(SDi−1)) + {|xi −m|} +

ρ3(si−1+xi)
(dom(SDi)) ∩ dom(D) 6= ∅,

dom(Xi)× π1(dom(SDi−1)))

5 Simplified SEQBIN Example
We now present a propagator for SEQBIN based on the for-
mulation given in the main text (Example 4). The DP for-
mulation, after introduction of the XSi tuple variables, is:

π2(XS0) = 0 (CF)(
π2(XSi) = π2(XSi−1) +
[B(π1(XSi−1), π1(XSi))]
∧ D(π1(XSi−1), π1(XSi))

)
i ∈ 1..n (Ci)

π2(XSn) = S (CL)
π1(XSi) = Xi i ∈ 0..n (CAi

)
Note that we simplified the CAi

constraints to eliminate the
Si variables introduced by the DP formulation. The control
of the set of pruning rules is the following one:

filter XS0 based on CF and CA0 with rule r1
for i = 1 to n

filter XSi based on Ci and CAi with rule r2
filter S based on CL with rule r3
filter XSn based on CL with rule r4
for i = n down to 1

filter XSi−1 based on Ci with rule r5
for i = n down to 0

filter Xi based on CAi
with rule r6

2

Pruning rules r1 and r2 are used to propagate two constraints
at the same time. Those pruning rules can also be derived
from the DP formulation: their instantiation is based on
the conjunction of the two constraints. Here are the refined
pruning rules:

XS0 in dom(X0)× {0} (r1)
XSi in smap o filter((r2)

λ 〈xi, xi−1〉 . {xi} ×
(ρ2xi−1

(dom(XSi−1)) + {[B(xi−1, xi)]}),
λ 〈xi, xi−1〉 . D(xi−1, xi),
dom(Xi)× π1(dom(XSi−1)))

S in π2(dom(XSn)) (r3)
XSn in π1(dom(XSn))× dom(S) (r4)
XSi−1 in smap o filter((r5)

λ 〈xi, xi−1〉 . {xi−1} ×
(ρ2xi

(dom(XSi))− {[B(xi−1, xi)]}),
λ 〈xi, xi−1〉 . D(xi−1, xi),
π1(dom(XSi))× π1(dom(XSi−1)))

Xi in π1(dom(XSi)) (r6)

6 Complete SEQBIN Example
We now present the description of SEQBIN for the prop-
agator presented in (Petit, Beldiceanu, and Lorca 2011;
Katsirelos, Narodytska, and Walsh 2012). Here is the DP
formulation:

Sf
0 = 0 ∧ Sb

0 = S0 (CF)
Sf
i = Sf

i−1 + [B(Xi−1, Xi)] ∧
Sb
i−1 = Sb

i + [B(Xi−1, Xi)] ∧
Sf
i−1 + Sb

i−1 = Si−1 ∧
Si = Si−1 ∧
D(Xi−1, Xi)

 i ∈ 1..n (Ci)

Sf
n = Sn ∧ Sb

n = 0 ∧ Sn = S (CL)

The link variables are Xi (current variable), Sf
i (forward

count), Sb
i (backward count), and Si (total count). The Si

are all equal and introduced to fit in the framework. They
can all be replaced by S (as for D in the DEVIATION exam-
ple) but we keep them to show another possible way.

We introduce a tuple variable XSi for each link with a
(E → Z2) × E representation. The last component is the
same for all i and can be implemented by a shared object.

The control is the same as for the simplified version. Here
are the refined pruning rules:

XS0 in dom(X0)× {0} × dom(S)× dom(S) (r1)
XSi in smap o filter((r2)

λ 〈xi, xi−1〉 . {xi} ×
(ρ2xi−1

(dom(XSi−1)) + {[B(xi−1, xi)]}) ×
U × dom(S),

λ 〈xi, xi−1〉 . D(xi−1, xi),
dom(Xi)× π1(dom(XSi−1)))

S in π2(dom(XSn)) (r3)
XSn in smap o filter((r4)

λ 〈xn〉 . {xn} × U × {0} × dom(S),
λ 〈xn〉 . ρ2xn

(dom(XSn)) ∩ π4(dom(XSi)) 6= ∅,

π1(dom(XSn)))
XSi−1 in smap o filter((r5)

λ 〈xi, xi−1〉 . {xi−1} × U ×
(ρ3xi

(dom(XSi)) + {[B(xi−1, xi)]})× dom(S),
λ 〈xi, xi−1〉 . D(xi−1, xi) ∧

(ρ2xi−1
(dom(XSi−1)) + ρ3xi

(dom(XSi)) +

{[B(xi−1, xi)]}) ∩ π4(dom(XSi)) 6= ∅,
π1(dom(XSi))× π1(dom(XSi−1)))

Xi in π1(dom(XSi)) (r6)

7 Complete LONGESTPLATEAU Example
We use the following DP formulation of Section 7 in the
main text:

K0 = 1 ∧M0 = 1 (CF)
if Xi = Xi−1
thenKi = Ki−1 + 1 ∧Mi = Mi−1
elseKi = 1 ∧Mi = max(Mi−1,Ki−1)

i ∈ 1..n (Ci)

L = max(Mn,Kn) (CL)

After introduction of the XKMi tuple variables, it be-
comes:

π2,3(XKM0) = 〈1, 1〉 (CF)
if π1(XKMi) = π1(XKMi−1)
then π2,3(XKMi) = π2,3(XKMi−1) + 〈1, 0〉
else π2,3(XKMi) = 〈1,bmax(π2,3(XKMi−1))〉

i ∈ 1..n

(Ci)
L = bmax(π2,3(XKMn)) (CL)
π1(XKMi) = Xi i ∈ 0..n (CAi

)

where bmax(〈t1, t2〉) = max(t1, t2). The control is iden-
tical to the one used for SEQBIN (modulo variable names).
The refined pruning rules are:

XKM0 in dom(X0)× {〈1, 1〉} (r1)
XKMi in smap o filter((r2)

λ 〈xi, xi−1〉 . {xi} × (if xi = xi−1
then ρ2,3xi−1

(dom(XKMi−1)) + 〈1, 0〉
else {1} × bmax(ρ2,3xi−1

(dom(XKMi−1)))),

λt . true, dom(Xi)× π1(dom(XKMi−1)))
L in smap o filter((r3)

λ 〈xn〉 . bmax(ρ2,3xn
(dom(XKMn))),

λt . true, π1(dom(XKMn)))
XKMn in smap o filter((r4)

λ 〈xn〉 . {xn} × bmax−1(dom(L))
λt . true, π1(dom(XKMn)))

XKMi−1 in smap o filter((r5)
λ 〈xi, xi−1〉 . {xi−1} × (if xi = xi−1

then ρ2,3xi
(dom(XKMi))− 〈1, 0〉

else bmax−1(ρ21(ρ2,3xi
(dom(XKMi−1))))),

λt . true, π1(dom(XKMi))× π1(dom(XKMi−1)))
Xi in π1(dom(XKMi)) (r6)

The bmax−1 operation may return an infinite set, and care
must be taken when implementing the r4 and r5 pruning
rules.

3

8 Experimental Protocol for the
LONGESTPLATEAU Experiment

The random sampling of the domains of theXi variables has
been done in two different ways (5,000 instances of each).
Let d be the maximum domain size. In the first way, a coin is
thrown for each value between 1 and d to decide if it is part
of the domain. In the second way, a domain size s is drawn
at random between 1 and d, then random values between 1
and d are picked until there are s different values.

The random generation of the L variable draws a lower
and an upper bound at random between 1 and max(5, n/2).
Drawing up to n generates too many trivially unfeasible in-
stances when n gets larger.

The reduction of the size of the search space reported in
Table 1 in the main text is computed as follows. Let Dinit be
the list of initial domains (of the Xi and L), Dbest be the list
of domains that are obtained from Dinit by global domain
consistency (of the DP formulation of the constraint), and
Dp be the list of domains obtained from Dinit by applica-
tion (until fix-point) of propagator p. The reduction red(p)
achieved by propagator p is computed as:

red(p) =
card(Dinit)− card(Dp)

card(Dinit)− card(Dbest)

where card(D) is the product of the size of the domains in
list D. A value of 1 for red(p) means that propagator p
achieves all possible pruning (i.e., domain consistency), and
a value of 0 that it achieves no pruning at all. To avoid divi-
sion by 0, we discard instances where no pruning is possible
(i.e., card(Dinit) = card(Dbest)). The reported result for
each propagator p is computed as the arithmetic average of
red(p) over 10,000 prunable instances.

References
[Katsirelos, Narodytska, and Walsh 2012] Katsirelos, G.;
Narodytska, N.; and Walsh, T. 2012. The SeqBin constraint
revisited. In Milano, M., ed., CP 2012, volume 7514 of
Lecture Notes in Computer Science, 332–347. Springer.

[Pesant 2011] Pesant, G. 2011. Filtering and counting for the
spread and deviation constraints. In ModRef 2011. http:
//www.crt.umontreal.ca/˜{}quosseca/
\detail_publication.php?id=64.

[Petit, Beldiceanu, and Lorca 2011] Petit, T.; Beldiceanu,
N.; and Lorca, X. 2011. A generalized arc-consistency al-
gorithm for a class of counting constraints. In Walsh, T.,
ed., IJCAI 2011, 643–648. IJCAI/AAAI. Revised edition
available at http://arxiv.org/abs/1110.4719.

4

http://www.crt.umontreal.ca/~{}quosseca/\detail_publication.php?id=64
http://www.crt.umontreal.ca/~{}quosseca/\detail_publication.php?id=64
http://www.crt.umontreal.ca/~{}quosseca/\detail_publication.php?id=64
http://arxiv.org/abs/1110.4719

	Extended Definitions of Tuple Operations
	Transformation Operators
	Simplified Deviation Example
	Complete Deviation Example
	Simplified SeqBin Example
	Complete SeqBin Example
	Complete LongestPlateau Example
	Experimental Protocol for the LongestPlateau Experiment

