
Program Synthesis for Combinatorial Optimisation Problems
Position Statement �

Pierre Flener
Department of Information Technology

Uppsala University, Box 337, S – 751 05 Uppsala, Sweden
pierref@csd.uu.se ASTRA group: http://www.csd.uu.se/�pierref/astra/

Abstract

A high-level abstract-datatype-based constraint modelling
language opens the door to an automatable empirical deter-
mination — by a synthesiser — of how to ‘best’ represent
the decision variables of a combinatorial optimisation prob-
lem, based on (real-life) training instances of the problem. In
the extreme case where no such training instances are pro-
vided, such a synthesiser would simply be non-deterministic.
A first-order relational calculus is a good candidate for such a
language, as it gives rise to very natural and easy-to-maintain
models of combinatorial optimisation problems.

Introduction
Combinatorial optimisation problems are increasingly ubiq-
uitous and crucial in industry. Indeed, staying competitive
in the global New Economy requires the efficient modelling
and solving of such problems, whose instances are getting
larger and harder. Examples are production planning subject
to customer demand and resource availability so that sales
are maximised, and air traffic control subject to safety pro-
tocols so that flight times are minimised. Appropriate values
for the decision variables have to be found within their do-
mains, subject to some constraints, such that some optional
objective function on these variables takes an optimal value.

In recent years, modelling languages based on some logic
with sets and relations have gained popularity in formal
methods, witness theB [1] and Z [10] specification lan-
guages, theALLOY [6] object modelling language, and the
Object Constraint Language (OCL) of UML . In database
modelling, this had been long advocated, most notably
via entity-relation-attribute (ERA) diagrams. We examine
whether constraint modelling can benefit from these ideas.

Sets and set expressions recently started appearing as
modelling devices in some constraint programming lan-
guages, with set variables often implemented by the set in-
terval representation [5]. In the absence of such an explicit
set concept, modellers usually represent a set variable as an
array of 0/1 integer variables, indexed by the domain of the�These ideas are the result of many fruitful discussions with
Brahim Hnich and Zeynep Kızıltan. This research is partly funded
under grant 221-99-369 of VR, the Swedish Research Council,and
under grant IG2001-67 of STINT, the Swedish Foundation for In-
ternational Cooperation in Research and Higher Education.

set. In terms of propagation, the set interval representation is
equivalent to the 0/1 representation, which consumes more
memory but is able to support more set expressions and con-
straints. Both representations are restricted to finite sets.

Relations have not received much attention yet in con-
straint programming languages, except the particular case
of a total function, via arrays. Indeed, a total functionf can
be represented as a 1-d array of variables over the range off , indexed by its domain, or as a 2-d array of 0/1 variables,
indexed by the domainand range off , or even with some re-
dundancy, as long as channelling constraints relate the parts
of the redundant representation. Other than retrieving the
(unique) image under a total function of a domain element,
there has been no support for relational expressions.

We claim that a high-level constraint modelling language
with abstract datatypes (for sets, relations, and sequences)
opens the door to an automatable empirical determination —
by a synthesiser — of how to ‘best’ represent the decision
variables of a combinatorial optimisation problem, based on
(real-life) training instances thereof. In the extreme case
where no such training instances are provided, such a syn-
thesiser would simply be non-deterministic. A suitable first-
order relational calculus is a good candidate for such a lan-
guage, as it gives rise to very natural and easy-to-maintain
models of combinatorial optimisation problems.

We here ignore the issue of how to parameterise a solver,
say by providing a suitable labelling heuristic, towards the
solving of the modelled problem. For non-expert or lazy
modellers, this task can also be left to synthesisers [7,8].We
thus here only aim at techniques that find the ‘best’ model
for a given solver, under itsdefault settings.

Relational Modelling with ESRA

Design Decisions. In constraint satisfaction, much more
effort has been directed at efficiently solving the constraints
than at facilitating their modelling. Constraint programming
languages reflect this, as their control structures and variable
representation options are usually quite low-level.

The key design decisions for our constraint modelling lan-
guage — calledESRA — are as follows. We want to cap-
ture common modelling idioms in abstract datatypes, espe-
cially for relations, so as to design a truly high-level lan-
guage. Computational completeness is not aimed at, as long
as the notation is useful for elegantly modelling a large num-



ber of combinatorial optimisation problems. We (currently)
do not support procedures, and hence no procedure calls and
no recursion. Similarly, we focus on finite domains, and
support only bounded quantification. In order to maximally
sugar the first-order-logic nature of the language, we adopta
‘lower-128ASCII’ syntax, unlike the LATEX-requiring syntax
of Z, as well as aJAVA-style declaration of the universally
quantified variables. For reasons of space, we here only in-
troduce the concepts ofESRA that are actually illustrated in
this paper. Also, we can “only” give an informal semantics.
The reader may monitor www.csd.uu.se/�pierref/astra for a
complete description of the full language.

Modelling the Data. A primitive type is either a finite enu-
meration of new constant identifiers, or a finite range of inte-
gers, indicated by its lower and upper bounds. The only pre-
defined primitive types are the rangesnat andint , which
are0:maxint and-maxint:maxint , respectively, with
maxint being the maximum representable integer.

Relations are declared using the# relation type-
constructor. Consider the relation typeA m:n # p:q B .
ThenA andB must be primitive types, designating the two
participants of any relation of this type, withA being called
the domain and B the range of such a relation. The sec-
ond and third arguments of# are multiplicities, with the
following semantics: for every element ofA, there are be-
tweenmandn elements ofB, and for every element ofB,
there are betweenp andq elements ofA in such a relation.
We thus (currently) restrict the focus tobinary relations, be-
tween primitive types only. For partial and total functions,
m:n is 0:1 and1:1 , respectively. For injections, surjec-
tions, and bijections,p:q is 0:1 , 1:maxint , and1:1 ,
respectively. Rather than elevating functions and their par-
ticular cases to first-class concepts with a specific syntax,we
prefer keeping the notation lean and leave their specialised
handling to the synthesiser. This has the further advantage
that only the multiplicities need to be changed during model
maintenance, say when a function becomes a relation.

(Arrays of) instance-data variables are declared in aJAVA-
style strongly typed syntax. All instance data are read in at
run-time from a data file. Decision variable declarations fol-
low the same syntax, but are preceded by thevar keyword.
The usage of arrays of decision variables, though possible,
is sometimes discouraged, as they may amount to a prema-
ture commitment to a low-level representation of what es-
sentially are relations. Due to the (current) restrictionson
relations, arrays arenot a redundant feature. All declarations
denote universally quantified variables, with the instance-
data ones expected to be ground at solving-time and the de-
cision ones expected to still be variables then.

Modelling the Cost Function and the Constraints. Ex-
pressions are constructed in the usual way. The usual arith-
metic operators are available, such ascard for the cardinal-
ity of a set expression,ord for the position of an identifier
in an enumeration, andsum for the sum of a bounded (and
possibly filtered) number of numeric expressions. LetR be
a relation of typeA m:n # p:q B . For any element (or

subset)a of A, the navigation expressiona.R designates
the relational image ofa, that is the possibly empty set of
all elements inB that are related byR to (any element in)
a. If m:n is 1:1 , thena.R simply designates the (unique)
element ofB that is related to elementa of A. The relation
expression�Rdesignates the transpose relation ofR, which
is thus of typeB p:q # m:n A . The elements of a rela-
tion are represented asa#b pairs.

First-order logic formulas are also constructed in the usual
way. Atoms are built from expressions with the usual predi-
cates, such as the infixin for set or relation membership and
the infix ‘<=’ for the ‘�’ inequality between numeric ex-
pressions. Formulas are built from atoms with the usual con-
nectives and quantifiers, such asnot for negation, the infix
‘&’ and ‘=>’ for conjunction and implication, andforall
andexists for bounded (and possibly filtered) universal
and existential quantification. The usual typing, association,
and precedence rules apply.

The cost function is a numeric expression that has to be
either minimised or maximised. Theconstraints on the de-
cision variables are a conjunction of formulas.

The Warehouse Location Problem
A company considers opening warehouses on some candi-
date locations to supply its existing stores. Each candidate
warehouse has the same maintenance cost, and the supply
cost to a store depends on the warehouse. Each store must
be supplied by exactly one warehouse (C1). Each candidate
warehouse has a capacity designating the maximum number
of stores it can supply (C2). The objective is to determine
which warehouses to open, and which of these warehouses
should supply the various stores, such that the sum of the
maintenance and supply costs is minimised. In more mathe-
matical terms, the sought supply relationship is atotal func-
tion from the set of stores into the set of warehouses, and the
set of warehouses to be opened is therange of that function.

This problem was first modelled as a constraint program
in the reference manual ofILOG SOLVER 4.0 (in 1997), and
then modelled inOPL [11]. There, the sought total func-
tion is modelled by a 1-d array of variables representing the
(unique) warehouse that supplies each store, thereby captur-
ing the constraintC1. The set of warehouses to be opened
is modelled in a redundant way (because it would suffice to
retrieve the range of that function), namely as a 1-d array
OWof 0/1 variables, such thatOW[w] is 1 iff warehousew
is opened. A channelling constraint is then necessary, ex-
pressing that a warehouse that is actually supplying some
store must be opened. The cost function and constraintC2
can only be expressed in a low-level way, namely by re-
interpreting the Booleans ofOWand the truth values of local
constraints as numeric weights. Things become even more
awkward if we non-redundantly model the supply function,
namely just by the 1-d array of variables representing the
warehouse that supplies each store. On the instance data
we tried, this model is actually an order of magnitude more
efficient (by all measures) than the published one, but it is
much less readable. This shows that redundancy elimination
may pay off in performance, but it may just as well be re-



nat MaintCost
enum Warehouses, Stores
nat Capacity[Warehouses],

SupplyCost[Stores,Warehouses]
var Stores 1:1 # nat Warehouses Supply // C1
minimise

sum(s#w in Supply) SupplyCost[s,w]
+ card(Stores.Supply) * MaintCost

subject to {
forall(w in Warehouses) // C2

card(w.˜Supply) <= Capacity[w] }

Figure 1: The Warehouse Location problem

Hal Jim Bob
Nat 1 2 3
Eve 2 3 1
Pat 3 2 1

Nat Eve Pat
Hal 3 1 2
Jim 3 1 2
Bob 3 2 1

Figure 2: Rankings of the women for the men (left), and
rankings of the men for the women (right)

dundancy introduction. But this is hard to guess, as human
intuition may be weak here.

Figure 1 shows anESRA model of the problem. The
sought supply relationship is modelled as a relation and con-
strained to be a total function from the stores into the ware-
houses, thereby capturing constraintC1. The elegance of
the cost function reflects the freedom from representation
choices, with the navigation expressionStores.Supply
retrieving the set of warehouses that are to be opened. The
only constraint gracefully capturesC2, using the navigation
expressionw.�Supply to retrieve the set of stores that
warehousew supplies. From this model, lower-level mod-
els can be synthesised, including the ones discussed above.

The Stable Marriage Problem
Original Version. Consider a dating agency where an
equal numbern of women and men have signed up and are
willing to marry any opposite-sex person of the group. They
have ranked all possible spouses by decreasing preference.
Figure 2 has sample instance data, where a lower rank means
a higher preference. For instance, Hal is Nat’s first choice,
but it is Eve who is Hal’s first choice. The objective is to
match up the women and men such that all marriages are
stable. A marriage isstable if, whenever spouses prefers
some other partner, this partner prefers her/his spouse tos.
Sos may be unhappy, but s/he is bound to stay with her/his
spouse. In more mathematical terms, the sought marriages
form abijection between the sets of women and men.

This problem was first modelled as a constraint program
in the reference manual ofILOG SOLVER 4.0 (in 1997), and
then modelled inOPL in a significantly simpler way [11].
The marriages are modelled in a redundant way, via two 1-d
arrays of variables representing the (unique) husband of each
woman and the (unique) wife of each man, respectively. A
channelling constraint is necessary to ensure that both total
functions are the inverse of each other, that is to achieve a
bijection. To achieve better propagation, this channelling

enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:1 # 1:1 Men Marriage // bij.
solve {

forall(w#m, p#o in Marriage) {
RankW[w,o] < RankW[w,m] // stability 1

=> RankM[o,p] < RankM[o,w]
& RankM[m,p] < RankM[m,w] // stability 2

=> RankW[p,o] < RankW[p,m] } }

Figure 3: The original Stable Marriage problem

constraint is expressed forboth functions, requiring every
person to be identical to the spouse of their spouse.

A second model would non-redundantly model the mar-
riages, namely by a single total function, that is a 1-d array
of variables representing the wife of each man, say. To en-
force the bijectiveness of this function, all variables arecon-
strained to be different. This model is probably less efficient,
and this has been the case with the instance data we tried.

A third model would model the marriages in a 2-d array
Marriage of 0/1 integer variables, indexed by the women
and men, so thatMarriage[w,m] is 1 iff woman w is
married to manm. Two bijectiveness constraints are neces-
sary to enforce that every person has exactly one spouse, so
that there is exactly one1 in each row and in each column.
This model is probably less efficient than the second one,
and this has been the case with the instance data we tried.

Figure 3 shows anESRA model of the problem. The mar-
riages are modelled as a relation over the sets of women and
men, such that it is a bijection. From this model, lower-level
models can be synthesised, including the ones above, using
the various ways of representing relations, and exploitingin-
sights gained from thorough studies of bijections [9,12].

Model Maintenance. Relations and their particular cases
(partial functions, total functions, injections, surjections, bi-
jections, and so on) are asingle, powerful concept for ele-
gantly modelling many aspects of combinatorial optimisa-
tion problems. Also, there arenot too many different, and
evenstandard, ways of representing relations and relational
expressions. Therefore, we advocate that the synthesiser can
actually make a (systematic) empirical evaluation of candi-
date representations, using (real-life) training instances of
the problem. In the absence of such training instances, such
a synthesiser would simply be non-deterministic. Also, the-
oretical studies such as [12] should be made for particular
cases of relations in order to obtain rules stating when a rep-
resentation is advisable and when not, thereby reducing the
volume of such empirical studies by synthesisers.

Model maintenance at the highESRA level reduces to
adapting to the new problem and re-synthesising, as all rep-
resentation (and thus solving) issues are left to the synthe-
siser. At lower levels, model maintenance is quite tedious,
as the early if not uninformed representation choices have
to be taken into account and as the lower-level notation is
more awkward. Worse, a representation change, a redun-
dancy elimination, or a redundancy introduction (such as



enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:3 # 0:1 Men Marriage
solve {

forall(w#m in Marriage) {
forall(o in Men) // stability 1

RankW[w,o] < RankW[w,m] =>
exists(p in Women: p#o in Marriage)

RankM[o,p] < RankM[o,w]
& forall(p in Women) // stability 2

RankM[m,p] < RankM[m,w] =>
forall(o in Men: p#o in Marriage)

RankW[p,o] < RankW[p,m] } }

Figure 4: The Polyandric Stable Marriage problem

a model integration or the addition of implied constraints)
may “have to” be operated, because it is unlikely that, for the
considered training instances or in general, the ‘best’ repre-
sentation is the same for bijections as for full relations, say.

Such re-synthesis is also necessary when the distribution
of instances on which the model is deployed becomes differ-
ent from the training distribution used when the model was
formulated. But the modeller may be unwilling or unable to
do this experimentation for finding the ‘best’ model, or s/he
may be unaware of insights gained from a general empirical
study, such as on how to ‘best’ model bijections [9].

Polyandry Version. Imagine a country where the law al-
lows women to marry up to 3 men, but men may marry only
1 woman. Also consider that all women who signed up at the
agency need to marry. The sought marriages now form a full
relation between the sets of women and men. A polyandric
marriage isstable if, whenever spouses prefers some other
partner, this partneris married,and s/he prefersall her/his
spouses tos. If at least as many men as women have signed
up at the agency, the problem remains a decision problem.

Figure 4 shows anESRA model of this new problem.
The multiplicities were changed, and the stability constraints
were rephrased to reflect the new definition. (The same sta-
bility constraints could actually also have been used in the
model of Figure 3, because the new definition of stability
implies the original one in its context.) The model mainte-
nance was indeed unburdened by representation issues.

Conclusion
Related Work. This research owes a lot to previous work
on relational modelling in formal methods and on ERA-style
semantic data modelling, especially to theALLOY object
modelling language [6], which itself gained much from theZ
specification notation [10] (and learned fromUML /OCL how
not to do it). Contrary to ERA modelling, we do not distin-
guish between attributes and relations.

In constraint programming,OPL [11] stands out as a
medium-level constraint modelling language, andALMA
[2] is also becoming a very powerful notation, on top of
MODULA -2. OurESRA language shares with them the quest
for a practical declarative modelling language based on a

strongly-typed (full) first-order logic with arrays (and with
the look of an imperative language), while dispensing with
such hard-to-properly-implement and rarely-necessary (for
constraint modelling) ‘luxuries’ as recursion and unbounded
quantification. As shown,ESRA even goes beyond them, by
advocating an abstract view of relations.

Current and Future Work. Our ESRA language is an ex-
tension of a streamlined (significant) subset ofOPL. A pro-
totypeESRA-to-OPL synthesiser [4] has been implemented
by Simon Wrang. The semantics ofESRA will be given in
an implementation-independent way, in two layers. Indeed,
some features ofESRA are just syntactic sugar for combi-
nations of (a few) kernel features, hence we will provide an
operational semantics (by rewrite rules) for the non-kernel
features, and a set-oriented denotational semantics for the
kernel features. We can then tackle the joint considera-
tion of the modelling and the solver parameterisation. The
synthesiser will also benefit from our work on symmetry-
reducing/breaking constraints [3]. A graphical language can
be developed for the variable modelling, including the multi-
plicity constraints on relations, so that only the cost function
and the other constraints need to be textually expressed.

References
1. J.-R. Abrial.The B-Book: Assigning Programs to Mean-

ings. Cambridge University Press, 1996.

2. K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf.
An imperative language that supports declarative pro-
gramming.ACM TOPLAS 20(5):1014–1066, 1998.

3. P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J.
Pearson, and T. Walsh. Symmetry in matrix models. In
CP’01 Workshop on Symmetry in Constraints.

4. P. Flener, B. Hnich, and Z. Kızıltan. Compiling high-level
type constructors in constraint programming. InProc. of
PADL’01. LNCS 1990. Springer-Verlag, 2001.

5. C. Gervet. Interval propagation to reason about sets: Def-
inition and implementation of a practical language.Con-
straints 1(3):191–244, 1997.

6. D. Jackson.ALLOY : A lightweight object modelling no-
tation.ACM TOPLAS, forthcoming.

7. Z. Kızıltan, P. Flener, and B. Hnich. Towards inferring
labelling heuristics for CSP application domains. InProc.
of KI’01. LNAI 2174. Springer-Verlag, 2001.

8. S. Minton. Automatically configuring constraint satisfac-
tion programs.Constraints 1(1–2):7–43, 1996.

9. B.M. Smith. Modelling a permutation problem. RR 18,
Univ. of Leeds (UK), School of Computer Studies, 2000.

10. J.M. Spivey.The Z Notation: A Reference Manual (sec-
ond edition). Prentice-Hall, 1992.

11. P. Van Hentenryck.The OPL Optimization Programming
Language. The MIT Press, 1999.

12. T. Walsh. Permutation problems and channelling con-
straints. TR 26 at www.dcs.st-and.ac.uk/�apes, 2001.


