
Proceedings of SymCon’10,

the Tenth International Workshop on

Symmetry
in Constraint Satisfaction Problems

A workshop at the 16th International Conference on
Principles and Practice of Constraint Programming (CP’10)

Monday 6 September 2010

St Andrews, Scotland, UK

Edited by:

Pierre Flener and Justin Pearson
Uppsala University

Department of Information Technology
Box 337

751 05 Uppsala
Sweden

Preface
A symmetry is a transformation that preserves solutions that are considered equivalent.

For instance, rotating a chess board 180 degrees gives a board that is indistinguishable

from the original board. In the presence of symmetry, a constraint solver may waste a lot

of time considering symmetric but equivalent assignments or partial assignments. Hence,

dealing with symmetry is often crucial for solving such combinatorial problems efficiently.

This is the 10th workshop of the very successful SymCon series of workshops on

symmetry in constraint satisfaction problems, founded by us in 2001 (the series homepage

is http://www.it.uu.se/research/group/astra/SymCon/).
All submitted papers were peer-reviewed and those that make a worthwhile contri-

bution were accepted for presentation at the workshop. We hope that this snapshot of

current research will act as a catalyst for further research. These proceedings are informal

and are also on-line (at http://www.it.uu.se/research/group/astra/SymCon10/).
We thank Pedro Meseguer, the workshop chair of CP’10, for a smooth organisation of

local matters together with the CP’10 local chairs. Many thanks also to the SymCon’10

programme committee (listed below), for precious help with the review process. Finally,

we express our gratitude to Pascal Van Hentenryck, for agreeing to give the invited talk.

Uppsala, 20 August 2010 Pierre Flener and Justin Pearson

Programme Committee

Pierre Flener (chair) Uppsala University, Sweden

Ian P. Gent University of St Andrews, Scotland, UK

Justin Pearson (chair) Uppsala University, Sweden

Karen Petrie University of Dundee, Scotland, UK

Jean-François Puget IBM, France

Lakhdar Sais Université d’Artois, France

Mark Wallace Monash University, Australia

Toby Walsh University of New South Wales, Australia

Table of Contents

A Partial Taxonomy of Substitutability and Interchangeability . 1

Shant Karakashian, Robert Woodward, Steven Prestwich,

Berthe Choueiry, and Eugene Freuder

Internal Symmetry . 19

Marijn Heule and Toby Walsh

Symmetries and Lazy Clause Generation . 34

Geoffrey Chu, Maria Garcia de la Banda, Chris Mears, and Peter Stuckey

Arities of Symmetry Breaking Constraints . 49

Tim Januschowski

http://www.it.uu.se/research/group/astra/SymCon/
http://www.it.uu.se/research/group/astra/SymCon10/

A Partial Taxonomy of

Substitutability and Interchangeability

Shant Karakashian1, Robert Woodward1, Berthe Y. Choueiry1, Steven D.
Prestwich2 and Eugene C. Freuder2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{shantk,rwoodwar,choueiry}@cse.unl.edu

2 Cork Constraint Computation Centre, Department of Computer Science, University
College Cork, Ireland {s.prestwich,e.freuder}@4c.ucc.ie

Abstract. Substitutability, interchangeability and related concepts in
Constraint Programming were introduced approximately twenty years
ago and have given rise to considerable subsequent research. We survey
this work, classify, and relate the different concepts, and indicate direc-
tions for future work, in particular with respect to making connections
with research into symmetry breaking. This paper is a condensed version
of a larger work in progress.

1 Introduction

Many important problems in computer science, engineering and management
can be formulated as Constraint Satisfaction Problems (CSPs). A CSP is a
triple (V,D, C) where V is a set of variables, D the set of their domain values,
and C a set of constraints on the variables that specify the permitted or forbid-
den combinations of value assignment to variables. A solution to a CSP is an
assignment of values to all variables such that all constraints are satisfied. CSPs
are usually solved by interleaving backtrack search with some form of constraint
propagation, for example forward checking or arc consistency.

Constraint problems often exhibit symmetries. A great deal of research has
been devoted to symmetry breaking techniques in order to reduce the size of the
search space [Various, 1991 present]. The earliest works on symmetry breaking
include [Glaisher, 1874; Brown et al., 1988]. In this paper we will not survey
the large literature on symmetry breaking, but a recent survey can be found in
[Gent et al., 2006].

Interchangeability, proposed in a seminal paper by Freuder [1991], is one
of the first forms of symmetry identified for CSPs. Importantly, it is also the
first method proposed for detecting symmetry as opposed to having a constraint
programmer manually specify it. Although there has been since then a steady
flow of research papers developing this concept in both theory and practice, it has
been relatively neglected compared to other forms of symmetry. This situation
is surprising: While in its basic form, interchangeability is a special case of value
symmetry, its various extensions (already proposed in the 1991 paper) make

it a more general concept than is sometimes perceived, and anticipate some
subsequent developments in symmetry definition and breaking. The comparison
with the various types and definitions of symmetry [Benhamou, 1994; Cohen et
al., 2006] will be discussed in the longer version of this paper.

The goal of our endeavor is to analyze the research conducted so far on
interchangeability, relate it to symmetry, and identify opportunities for future
research. This paper is a work in progress and a first step towards our goal.
Our survey is partial and far from complete and we welcome the feedback of the
readers and workshop participants.

The advantages of detecting and exploiting interchangeability have been
established on random problems, benchmarks, and real-world applications. In
backtrack search, the advantages are mainly the reduction of the search space
and the search effort 1, and the attainment of multiple solutions by bundling. In
local search, interchangeability is used to locally repair partial solutions [Petcu
and Faltings, 2003]. Real-world applications include nurse scheduling [Weil and
Heus, 1998] and resource allocation in hospitals [Choueiry et al., 1995].

This paper is structured as follows. In Section 2, we give the definitions of
the basic interchangeability concepts and relate them to each other. In Section 3,
we discuss forms of conditional interchangeability. In Section 4, we discuss other
forms of interchangeability that have appeared in the literature. In Section 5, we
relate the various forms of interchangeability. Finally, in Section 6, we list topics
that we plan to cover more fully in the expanded version of this paper.

2 Basic Interchangeability Concepts

In this section, we review the various forms of interchangeability originally intro-
duced in [Freuder, 1991]. We also include a few new interchangeability concepts
that directly relate to the original ones. Full interchangeability, the most basic
form of interchangeability, is defined as follows.

Full interchangeability (FI) [Freuder, 1991] A value a for variable v is fully
interchangeable with value b iff every solution in which v = a remains a solution
when b is substituted for a and vice-versa.

If two values are interchangeable then one of them can be removed from the
domain, reducing the size of the problem; alternatively they can be bundled
together in a Cartesian product representation of solutions. Figures 1, 2 and 3
show examples of two values a and b that are FI (see below for definition of 3-I
and NSub). In our figures, a small solid circle denotes a value in the domain of
the variable represented by the outline circle, and edges link consistent tuples.

Notice that FI is defined ‘at the solution level’, which means that in order
to find all FI values for a given variable, one must account for all constraints
and may have to compute all solutions. Thus, FI is a global property. In [1994],
Benhamou defines the equivalent notion of ‘value symmetry in all solutions’ as

1 Most importantly, by factoring out no-goods [Choueiry and Davis, 2002].

Fig. 1. FI: a and b are FI
but not 3-I or NSub.

Fig. 2. NI: a and b are NI. Fig. 3. KI: a and b are 3-I
but not NI.

semantic symmetry. Hence, the terms ‘semantic’ and ‘global’ are equivalent. Be-
cause the detection of global forms of interchangeability is likely to be intractable,
Freuder introduced local variants, which account only for the constraints defined
on a variable, that is, the neighborhood of the variable. In [1994], Benhamou calls
such relations syntactic symmetries. Section 2.1 discusses local interchangeabil-
ity. Further, interchangeability is an equivalence relation on the domain of the
variable: interchangeable values are equivalent. Such equivalences may be rare in
practice. To remedy this situation, Freuder proposed various extensions to the
basic concept, which are discussed in Sections 2.2 and 2.3.

In summary, one may think of interchangeability as a core concept character-
ized as a relation between two values either at the solution level (i.e., global or
semantic) or in the neighborhood of the variable (i.e., local or syntactic). Also,
the concepts may require that interchangeable values be equivalent (i.e., strong),
or not ‘perfectly’ so (i.e., weak or approximate).

When comparing two forms of interchangeability X and Y , we say that X →
Y iff any two values a and b that are related by X are also related by Y but the
converse does not necessarily hold2, regardless of whether Y is derived from X
by relaxing the conditions of X (i.e., Y is weaker than X) or by ‘moving’ from
the local level to the global level (i.e., syntactic to semantic). Note that when
X → Y , Y leads to greater problem reduction than X.

2.1 Local forms of interchangeability

In general, the identification of a local interchangeability is tractable because
it focuses on the neighborhood of the variable. Also, a given local form inter-
changeability usually implies the corresponding global one.
Neighborhood interchangeability (NI) [Freuder, 1991] A value a for vari-
able v is neighborhood interchangeable with value b iff for every constraint on
v, the values compatible with v = a are exactly those compatible with v = b.
Values a and b are NI in Figure 2 but not in Figures 1 or 3.

Neighborhood interchangeable values for a given variable can be detected by
comparing the values in the variable’s domain for consistency to all variable-
value pairs in the variable’s neighborhood and drawing a discrimination tree
2 a and b are two values or two partial assignments over the same variables.

[Freuder, 1991]. At the end of the process, the leaves of the discrimination tree
are annotated with the equivalence NI values for the variable. The complexity of
this process is O(n2d2), where n is the number of variables and d is the maximum
domain size. Alternatively, one can build a refutation tree, which proceeds by
splitting the domain of the variable [Likitvivatanavong and Yap, 2008]. The
lower bound of the worst-case complexity of the refutation tree is smaller than
that of the discrimination tree. However, it is not clear whether the difference is
meaningful in practice. Further, the discrimination tree can be directly used to
implement forward checking at no additional cost [Beckwith et al., 2001], but it
is not clear yet whether or not the same can be done with the refutation tree.

For non-binary constraints, neighborhood interchangeable values can be de-
tected by constructing non-binary discrimination trees for each variable [Lal et
al., 2005]. As described in [Lal et al., 2005], the process also allows the use of
forward checking during search. The complexity to build a non-binary discrimi-
nation tree for a single variable is O(n deg ak+1(1− t)), where n is the number of
variables, deg is the maximum degree of a variable, a is the maximum domain
size, and t is the tightness of the constraints, defined as the ratio of the number
of forbidden tuples over the number of all possible tuples.
K-interchangeability (KI) [Freuder, 1991] For k ≥ 2, two values, a and b for
a CSP variable X, are k-interchangeable iff a and b are fully interchangeable in
any subproblem of the CSP induced by X and (k − 1) other variables. Values a
and b are 3-I in Figures 2 and 3 but not in Figure 1.

K-interchangeable values can be identified by a modification of the discrimination-
tree algorithm for NI. The complexity of the process is O(nkdk) [Freuder, 1991].

Theorem 1. NI → KI → FI, see [Freuder, 1991].

For 2 < i < j < |V |, i-interchangeability is a sufficient but not necessary condi-
tion for j-interchangeability. NI is 2-interchangeability and FI is |V |-interchangeability.
Hence, NI → KI → FI. a and b in Figure 1 are FI but not 3-I, and in Figure 3
they are 3-I but not NI.

2.2 Extended interchangeability: Weak forms

Below, we discuss three weak forms of interchangeability introduced in [Freuder,
1991] (i.e., subproblem interchangeability, partial interchangeability, and substi-
tutability) and a number of other related concepts.
Subproblem interchangeability (SPrI) [Freuder, 1991] Two values are sub-
problem interchangeable, with respect to a subset of variables S, iff they are
fully interchangeable with regards to the solutions of the subproblem of the CSP
induced by S.
Partial interchangeability (PI) [Freuder, 1991] Two values are partially in-
terchangeable with respect to a subset S of variables, iff any solution involving
one implies a solution involving the other with possibly different values for vari-
ables in S. In Figure 4, a and b are PI wrt S, shown with the dotted line.

Theorem 2. FI → PI.

If a and b are FI, they are by definition PI with respect to any subset of V . In
Figure 4, a and b are PI wrt to the subset S but not FI.

Fig. 4. PI: a and b are PI
wrt S but not Sub, FI,
CtxDepI, NTI, or NPI wrt
any subset.

Fig. 5. PI: a and b are PI
wrt S but not Sub or SPrI
wrt any subset of vari-
ables.

Fig. 6. SPrI: a and b are
SPrI wrt S but not PI wrt
any subset of variables.

Theorem 3. SPrI and PI are not comparable3.

In Figure 5, a and b are PI but not SPrI. In Figure 6, a and b are SPrI but not
PI.
Substitutability (Sub) [Freuder, 1991] For two values a and b for variable v,
a is substitutable for b iff every solution in which v = b remains a solution when
b is replaced by a but not necessarily vice-versa. Figure 7 shows an example.

Note that the concept of substitutability is related to that of dominance [Bel-
licha et al., 1994], which is used in the literature on symmetry breaking.

Theorem 4. FI → Sub.

If a and b are FI, they are by definition mutually substitutable. In Figure 7, a
is substitutable for b, but a and b are not FI.

Again, because substitutable values are expensive to compute, neighborhood
substitutability (NSub) (with the obvious definition) is computationally advan-
tageous. In Figure 8, a is NSub for b. In [1994], Bellicha et al. propose NS-
Closure, an algorithm to enforce NSub. It removes all of the neighborhood
substitutable values from the network. It operates by examining every pair of
values (a, b) in a variable’s domain, trying to find a splitter for the pair. A split-
ter for (a, b) is a value in the neighborhood of the variable that supports a but
not b. If (a, b) does not have a splitter, then a can be removed from the domain.
The time complexity of the algorithm is O(md3), where m is the number of
constraints and d is the maximum domain size. The space complexity of storing
the splitters is O(nd2), where n is the number of variables.

Theorem 5. NI → NSub → Sub; FI and NSub are not comparable.
3 This theorem corrects Theorem 5 of [Freuder, 1991].

Fig. 7. Sub: a is Sub, but not
NSub, for b; a and b are not FI.

Fig. 8. a is NSub for b but
a and b are not NI or FI.

Implication

NI

KI

Sub

NSub

Global
Local

FI

Fig. 9. Illustrating
Theorems 1, 4, and 5.

Figure 9 illustrates this situation. First consider NI → NSub. Any NI values are
mutually NSub by definition. In Figure 8, a is NSub for b but a and b are not
NI. Now, consider NSub → Sub. Given two values a and b for a variable, a is
NSub for b, the set of variable-value pairs supporting b is a subset of the one
supporting a. By moving to global substitutability, the sets of supports will only
lose elements, however, the set of support of b will remain a subset of that of a.
Figure 7 shows an example where a is Sub, but not NSub, for b. In Figure 1, a
and b are FI but not NSub. In Figure 8, a is NSub for b but a, and b are not FI.
Neighborhood Partial Interchangeability (NPI) [Choueiry and Noubir,
1998] Two values b and c for a variable v are NPI given a boundary of change
S (which includes v) iff, for every constraint C defined on the variables (v,w)
where v ∈ S, w /∈ S, we have: {j|(b, j) satisfies C} = {j|(c, j) satisfies C}.

The NPI sets of a variable’s domain can be detected by modifying the discrim-
ination tree algorithm of NI to a joint discrimination tree (JDT) by considering
the neighborhood of a set of variables instead of the neighborhood of a single
variable as done in the discrimination tree [Choueiry and Noubir, 1998]. The
complexity of the algorithm to build a JDT for a single variable is O(s(n−s)d2)
and the space complexity for the tree is O((n− s)d), where n is the number of
variables, s is the size of the given set, and d is the size of the domain.

Theorem 6. NPI and PI are not comparable.4

In Figure 4, a and b are PI but not NPI. In Figure 11, they are NPI but not PI.

Theorem 7. NPI → SPrI.

If a and b are NPI outside the boundary of change S, then they are NI in the
subproblem induced by V \ S. If they are NI in the subproblem, then they are
also FI, and therefore SPrI in the subproblem induced by V \S. Figure 10 shows
an example where the converse does not hold.
Directional Interchangeability (DirI) [Naanaa, 2007a] Two values a and b
in the domain of a variable X are DirI with respect to a variable ordering of the
variables iff they have the same preceding support set: {c | (a, c) ∈ CXY and
Y ≺ X} = {c | (b, c) ∈ CXY and Y ≺ X} .

4 This theorem corrects [Choueiry and Noubir, 1998], which states that NPI implies
PI. This error was mentioned in [Neagu and Faltings, 2005].

Fig. 10. SPrI: a and b are SPrI wrt S
but not NPI wrt to any subset or Sub.

Fig. 11. NPI: a and b are NPI wrt S but
not PI wrt to any subset, SUB, FI or NTI.

Theorem 8. NPI ≡ DirI.

If a and b for a variable X are NPI wrt a boundary of change S, then they are
DirI wrt any variable ordering such that ∀Y ∈ S, X ≺ Y .
Directional Substitutability (DirSub) [Naanaa, 2007b; 2009] Value a is
DirSub for value b for a variable X with respect to a variable ordering of the vari-
ables iff the preceding support set of b is a subset of that of b: {c | (b, c) ∈ CXY

and Y ≺ X} ⊆ {c | (a, c) ∈ CXY and Y ≺ X}.

Theorem 9. DirI → DirSub.

If a and b of variable X are DirI wrt a given variable ordering, then, by definition,
the preceding support sets for a and b are the same and consequently subsets of
one another.
Neighborhood Interchangeability Relative to a Constraint (NIC) [Haselböck,
1993] Two values are NIC relative to a constraint C iff they are NI in the problem
induced by the variables in the scope of C.

NIC values for variable v can be detected by restricting the discrimination
tree to the considered constraint. As a result, the time complexity of finding all
NIC sets is O(ekak), where e is the number of constraints, k is the maximum
arity, and a is the maximum domain size. In [1993], Haselböck modified the
usual Revise procedure for lookahead to exploit the (statically computed) NIC
sets during search, yielding a solution bundle. The time complexity of the new
Revise procedure is thus reduced to O(a�2), where 1 ≤ a� ≤ a. In [Beckwith et
al., 2001], it was shown that the resulting bundles are never ‘thinner’ than those
obtained in [Benson and Freuder, 1992], and never ‘fatter’ than those obtained
by those obtained in [Hubbe and Freuder, 1992], which in turn are equivalent to
those obtained by [Beckwith et al., 2001].
Neighborhood Substitutability Relative to a Constraint (NSubC) [Bousse-
mart et al., 2004] Two values are NSubC relative to a constraint C iff they are
NSub in the problem induced by the variables in the scope of C.

Theorem 10. NPI → NIC → NSC .

First consider NPI → NIC . If for variable X, a and b are NPI, then for every
constraint C between X and a variable outside of the boundary of change, a and
b are NIC . NIC → NSC follows directly from the definition.

2.3 Other extended forms of interchangeability

Other extended forms that were initially proposed are: meta-interchangeability,
dynamic interchangeability, and functional interchangeability.
Meta-interchangeability (MI) [Freuder, 1991] By grouping variables into
‘meta-variables’, or values into ‘meta-values’, we can introduce interchangeability
into higher level ‘meta-problem’ representations of the original CSP.

Values may become interchangeable or substitutable during backtrack search
after some variables have been instantiated, so even a problem with no inter-
changeable values may exhibit interchangeability under some search strategy.
Dynamic Neighborhood Interchangeability (DynNI)

5 [Beckwith and Choueiry,
2001] Two values a and b for variable X are DynNI with respect to a set A of
variable assignments iff they are NI in the subproblem induced by A ∪ {X} .

Theorem 11. NI → DynNI.

Consider values a and b for a variable v that are NI, assume a and b are not
DynNI. Then, for an assignment for the subset of variables S, either a and b
are not NI in the problem induced by V \ S, or one of a or b is deleted. The
former case is impossible because a and b have the same set of supports in the
original problem, and thus must have the same supports after the assignments.
The latter case is also impossible because a and b having the same support sets,
if a loses all its supports in a neighboring variable, then b also loses all supports
because the support sets are the same.
Full Dynamic Interchangeability (FDynI) [Prestwich, 2004a] A value a for
variable v is dynamically interchangeable for b with respect to a set A of variable
assignments iff they are fully interchangeable in the subproblem induced by A.

Theorem 12. DynNI → FDynI.

If a and b are DynNI, then a and b are consistent with the same set of values
in the assignment A. They are also NI relative to the variables in the problem
induced by A that are not yet assigned and, consequently, are FI.
Functional interchangeability [Freuder, 1991] Let Sa|X be the set of solutions
including value a for variable X. Two values a for X and b for Y are functionally
interchangeable iff there exists functions f and f � such that f(Sa|X) = Sb|Y and
f(Sb|Y) = Sa|X .

Two values a and b for a variable are isomorphically interchangeable [Freuder,
1991] iff there exists a 1-1 function f such that b = f(a) and for any solution
S involving a, {f(v) | v ∈ S} is a solution. Also for any solution S involving b,
{f−1(v) | v ∈ S} is a solution.

In the longer version of this paper, we compare functional and isomorphic
interchangeability with the definitions of symmetry introduced in [Benhamou,
1994; Cohen et al., 2006].
5 Dynamic Interchangeability (DynI) property was incorrectly characterized as Dy-

namic Neighborhood Partial Interchangeability (DNPI) in [Beckwith and Choueiry,
2001; Choueiry and Davis, 2002; Lal and Choueiry, 2004; Lal et al., 2005].

3 Conditional Forms of Interchangeability

Conditions can be added to a CSP in the form of constraints that further con-
strain the problem. In problems with little interchangeability, such conditions
can be imposed to increase the interchangeability among the variable values.
In [2004], Zhang and Freuder introduced and studied conditional interchange-
ability, conditional substitutability, conditional neighborhood interchangeability
and conditional neighborhood substitutability.
Conditional Interchangeability (ConI) [Zhang and Freuder, 2004] Two val-
ues a and b of variable v are ConI under a condition imposed by a set of additional
constraints iff they are FI in the problem with the additional constraints.

Similarly Conditional Neighborhood Interchangeability (ConNI), Conditional
Substitutability (ConSub), and Conditional Neighborhood Substitutability (ConNSub)
are defined by [Zhang and Freuder, 2004] where a problem is NI, Sub and NSub
respectively given a set of conditions.

Theorem 13. (ConNI → ConI → ConSub), (ConNI → ConNSub → ConSub),
and ConI and ConNSub are not comparable.

For ConNI → ConI and ConNSub → ConSub, see [Zhang and Freuder, 2004].
Consider the local forms: ConNI → ConNSub. For the same set of additional
constraints, if a and b are ConNI in the original problem, they are NI in the
problem with the additional constraints. Hence, they are also NSub in the prob-
lem with the additional constraints, and ConNSub in the original problem. The
proof for the global forms (i.e., ConI → ConSub) is similar. Similar to the non-
comparability of FI and NSub (see Theorem 5), ConI and ConNSub can be
shown to be not comparable.

4 Other Forms of Interchangeability

In this section we review other forms of interchangeability that have appeared
in the literature.
Neighborhood Tuple Interchangeability (NTI) [Neagu and Faltings, 1999].
Values a and b for variable v are NTI with respect to a set of variables S if for
every consistent tuple t of value assignments to S ∪ {v} where x = a there is
another consistent tuple t� where v = b such that t and t� are consistent with
the same value combinations for variables outside of S. Additionally, the same
condition must hold when a and b are exchanged. Figure 12 shows an example.

The algorithm proposed in [Neagu and Faltings, 2005] to detect NTI val-
ues determines the smallest set S using discrimination trees. The complexity of
detecting NTI values is O((nsmaxsmax(n − smax)d4), where n is the number of
variables, d is the maximum domain size, and smax is the maximum size of all
possible dependent sets in the neighborhood of the variable.

Theorem 14. NI → NTI → PI and NTI → NPI.

First, consider NI → NTI. Given values a and b that are NI for a variable, for
every consistent tuple t with a there is a tuple t� that only differs from t with a
replaced with b. Hence t and t� are consistent with the same value combinations.
Figure 12 gives an example where the converse does not hold. For (NTI → PI)
and (NTI → NPI), see [Neagu and Faltings, 2005]. Figure 4 gives an example
where PI �→ NTI, and Figure 11 gives an example where NPI �→ NTI.

In [2005], Wilson described a new approach to computation in a semiring-
based system based on semiring-labeled decision diagrams (SLDDs). He defines
forward neighborhood interchangeability (ForwNI) and uses it for merging nodes
in SLDDs, hence compacting the search space. During search, ForwNI takes into
account constraints that apply to instantiated and uninstantiated variables.
Forward Neighborhood Interchangeability (ForwNI) [Wilson, 2005] Given
a subset of variables U ⊂ V , two assignments u and u� to a set of variables U are
said to be ForwNI if for all constraints c ∈ C such that scope(c) ∩ (V \ U) �= ∅

and scope(c) ∩ U �= ∅, ΠV \U{t ∈ c |ΠU (t) = u} = ΠV \U{t ∈ c |ΠU (t) = u�}.

Theorem 15. NTI → ForwNI.

If a and b for variable X are NTI with respect to set of variables S, then for
every assignment t to S ∪ {X} where X = a there is another consistent tuple t�

where X = b such that t and t� are consistent with the same value combinations
for variables outside of S. Hence, the set of tuples consistent with t is the same
for t� when projected on V \S. Therefore, the assignments ΠS(t) and ΠS(t�) are
ForwNI.

Tuple substitutability is a global form of ForwNI:
Tuple Substitutability (TupSub) [Jeavons et al., 1994] Two assignments A
and B to a set of variables R are TupSub iff ΠV \R(σB(Sol)) ⊆ ΠV \R(σA(Sol)),
where Sol is the set of all solutions to the problem.

Theorem 16. ForwNI → TupSub.

If two assignments u and u� are ForwNI, then for every solution in which u
participates, u can be substituted with u� because they have the same supports
in every constraint that links the scope of u to the rest of the problem. Therefore,
the assignments u and u� are interchangeable and consequently substitutable.

Theorem 17. DynNI → ForwNI.

If a and b for variable X is DynNI wrt a set A of assignments, then any two
assignments u and u� in A ∪ {X}, such that ΠX(u) = a and ΠX(u�) = b, have
the same set of support tuples because a and b are NI in V \A. Therefore, u and
u� are ForwNI.
Full Dynamic Substitutability (FDynSub) [Prestwich, 2004b] A value a for
variable v is dynamically substitutable with value b with respect to a set A of
variable assignments iff a is fully substitutable for b in the subproblem induced
by A.

Theorem 18. FDynI → FDynSub, follows directly from the definition.

Theorem 19. Sub → FDynSub.

Consider value a Sub for b for variable v, the set of values supporting b is a subset
of the set of values supporting a. Given an assignment of variables in FDynSub,
the sets of supports will only lose elements, hence set of values supporting b will
remain a subset of the set of values supporting a.

Theorem 20. FDynSub → ConNSub.

If a and b are FDynSub, then a set of constraints can be constructed for the
original problem that removes all but the assigned values in the variables that
are assigned in FDynSub. In the new problem resulting from adding those con-
straints, a and b are Sub. Moreover, a and b are NSub because all the values in
the neighborhood that are not part of a solution are eliminated by the added
constraints.

Theorem 21. TupSub and FDynSub are not comparable.

Context dependent interchangeability (CtxDepI) [Weigel et al., 1996]
Values a and b for a CSP variable X are CtxDepI, iff there exists a solution
clique in the modified microstructure of the CSP that contain both nodes (X, a)
and (X, b). The modified microstructure of the CSP is the original microstruc-
ture with edges added between values of the same variable. Figure 13 shows an
example.

Fig. 12. NTI: a and b are
NTI but not FDynNSub.

Fig. 13. CtxDepI: a and b
are CtxDepI (clique {a, b, d, e})
but not Sub, FI, or PI.

Fig. 14. GNSub: a and
b are GNSub but not
Sub.

Theorem 22. CtxDepI ≡ FDynI.

Connecting two CtxDepI values a and b for a CSP variable in the micro-structure
of the CSP yields a solution clique with a and b. By assigning the values in the
clique to the variables, we obtain an assignment set A where a and b are fully
interchangeable in the subproblem induced by A. Conversely, if a and b are
FDynI with respect to an assignment set A, then there is a solution clique in
the modified micro-structure with a, b and all the values in A.

Theorem 23. FI → CtxDepI, FDynI.

If a and b are FI for a variable v, then a solution with v = a yields another
solution when replacing a with b. Thus, by connecting a and b in the micro-
structure, we obtain a solution clique with a and b. Figure 13 shows an example
where the converse does not hold.
Generalized Neighborhood Substitutability (GNSub) [Chmeiss and Sais,
2003] Two values of a variable are GNSub iff they share at least one support
with respect to each neighboring variable. Figure 14 shows an example.

Theorem 24. NSub and GNSub are not comparable.

Figures 14 and 15 show counter examples.

Theorem 25. CtxDepI → GNSub

If a and b are CtxDepI, then the variable-value pairs connected to a in the micro-
structure of the CSP are also connected to b. Thus, a and b share at least one
support and are GNSub. Figure 16 shows an example where the converse does
not hold.6

Theorem 26. GNSub → ConNI.

If a and b are GNSub for a variable, then we can construct a set of constraints
that eliminates all values in the neighboring variables except the ones that are
the shared support between a and b in order to make a and b ConNI. In Figure 17,
the constraints that eliminate the supports of a make a and b ConNI.

Fig. 15. NSub: a and b are
NSub but not ConNI or
GNSub.

Fig. 16. GNSub: a and b
are GNSub but not FDynI
or CtxDepI.

Fig. 17. ConNI: a and b
are ConNI but not GN-
Sub.

5 Relationships Between Interchangeability Concepts

The different interchangeability concepts surveyed in the previous sections are
related here by the implication relation. Given two interchangeability concepts
A and B, A→ B if every interchangeable pair defined by A, is also defined by B.
Hence, B generalizes A. Figures 18 and 19 illustrate those implication relations,
and depict a partial ordering because some concepts are not comparable.
6 Section 6.2 of [Zhang and Freuder, 2004] incorrectly states that CtxDepI and ConI

are equivalent.

Fig. 18. Hasse Diagram of main interchangeability properties.

An interchangeability concept is satisfiability preserving iff when given two
values a and b that are either interchangeable or a is substitutable for b, removing
b from the problem does not alter the satisfiability of the problem. Not all inter-
changeability concepts are satisfiability preserving. Only the interchangeability
concepts that are inside the dashed rectangle are satisfiability preserving.

In Figure 19, The upper horizontal plane groups concepts defined at the
semantic level and thus are likely intractable. The lower horizontal plane groups
concepts defined at the syntactic levels (i.e., directly on the constraints), and
can likely be efficiently computed.

Interestingly, for a given form of interchangeability, when one moves vertically
upward from the lower plane to the higher plane, interchangeability sets do
not decrease in size while the interchangeability form is not approximated or
compromised. Naturally, this advantage is not free because the computational
cost does not decrease. Moving along the directed edges in either horizontal
planes does not increase cost or the opportunities for interchangeability (i.e.,
size of interchangeability sets), but results in an approximation (i.e., weakening)
of the ‘quality’ of the interchangeability. Finally, moving from the higher plane
to the lower one allows one to likely avoid intractability and may increase the
interchangeability opportunities but also results in approximations that may lose
solutions.

global

local

FI

Sub
FDynSub ConI ConSub

KI

PI TupSub

SPrI

NI

NSub

DynNI ForwNI

NTI NPI DirI NIC NSubC

DirSub

GNSub ConNI ConNSub

CtxDepI FDynI

Fig. 19. Depicting qualitative relations between main interchangeability properties.

6 Work in Progress

In this paper we surveyed several forms of interchangeability, presented their
definitions, and analyzed their relationship. This document is a work in progress.
In the expanded version, we will address in depth the following topics:
More about interchangeability: concepts not mentioned here; missing proofs

of incomparability; the satisfiability-preserving property; restrictions to con-
straint types; algorithms for interchangeability and their complexity; exper-
imental results.

Beyond classical CSPs: soft constraints [Cooper, 2003; Bistarelli et al., 2003;
Neagu et al., 2003; Neagu and Faltings, 2003]; distributed CSPs [Petcu and
Faltings, 2003; Burke and Brown, 2006; Ezzahir et al., 2007].

Relation to symmetry: various types [Benhamou, 1994; Cohen et al., 2006];
symmetry breaking during search (SBDS) [Roney-Dougal et al., 2004; Back-
ofen and Will, 2002; Gent and Smith, 2000], symmetry breaking by domi-
nance detection (SBDD) [Fahle et al., 2001; Focacci and Milano, 2001], and
symmetry breaking by enforcing variable or domain ordering [Bellicha et al.,
1994; Yip and Hentenryck, 2009]; restricted classes of symmetries and prob-
lems where the symmetry is broken in polynomial time [Hentenryck et al.,
2003; Benhamou, 2004].

Relation to search-space compaction: as in CPR [Hubbe and Freuder, 1992],
AND/OR graphs [Dechter and Mateescu, 2004], SLDD [Wilson, 2005], and
solution robustness [Ginsberg et al., 1998; Hebrard et al., 2004].

Relation to SAT solving.

Acknowledgments

This work was supported in part by Science Foundation Ireland under Grant
00/PI.1/C075. Karakashian and Woodward gratefully acknowledge the support

and hospitality of the Cork Constraint Computation Centre during Summer 2010
when this research was conducted.

References

[Backofen and Will, 2002] Rolf Backofen and Sebastian Will. Excluding Symmetries
in Constraint-Based Search. Constraints, 7(3/4):333–349, 2002.

[Beckwith and Choueiry, 2001] Amy M. Beckwith and Berthe Y. Choueiry. On the
Dynamic Detection of Interchangeability in Finite Constraint Satisfaction Problems.
In Principle and Practice of Constraint Programming (CP 01), volume 2239 of LNCS,
page 760, Paphos, Cyprus, 2001.

[Beckwith et al., 2001] Amy M. Beckwith, Berthe Y. Choueiry, and Hui Zou. How the
Level of Interchangeability Embedded in a Finite Constraint Satisfaction Problem
Affects the Performance of Search. In AI 2001: 14th Australian Joint Conference on
Artificial Intelligence, volume 2256 of LNAI, pages 50–61, 2001.

[Bellicha et al., 1994] Amit Bellicha, Christian Capelle, Michel Habib, Tibor Kökény,
and Marie-Christine Vilarem. CSP Techniques Using Partial Orders On Domain
Values. In ECAI 1994 Workshop on Constraint Satisfaction Issues Raised by Practical
Applications, 1994.

[Benhamou, 1994] Belaid Benhamou. Study of Symmetry in Constraint Satisfaction
Problems. In Second Workshop on Principles and Practice of Constraint Program-
ming (PPCP 94), pages 246–254, 1994.

[Benhamou, 2004] Belaid Benhamou. Symmetry in Not-Equals Binary Constraint Net-
works. In Fourth International Workshop on Symmetry in Constraint Satisfaction
Problems (SymCon 04), pages 2–8, 2004.

[Benson and Freuder, 1992] Brent W. Benson and Eugene C. Freuder. Interchange-
ability Preprocessing Can Improve Forward Checking Search. In Tenth European
Conference on Artificial Intelligence (ECAI 92), pages 28–30, 1992.

[Bistarelli et al., 2003] Stefano Bistarelli, Boi Faltings, and Nicoleta Neagu. Inter-
changeability in Soft CSPs. In Recent Advances in Constraints, volume 2627 of
LNCS, pages 45–68. Springer, 2003.

[Boussemart et al., 2004] Frederic Boussemart, Fred Hemery, Christophe Lecoutre,
and Lakhdar Sais. Support Inference for Generic Filtering. In Principles and Practice
of Constraint Programming (CP 04), volume 3258 of LNCS, pages 721–725. Springer,
2004.

[Brown et al., 1988] Cynthia A. Brown, Larry Finkelstein, and Paul W. Purdom, Jr.
Backtrack Searching in the Presence of Symmetry. In Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes, volume 357 of LNCS, pages 99–110. Springer,
1988.

[Burke and Brown, 2006] David A. Burke and Kenneth N. Brown. Applying Inter-
changeability to Complex Local Problems in Distributed Constraint Reasoning. In
Workshop on Distributed Constraint Reasoning (AAMAS 06), pages 1–15, 2006.

[Chmeiss and Sais, 2003] Assef Chmeiss and Lakhdar Sais. About Neighborhood Sub-
stitutability In CSPs. In Third International Workshop on Symmetry in Constraint
Satisfaction Problems (SymCon 03), pages 41–45, 2003.

[Choueiry and Davis, 2002] Berthe Y. Choueiry and Amy M. Davis. Dynamic
Bundling: Less Effort for More Solutions. In International Symposium on Abstrac-
tion, Reformulation and Approximation (SARA 02), volume 2371 of LNAI, pages
64–82. Springer, 2002.

[Choueiry and Noubir, 1998] Berthe Y. Choueiry and Guevara Noubir. On the Com-
putation of Local Interchangeability in Discrete Constraint Satisfaction Problems. In
Fifteenth National Conference on Artificial Intelligence (AAAI 98), pages 326–333,
1998.

[Choueiry et al., 1995] Berthe Y. Choueiry, Boi Faltings, and Rainer Weigel. Abstrac-
tion by Interchangeability in Resource Allocation. In 14th International Joint Con-
ference on Artificial Intelligence (IJCAI 95), pages 1694–1701, 1995.

[Cohen et al., 2006] David Cohen, Peter Jeavons, Christopher Jefferson, Karen E.
Petrie, and Barbara M. Smith. Symmetry Definitions for Constraint Satisfaction
Problems. Constraints, 11(2):115–137, 2006.

[Cooper, 2003] Martin C. Cooper. Reduction Operations in Fuzzy or Valued Con-
straint Satisfaction. Fuzzy Sets and Systems, 134(3):311–342, 2003.

[Dechter and Mateescu, 2004] Rina Dechter and Robert Mateescu. The Impact of
AND/OR Search Spaces on Constraint Satisfaction and Counting. In Principles and
Practice of Constraint Programming (CP 04), volume 3258 of LNCS, pages 731–736,
2004.

[Ezzahir et al., 2007] Redouane Ezzahir, Mustapha Belaissaoui, Christian Bessiere,
and El Houssine Bouyakhf. Compilation Formulation for Asynchronous Backtracking
with Complex Local Problems. In Third International Symposium on Computational
Intelligence and Intelligent Informatics (ISCIII 07), pages 205–211, 28-30 2007.

[Fahle et al., 2001] Torsten Fahle, Stefan Schamberger, and Meinolf Sellman. Sym-
metry Breaking. In Principles and Practices of Constraint Programming (CP 01),
volume 2239 of LNCS, pages 93–107. Springer, 2001.

[Focacci and Milano, 2001] Filippo Focacci and Michela Milano. Global Cut Frame-
work for Removing Symmetries. In Seventh International Conference on Principles
and Practice of Constraint Programming (CP 01), volume 2239 of LNCS, pages 77–
92. Springer, 2001.

[Freuder, 1991] Eugene C. Freuder. Eliminating Interchangeable Values in Constraint
Satisfaction Problems. In National Conference on Artificial Intelligence (AAAI 91),
pages 227–233, 1991.

[Gent and Smith, 2000] Ian P. Gent and Barbara M. Smith. Symmetry Breaking in
Constraint Programming. In Fourteenth European Conference on Artificial Intelli-
gence (ECAI 00), pages 599–603. IOS Press, 2000.

[Gent et al., 2006] Ian Gent, Karen Petrie, and Jean-François Puget. Handbook of
Constraint Programming, chapter 10, pages 329–376. Elsevier, 2006.

[Ginsberg et al., 1998] Matthew L. Ginsberg, Andrew J. Parkes, and Amitabha Roy.
Supermodels and Robustness. In Fifteenth National Conference on Artificial intelli-
gence (AAAI 98), pages 334–339, 1998.

[Glaisher, 1874] J.W.L. Glaisher. On the Problem of the Eight Queens. Philosophical
Magazine, series 4, 48:457–467, 1874.

[Haselböck, 1993] Alois Haselböck. Exploiting Interchangeabilities in Constraint Sat-
isfaction Problems. In 13th International Joint Conference on Artificial Intelligence
(IJCAI 93), pages 282–287, 1993.

[Hebrard et al., 2004] Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. Super
Solutions in Constraint Programming. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR 04),
volume 3011 of LNCS, pages 157–172. Springer, 2004.

[Hentenryck et al., 2003] Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and
Magnus Ågren. Tractable Symmetry Breaking for CSPs with Interchangeable Values.
In 18th International Joint Conference on Artificial Intelligence (IJCAI 03), pages
277–282, 2003.

[Hubbe and Freuder, 1992] Paul D. Hubbe and Eugene C. Freuder. An Efficient Cross
Product Representation of the Constraint Satisfaction Problem Search Space. In
Tenth National Conference on Artificial Intelligence (AAAI 92), pages 421–427, 1992.

[Jeavons et al., 1994] Peter G. Jeavons, David A. Cohen, , and Martin C. Cooper.
A Substitution Operation for Constraints. In Second Workshop on Principles and
Practice of Constraint Programming (PPCP 94), volume 874 of LNCS, pages 18–25.
Springer, 1994.

[Lal and Choueiry, 2004] Anagh Lal and Berthe Y. Choueiry. Constraint Processing
Techniques for Improving Join Computation: A Proof of Concept. In Proceedings of
the 1st International Symposium on Constraint Databases, CDB’04, volume 3074 of
LNCS, pages 149–167. Springer, 2004.

[Lal et al., 2005] Anagh Lal, Berthe Y. Choueiry, and Eugene C. Freuder. Neighbor-
hood Interchangeability and Dynamic Bundling for Non-Binary Finite CSPs. In 20th

National Conference on Artificial Intelligence (AAAI 05), pages 397–404, 2005.
[Likitvivatanavong and Yap, 2008] Chavalit Likitvivatanavong and Roland H.C. Yap.

A Refutation Approach to Neighborhood Interchangeability in CSPs. In AI 2008:
Advances in Artificial Intelligence, volume 5360 of LNCS, pages 93–103. Springer,
2008.

[Naanaa, 2007a] Wady Naanaa. Directional Interchangeability for Enhancing CSP
Solving. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 07), volume 4510 of LNCS, pages
200–213, 2007.

[Naanaa, 2007b] Wady Naanaa. Substitutability Based Domain Decomposition for
Constraint Satisfaction. In 7th International Workshop on Symmetry and Constraint
Satisfaction Problems (SymCon 07), pages 64–71, 2007.

[Naanaa, 2009] Wady Naanaa. A Domain Decomposition Algorithm for Constraint
Satisfaction. Journal of Experimental Algorithmics (JEA), 13(1.13):1–23, 2009.

[Neagu and Faltings, 1999] Nicoleta Neagu and Boi Faltings. Constraint Satisfaction
For Case Adaptation. In Workshop on Formalisation of Adaptation in Case-Based
Reasoning of ICCBR 99, pages 35–41, 1999.

[Neagu and Faltings, 2003] Nicoleta Neagu and Boi Faltings. Soft Interchangeability
for Case Adaptation. Case-Based Reasoning Research and Development, 2689:1066–
1066, 2003.

[Neagu and Faltings, 2005] Nicoleta Neagu and Boi Faltings. Approximating Par-
tial Interchangeability In CSP Solutions. In International FLAIRS Conference
(FLAIRS 05), pages 175–181, 2005.

[Neagu et al., 2003] Nicoleta Neagu, Stefano Bistarelli, and Boi Faltings. On the Com-
putation of Local Interchangeability in Soft Constraint Satisfaction Problems. In
International FLAIRS Conference (FLAIRS 03), pages 14–18, 2003.

[Petcu and Faltings, 2003] Adrian Petcu and Boi Faltings. Applying Interchangeabil-
ity Techniques to the Distributed Breakout Algorithm. In Principles and Practice of
Constraint Programming (CP 03), volume 2833 of LNCS, pages 925–929. Springer,
2003.

[Prestwich, 2004a] Steven Prestwich. Full Dynamic Interchangeability with Forward
Checking and Arc Consistency. In Workshop on Modeling and Solving Problems With
Constraints (ECAI 04), pages 1–14, 2004.

[Prestwich, 2004b] Steven Prestwich. Full Dynamic Substitutability by SAT Encod-
ing. In Principles and Practice of Constraint Programming (CP 04), volume 3258 of
LNCS, pages 512–526. Springer, 2004.

[Roney-Dougal et al., 2004] Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, and
Steve Linton. Tractable Symmetry Breaking Using Restricted Search Trees. In
Sixteenth European Conference on Artificial Intelligence (ECAI 04), pages 211–215,
2004.

[Various, 1991 present] Various. Proceedings of the International Workshop on Sym-
metry and Constraint Satisfaction Problems (SymCon) and of major AI Conferences
such as AAAI, IJCAI, and CP, 1991 present.

[Weigel et al., 1996] Rainer Weigel, Boi Faltings, and Berthe Y. Choueiry. Context
in Discrete Constraint Satisfaction Problems. In Twelfth European Conference on
Artificial Intelligence (ECAI 96), pages 205–209, 1996.

[Weil and Heus, 1998] Georges Weil and Kamel Heus. Eliminating Inter-
changeable Values in the Nurse Scheduling Problem Formulated as a Con-
straint Satisfaction Problem. In Workshop on Constraint-based reasoning
in conjunction with FLAIRS’95, Indianlantic, FL, 1998. Available from
www.sci.tamucc.edu/constraint95/kamel.ps.

[Wilson, 2005] Nick Wilson. Decision Diagrams for the Computation of Semiring Valu-
ations. In International Joint Conference on Artificial Intelligence (IJCAI 05), pages
331–336, 2005.

[Yip and Hentenryck, 2009] Justin Yip and Pascal Van Hentenryck. Evaluation of
Length-Lex Set Variables. In Principles and Practice of Constraint Programming
(CP 09), volume 5732 of LNCS, pages 817–832. Springer, 2009.

[Zhang and Freuder, 2004] Yuanlin Zhang and Eugene C. Freuder. Conditional Inter-
changeability and Substitutability. In Fourth International Workshop on Symmetry
and Constraint Satisfaction Problems (SymCon 04), 2004.

Internal Symmetry

Marijn Heule1 and Toby Walsh2

1 Delft University of Technology, The Netherlands marijn@heule.nl
2 NICTA and UNSW, Sydney, Australia toby.walsh@nicta.com.au

Abstract. We have been studying the internal symmetries within an
individual solution of a constraint satisfaction problem [1]. Such inter-
nal symmetries can be compared with solution symmetries which map
between different solutions of the same problem. We show that we can
take advantage of both types of symmetry when solving constraint satis-
faction solutions within two benchmark domains. By identifying internal
symmetries and breaking solution symmetries, we are able to increase
the size of problems which have been solved.

1 Introduction

Symmetry occurs in several different forms. For example, when finding magic
squares (prob019 in CSPLib [2]), we have the solution symmetries that describe
the rotation and reflection of one solution onto another. We can also have internal
symmetries which describe the mappings within each solution [1]. Methods for
identifying and dealing with solution symmetries have been extensively studied.
We can, for instance, post symmetry breaking constraints to eliminate symmetric
solutions [3, 4]. Internal symmetries, on the other hand, have not received as
much attention. However, they can be dealt with in a similar way. We simply add
constraints that limit search to those solutions with a given internal symmetry. In
addition, we can limit search further by only branching on the subset of decisions
that then generate a complete solution. To demonstrate the value of exploiting
such internal symmetries, we report results on two benchmark domains: Van der
Waerden numbers and graceful graphs. Some (but not all) of the results reported
here will first appear in [1].

2 Solution symmetry

A symmetry σ is a bijection on assignments. Given a set of assignments A and
a symmetry σ, we write σ(A) for {σ(a) | a ∈ A}. Similarly, given a set of
symmetries Σ, we write Σ(A) for {σ(a) | a ∈ A, σ ∈ Σ}. A special type of
symmetry, called solution symmetry is a symmetry between the solutions of a
problem. Such a symmetry maps solutions onto solutions. A solution is a set
of assignments that satisfy every constraint in the problem. More formally, a
problem has the solution symmetry σ iff σ of any solution is itself a solution [5].
The set of solution symmetries Σ of a problem forms a group under composition.

We say that two sets of assignments A and B are in the same symmetry class
of Σ iff there exists σ ∈ Σ such that σ(A) = B.

Running example. The magic squares problem is to label a n by n square so
that every row, column and diagonal have the same sum (prob019 in CSPLib
[2]). A normal magic square contains the integers 1 to n2. We model this with
n2 variables where Xi,j = k iff the ith column and jth row is labelled with the
integer k.

“Lo Shu” is an important object in ancient Chinese mathematics. It is the
smallest non-trivial normal magic square and has been known for over four thou-
sand years:

4 9 2
3 5 7
8 1 6

(1)

The magic squares problem has a number of solution symmetries. For exam-
ple, consider the symmetry σd that reflects a solution in the leading diagonal.
This map “Lo Shu” onto a symmetric solution:

6 7 2
1 5 9
8 3 4

(2)

Any other rotation or reflection of the square maps one solution onto another.
The 8 symmetries of the square (the dihedral group of order 8) are thus all
solution symmetries of this problem. In fact, there are only 8 different magic
square of order 3, and all are in the same symmetry class as “Lo Shu”.

To eliminate such solution symmetry, we can, for instance, post symmetry
breaking constraints that rule out symmetric solutions [3, 4, 6–13]. For example,
to eliminate σd, we simply post an inequality constraint to ensure that the top
left corner is smaller than its symmetry, the bottom right corner. This selects
(1) and eliminates (2).

3 Internal symmetry

Symmetries can also be found within individual solutions of a constraint satis-
faction problem. We say that a solution A contains the internal symmetry σ (or
equivalently σ is a internal symmetry within this solution) iff σ(A) = A.

Running example. Consider again “Lo Shu”, the smallest normal magic square.
This contains a simple internal symmetry. To see this, consider the solution sym-
metry σinv that inverts labels, mapping k onto n2+1−k. This solution symmetry
maps “Lo Shu” onto a different (but symmetric) solution. However, if we now

apply the solution symmetry σ180 that rotates the square 180◦, we map back onto
the original solution:

4 9 2
3 5 7
8 1 6

σinv

⇒
⇐

σ180

6 1 8
7 5 3
2 9 4

Consider the composition of these two symmetries: σinv◦σ180. This symmetry
both inverts the labels in the square and rotates the square 180◦. As this symmetry
maps “Lo Shu” onto itself, we see that the solution “Lo Shu” contains the internal
symmetry σinv ◦ σ180.

Note that a solution symmetry is a property of every solution whilst an
internal symmetry is a property of just the given solution.

Running example. Consider the following magic square:

14 11 5 4
1 8 10 15
12 13 3 6
7 2 16 9

This is one of the oldest known magic squares, dating from a 10th century en-
graving on the Parshvanath Jain temple in Khajuraho, India. σinv ◦ σ180 is not
an internal symmetry contained within this solution:

14 11 5 4
1 8 10 15
12 13 3 6
7 2 16 9

⇔
σinv ◦ σ180

8 1 15 10
11 14 4 5
2 7 9 16
13 12 6 3

However, this internal symmetry is found within other order 4 solutions. Con-
sider Albrecht Dürer’s famous magic square:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

(3)

This appears in his engraving “Melencolia I” of 1514 (as indicated by the two
middle squares of the bottom row). It also plays a role in Dan Brown’s novel
“The Lost Symbol”. The internal symmetry σinv ◦ σ180 is contained within (3):

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

σinv

⇒
⇐

σ180

1 14 15 4
12 7 6 9
8 11 10 5
13 2 3 16

Thus we can conclude that σinv ◦σ180 is an internal symmetry contained within
some but not all solutions of the normal magic squares problem. In fact, 48 out of
the 880 distinct normal magic squares of order 4 contain this internal symmetry.
On the other hand, σinv ◦ σ180 is a solution symmetry of normal magic square
problems of every size.

A solution containing an internal symmetry can often be described by a
subset of assignments and one or more symmetries acting on this subset that
generate a complete set of assignments. Given a set of symmetries Σ, we write
Σ∗ for the closure of Σ. That is, Σ0 = Σ, Σi = {σ1 ◦ σ2 | σ1 ∈ Σ, σ2 ∈ Σi−1},
Σ∗ =

⋃
i Σi. Given a solution A, we say the subset B of A and the symmetries

Σ generate A iff A = B ∪ Σ∗(B). In this case, we also describe A as containing
the internal symmetries Σ.

Running example. Consider the following magic square:

1 8 12 13
14 11 7 2
15 10 6 3
4 5 9 16

(4)

This contains the internal symmetry σinv ◦ σ180. Half this magic square and
σinv ◦ σ180 generate the whole solution:

1 8 12 13
14 11 7 2
- - - -
- - - -

⇔
σinv ◦ σ180

- - - -
- - - -
15 10 6 3
4 5 9 16

In fact, (4) can be generated from just the first quadrant and two symmetries:
σinv ◦ σ180 and a symmetry τ which constructs a 180◦ rotation of the first quad-
rant in the second quadrant, decrementing those squares on the leading diagonal
and incrementing those on the trailing diagonal (the same symmetry constructs
the third quadrant from the fourth). More precisely, τ makes the following map-
pings:

a b - -
c d - -
- - - -
- - - -

⇒
τ

- - d+1 c-1
- - b-1 a+1
- - - -
- - - -

The example hints at how we can exploit internal symmetries within solu-
tions. We will limit search to a subset of the decision variables that generates
a complete set of assignments and construct the rest of the solution using the
generating symmetries.

4 Theoretical properties

We list some properties of internal symmetries that will be used to help find
solutions.

4.1 Set of internal symmetries within a solution

Like solution symmetries, the internal symmetries within a solution form a group.
A solution A contains a set of internal symmetries Σ (or equivalently Σ are
internal symmetries within the solution) iff A contains σ for every σ ∈ Σ.

Proposition 1. The set of internal symmetries Σ within a solution A form a
group under composition.

The proof of this proposition and all subsequent propositions are given in [1].

4.2 Symmetries within and between solutions

In general, there is no relationship between the solution symmetries of a prob-
lem and the internal symmetries within a solution of that problem. There are
solution symmetries of a problem which are not internal symmetries within any
solution of that problem, and vice versa. The problem Z1 "= Z2 has the solution
symmetry that swaps Z1 with Z2, but no solutions of Z1 "= Z2 contain this
internal symmetry. On the other hand, the solution Z1 = Z2 = 0 of Z1 ≤ Z2

contains the internal symmetry that swaps Z1 and Z2, but this is not a solution
symmetry of Z1 ≤ Z2 (since Z1 = 0, Z2 = 1 is a solution but its symmetry is
not). When all solutions of a problem contain the same internal symmetry, we
can be sure that this is a solution symmetry of the problem itself.

Proposition 2. If all solutions of a problem contain an internal symmetry then
this is a solution symmetry.

By modus tollens, it follows that if σ is not a solution symmetry of a prob-
lem then there exists at least one solution which does not contain the internal
symmetry σ.

4.3 Symmetries of symmetric solutions

We next consider internal symmetries contained within symmetric solutions.
In general, the symmetry of a solution contains the conjugate of any internal
symmetry contained within the original solution.

Proposition 3. If the solution A contains the internal symmetry σ and τ is
any (other) symmetry then τ(A) contains the internal symmetry τ ◦ σ ◦ τ−1.

In the special case that symmetries commute, the symmetry of a solution
contains the same internal symmetries as the original problem. Two symmetries
σ and τ commute iff σ ◦ τ = τ ◦ σ.

Proposition 4. If the solution A contains the internal symmetry σ and τ com-
mutes with σ then τ(A) also contains the internal symmetry σ.

Running example. Consider again “Lo Shu”, the smallest normal magic square.
This solution contains the internal symmetry σinv ◦σ180. This particular symme-
try commutes with any rotation symmetry. For instance, consider the rotation
of “Lo Shu” by 90◦ clockwise:

8 3 4
1 5 9
6 7 2

σinv

⇒
⇐

σ180

2 7 6
9 5 1
4 3 8

This symmetry of “Lo Shu” also contains the internal symmetry σinv ◦ σ180.

4.4 Symmetry breaking

Finally, we consider the compatibility of eliminating symmetric solutions and
focusing search on those solutions that contain particular internal symmetries. In
general, the two techniques are incompatible. Symmetric breaking may eliminate
all those solutions which contain a given internal symmetry.

Running example. Consider the following magic square:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

(5)

This contains the internal symmetry σv ◦σinv that inverts all values and reflects
the square in the vertical axis:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

σinv

⇒
⇐
σv

16 13 4 1
3 2 15 14
9 12 5 8
6 7 10 11

Note that this internal symmetry can only occur within magic squares of even
order or of order 1.

Suppose symmetry breaking eliminates all solutions in the same symmetry
class as (5) except for a symmetric solution which is a 90◦ clockwise rotation
of (5). This solution does not contain the internal symmetry σv ◦ σinv. In fact,
this rotation of (5) contains the internal symmetry that inverts all values and
reflects the square in the horizontal axis.

11 8 14 1
10 5 15 4
7 12 2 13
6 9 3 16

⇔
σv ◦ σinv

16 3 9 6
13 2 12 7
4 15 5 10
1 14 8 11

We can identify a special case where symmetry breaking does not change
any internal symmetry within solutions. Suppose symmetry breaking only elim-
inates symmetries which commute with the internal symmetry contained within
a particular solution. In this case, whilst symmetry breaking may eliminate the
given solution, it must leave a symmetric solution containing the given internal
symmetry. Given a set of constraints C with solution symmetries Σ, we say that
a set of symmetry breaking constraints S is sound iff for every solution of C
there exists at least one solution of C ∪ S in the same symmetry class.

Proposition 5. Given a set of constraints C with solution symmetries Σ, a
sound set of symmetry breaking constraints S, and a solution A containing the
internal symmetry σ, if σ commutes with every symmetry in Σ then there exists
a solution of C∪S in the same symmetry class as A also containing the internal
symmetry σ.

Running example. Consider the internal symmetry σinv◦σ180 contained within
some (but not all) normal magic squares. This particular symmetry commutes
with every rotation, reflection and inversion solution symmetry of the problem.
Hence, if there is a solution with the internal symmetry σinv ◦ σ180, this re-
mains true after breaking the rotational, reflection and inversion symmetries.
However, as in the last example, there are internal symmetries contained within
some solutions (like reflection in the vertical axis) which do not commute with
all symmetries of the square.

5 Detecting internal symmetries

Detection of internal symmetries in a class of problems consists of two steps: 1)
selecting a good candidate solution, and 2) finding internal symmetries in that
solution. As we already discussed earlier, an internal symmetry of one solution
may not be an internal symmetry of another solution for the same problem.
Recall in this context Albrecht Dürer’s famous magic square (3) that has internal
symmetry σinv ◦σ180, while most magic squares with the same size don’t. Before
trying to detect internal symmetries, we consider a strategy to select a solution
that is more likely to reveal internal symmetries.

The strategy consists of two parts: 1) determine a good size of the problem to
look at and 2) filtering out solutions. First, consider the problem size. In order to
exploit internal symmetries, internal symmetries observed at a certain size need
also to hold for other sizes. Therefore, it makes sense to select problems of a size
that have only very few (preferably only one) solutions. Yet for most problems,
such as the magic squares, only the smallest problems have few solutions. Un-
fortunately these sizes might be too small to do some proper internal symmetry
detection. However, for some problems, such as Van der Waerden numbers which
we consider in Section 7, the number of solutions decreases while increasing the
size. In those cases a “good” size is much larger.

After selecting the size, we filter out solutions using the following method.
First, we compute the set S consisting of all solutions of the selected size while

applying symmetry breaking. Let set V be the set of variables that describe the
solutions in S. Then we repeat until |S| = 1: Select a variable v ∈ V that is
most frequently assigned the same value in the solutions of S. Remove from S
all solutions that have v assigned to another value and V := V \ {v}.

Running example. Consider the magic squares problem of size 5 × 5. After
symmetry breaking3 (in this case 25 transpositions, 4 rotations, and 2 reflec-
tions), this problem has 144 solutions. In all those solutions, the first element is
placed in the first (top left) entry. After fixing element 1, element 6 occurs most
freqently in the same position. More specifically, it appears in 72 solutions on the
last row in the fourth column. After fixing element 6 to that position, element
11 occurs in 36 of the remaining 72 solutions on second entry of the fourth row.
The next elements to be placed are 16 and 21 and after fixing them, 24 solutions
are left with the following pattern:

1 - - - -
- - 21 - -
- - - - 16
- 11 - - -
- - - 6 -

By repeating the procedure, we will select the following solution:

1 7 13 19 25
14 20 21 2 8
22 3 9 15 16
10 11 17 23 4
18 24 5 6 12

(6)

This solution has an interesting internal symmetry, which will be explained
in the next example.

The last step is to detect internal symmetries in the selected solution. This
step is the hardest to automate. As a general approach we propose the follow-
ing. Construct a set of symmetries Σ that include at least all solutions sym-
metries. Let A be the selected solution. We then use a search program to find
s1, s2, . . . sk ∈ Σ that satisfy s1 ◦ s2 ◦ · · · ◦ sk(A) = A.

Although internal symmetries can be found using this approach – even when
restricted to the solution symmetries – in our experience the most effective in-
ternal symmetries in the selected solution were often found manually.

3 For this example we use the symmetry breaking based on the score function that
is defined on http://www.grogono.com/magic/5x5pan144.php. In short, out of each
symmetry group the one is selected for which the elements in the top left corner
have the smallest elements.

Running example. Consider the magic square we selected. We denote by
σrow(x,y,z) a transposition of the rows such the row 1 is replaced by row x, row
2 by row y and row 3 by row z. An automated search program that only com-
bines solution symmetries to detect internal symmetries can find the following
symmetry σrow(2,3,1) ◦ σ180 ◦ σinv ◦ σrow(3,1,2) :

1 7 13 19 25
14 20 21 2 8
22 3 9 15 16
10 11 17 23 4
18 24 5 6 12

σrow(2,3,1)

⇒
⇐

σrow(3,1,2)

14 20 21 2 8
22 3 9 15 16
1 7 13 19 25
10 11 17 23 4
18 24 5 6 12

σ180

⇒
⇐

σinv

12 6 5 24 18
4 23 17 11 10
25 19 13 7 1
16 15 9 3 22
8 2 21 20 14

However, this is not the most useful internal symmetry that can be observed
in this magic square. A careful look at the filtering procedure above reveals that for
the first five elements i that are fixed, we have i = 1(mod 5). More importantly,
all elements are fixed at a location that is a knight’s move (two left, one up)
from each other. A similar pattern is observable for the first five elements i ∈
{1, . . . , 5}: They are also a knight’s move (two left, one down) from each other.
Combining both patterns gives a construction method for odd magic squares that
is very similar to the Siamese method4: After placing the first element, place the
next element on the entry reachable by a knight’s move (two left, one down). If
the entry is already filled, then place the element in the entry directly right of
the last placed element.

6 Exploiting internal symmetries

Once we have identified an internal symmetry which we conjecture may be con-
tained in solutions of other (perhaps larger) instances of the problem, it is a
simple matter to restrict search of a constraint solver to solutions of this form.
In general, if we want to find solutions containing the internal symmetry σ, we
post symmetry constraints of the form:

Zi = j ⇒ σ(Zi = j)

In addition, we can limit branching decisions to a subset of the decisions variables
that generates a complete set of assignments. This can significantly reduce the
size of the search space. Propagation of the problem and symmetry constraints
may prune the search space even further.

7 Van der Waerden numbers

We illustrate the use of internal symmetries within solutions with two applica-
tions where we have been able to extend the state of the art. In the first, we
4 see http://en.wikipedia.org/wiki/Siamese method

found new lower bound certificates for Van der Waerden numbers. Such num-
bers are an important concept in Ramsey theory. In the second application, we
increased the size of graceful labellings known for a family of graphs. Graceful
labelling has practical applications in areas like communication theory.

The Van der Waerden number, W (k, l) is the smallest integer n such that
if the integers 1 to n are colored with k colors then there are always at least l
integers in arithmetic progression. For instance, W (2, 3) is 9 since the two sets
{1, 4, 5, 8} and {2, 3, 6, 7} contain no arithmetic progression of length 3, but every
partitioning of the integers 1 to 9 into two sets contains an arithmetic progression
of length 3 or more. The certificate that W (2, 3) > 8 can be represented with
the following blocks:

1 2 3 4 5 6 7 8

Finding such certificates can be encoded as a constraint satisfaction problem.
To test if W (k, l) > n, we introduce the Boolean variable xi,j where i ∈ [0, k),
j ∈ [0, n) and constraints that each integer takes one color (

∨
i∈[0,k) xi,j), and

that no row of colors contains an arithmetic progression of length l (xi,a ∧ . . . ∧
xi,a+d(l−2) → ¬xi,a+d(l−1)). This problem has a number of solution symmetries.
For example, we can reverse any certificate and get another symmetric certificate.
We can also permute the colors and get another symmetric certificate:

Individual certificates also often contain internal symmetry. For example, the
second half of the last certificate repeats the first half:

×2

Hence, this certificate contains an internal symmetry that maps xi,j onto xi,j+4 mod 8.
In fact, many known certificates can be generated from some simple sym-

metry operations on just the colors assigned to the first two or three integers.
For instance, the first construction method for Van der Waerden certificates [14]
made use of the observation that the largest possible certificates for the known
numbers W (k, l)5 consist of a repetition of l − 1 times a base pattern. All these
certificates, as well as all best lower bounds, have a base pattern of size m = n

l−1 .
This first method only worked for certificates for which m is prime. An improved
construction method [15] generalises it for non-prime m.

An important concept in both construction methods is the primitive root6
of m denoted by r. Let p be the largest prime factor of m, then r is the smallest
number for which:

ri(mod m) %= rj(mod m) for 1 ≤ i < j < p (7)

5 except for W (3, 3)
6 our use slightly differs from the conventional definition

We identified four internal symmetries:
σ+m: Apply to all elements xi,j := xi,j+m (mod n)

σ+p: Apply to all elements xi,j := xi,j+p (mod m)

σ×r: Apply to all elements xi,j := xi,j×r (mod m)

σ×rt : At least one subset maps onto itself after applying
xi,j := xi,j×rt (mod m) for a t ∈ {1, . . . , k}

Consider the largest known certificate for W (5, 3) which has 170 elements.
For this certificate, m = 85, p = 17, and r = 3. Below the base pattern is shown
the first 85 elements. Notice that for this certificate A, σ+p(A) and σ×r(A) are
also certificates. In fact, after sorting the elements and permuting the subsets,
this certificate is mapped onto itself after applying these symmetries.

18 20 24 26 33 36 38 44 65 66 74 76 79 80 5 13 17
22 30 34 35 37 41 43 50 53 55 61 82 83 6 8 11 12
23 25 28 29 39 47 51 52 54 58 60 67 70 72 78 14 15
31 32 40 42 45 46 56 64 68 69 71 75 77 84 2 4 10
19 21 27 48 49 57 59 62 63 73 81 85 1 3 7 9 16

⇑ σ+p

1 3 7 9 16 19 21 27 48 49 57 59 62 63 73 81 85
5 13 17 18 20 24 26 33 36 38 44 65 66 74 76 79 80
6 8 11 12 22 30 34 35 37 41 43 50 53 55 61 82 83
14 15 23 25 28 29 39 47 51 52 54 58 60 67 70 72 78
2 4 10 31 32 40 42 45 46 56 64 68 69 71 75 77 84

⇓ σ×r

3 9 21 27 48 57 63 81 59 62 1 7 16 19 49 73 85
15 39 51 54 60 72 78 14 23 29 47 25 28 52 58 67 70
18 24 33 36 66 5 17 20 26 38 44 65 74 80 13 76 79
42 45 69 75 84 2 32 56 68 71 77 4 10 31 40 46 64
6 12 30 8 11 35 41 50 53 83 22 34 37 43 55 61 82

Given these symmetries, we can easily construct a complete certificate. We
place the first and last elements (1 and 85) in the first subset and apply σ×r

to generate all elements in this subset. We apply σ+p to partition the elements
{1, . . . , 85}. Finally, we obtain a complete certificate by applying σ+m. We gen-
eralised this into a construction method. To find a larger certificate W (k, l, n),
we test with a constraint solver for increasing n ≡ 0 (mod l − 1) whether a
certificate can be obtained using the following steps:

– break solution symmetry by forcing that the first subset of the partition
maps onto itself after applying σ×rt

– choose t ∈ {1, . . . , k}, q ∈ {1, . . . , m
p }

– place elements q and m in the first subset
– apply the symmetries σ×rt , σ×r, σ+p, and σ+m, to construct a certificate A

with n′ elements
– check with a constraint solver if A lacks an arithmetic progression of length l

Using this method we significantly improved some of the best known lower
bounds7:

– W (3, 7) > 48811. The old bound was 43855.
– W (4, 7) > 420217. The old bound was 393469.

8 Graceful graphs

Our second application of internal symmetries is graceful labelling. A graph with
e edges is called graceful if its vertices can be labelled with the distinct values
{0, . . . , e} in such a way that each edge gets a unique label when it is assigned
the absolute difference of the vertices it connects. Graceful labelling has a wide
range of applications in areas like radio astronomy, cryptography, communication
networks and circuit design.

Whilst various classes of graphs are known
to be graceful [16], there are others where it
is not known but is conjectured that they are
graceful. One such class is the class of double
wheel graphs. The graph DWn consists of
two cycles of size n and a hub connected all
the vertices. The largest double wheel graph
that we have seen graceful labelled in the
literature8has size 10.

0

9

33

16

37

1534

14

39

11

38
1

3

7

12

18
31

8

40

10

36

The problem of finding a graceful labelling can be specified using 2n+1 variables
Xi with domain {0, . . . , e}. This problem has 16n2 solution symmetries [17]:

– Rotation of the vertices (n2 symmetries)
– Inversion of the order of the vertices (4 symmetries)
– Swapping of the inner and outer wheel (2 symmetries)
– Inversion of the labels, Xi := 4n − Xi (2 symmetries)

To identify internal symmetries, we generated all graceful labellings for DW4.
This is the smallest double wheel graph with a graceful labelling. We observed
two internal symmetries within the 44 solutions of DW4:

σ4n: In 31 solutions, the hub had label 4n or 0 (σinv).
σ+2: If 1 ≤ Xi ≤ n − 2, then Xi+2 := Xi + 2

Although we observed σ+2, we restrict this internal symmetry to 1 ≤ Xi ≤ n−4
because it proved more effective.

When both symmetries are applied, the computational costs to find a grace-
ful labelling is significantly reduced. Consider DW24. To construct a graceful
labelling, we first assign the hub to value 96 (applying σ4n). Second, we label
the first vertex of the outer wheel with 1 and label the first vertex of the inner
7 see www.st.ewi.tudelft.nl/sat/∼waerden.php
8 see www.comp.leeds.ac.uk/bms/Graceful/

wheel with 2. Third, we apply symmetry σ+2 to label n-1 vertices with the labels
{1, . . . , n−1}. Finally, we use a constraint solver to label the remaining vertices.
Using this method we found the first known graceful labeling for DW24.

96

1
0

3

62

5

51

7

34

9

80

11
6513

63

15

78

17

28

19

58

21

56

41
54

2
45

4

30

6

29

8

40

10

32

12
31

14
26

16

23

18

67

20

24

22

82

88
60

The right table gives the runtime (in
seconds) for our constraint solver to
find graceful labellings of DWn for the
original problem (P) with and without
symmetry breaking (SB) constraints
[17]. The last column shows the re-
sults when we force internal symme-
tries within solutions. This also breaks
the solution symmetries.

n P P + SB P+σ4n,σ+2

4 0.01 0.01 0.01
8 1.88 0.78 0.1
12 82.12 25.18 0.3
16 1, 608 706.35 4.97
20 21, 980 8, 272 17.25
24 > 36, 000 > 36, 000 157.87

9 Related work

Several forms of symmetry have been identified and exploited in search. For
instance, Brown, Finkelstein and Purdom defined symmetry as a permutation
of the variables leaving the set of solutions invariant [18]. This is a subset of the
solution symmetries. For the propositional calculus, Krishnamurthy was one of
the first to exploit symmetry [19]. He defined symmetry as a permutation of the
variables leaving the set of clauses unchanged. Benhamou and Sais extended this
to a permutation of the literals preserving the set of clauses [20].

The symmetry of individual constraints has also been considered. For ex-
ample, Puget considered permutations of the variables leaving the set of con-
straints invariant [3]. He proved that such symmetry can be eliminated by the

addition of static constraints. Crawford et al. presented the first general method
for constructing static constraints for eliminating solution symmetries [4]. Per-
haps closest to this work is Puget’s symmetry breaking method that considers
symmetries which stabilize the current partial set of assignments [21]. By com-
parison, we consider only those symmetries which stabilize a complete set of
assignments. A stabilizer maps individual assignments onto themselves, whilst
an internal symmetry maps a set of assignments onto the same set (but may
change every individual assignment).

Apart from symmetry, the idea of exploiting regularities in solutions of small
sized problems in order to constrain large sized problems has been studied be-
fore. For instance, streamlining constraints in CP [22] and resolution tunnels in
SAT [23]. In contrast to other work, internal symmetries focuses on a specific
regularity: a mapping of a set of assignments onto itself.

10 Conclusions

We have been studying internal symmetries within a single solution of a con-
straint satisfaction problem [1]. Internal symmetries are properties of an individ-
ual solution. They can be compared with solution symmetries which are proper-
ties of all solutions of a constraint satisfaction problem. Both types of symmetry
can be profitably exploited when solving constraint satisfaction problems. We
illustrated the potential of doing this on two benchmark domains: Van der Waer-
den numbers and graceful graphs. With the first, we improved some of the best
known lower bounds by around 10%. With the second, we more than doubled
the size of the largest known double wheel graph with a graceful labelling from
a wheel of size 10 to a wheel of size 24.

Acknowledgments

The authors are supported by the Dutch Organization for Scientific Research
(NWO) under grant 617.023.611, the Australian Government’s Department of
Broadband, Communications and the Digital Economy and the ARC.

References

1. Heule, M., Walsh, T.: Symmetry within solutions. In: Proceedings of AAAI’10.
(2010) 77–82

2. Gent, I., Walsh, T.: CSPLib: a benchmark library for constraints. Technical report,
Technical report APES-09-1999 (1999).

3. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems.
In Komorowski, J., Ras, Z., eds.: Proceedings of ISMIS’93. LNAI 689, Springer-
Verlag (1993) 350–361

4. Crawford, J., Ginsberg, M., Luks, G., Roy, A.: Symmetry breaking predicates for
search problems. In: Proceedings of the 5th International Conference on Knowledge
Representation and Reasoning, (KR ’96). (1996) 148–159

5. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. Constraints 11(2–3) (2006) 115–137

6. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetry in matrix models. In: 8th International
Conference on Principles and Practices of Constraint Programming (CP-2002),
Springer (2002)

7. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lex-
icographic orderings. In: 8th International Conference on Principles and Practices
of Constraint Programming (CP-2002), Springer (2002)

8. Walsh, T.: General symmetry breaking constraints. In Benhamou, F., ed.: 12th
International Conference on Principles and Practice of Constraint Programming
(CP 2006). Volume 4204 of LNCS, Springer (2006)

9. Walsh, T.: Symmetry breaking using value precedence. In Brewka, G., Coradeschi,
S., Perini, A., Traverso, P., eds.: 17th European Conference on Artificial Intelli-
gence, IOS Press (2006) 168–172

10. Law, Y.C., Lee, J., Walsh, T., Yip, J.: Breaking symmetry of interchangeable
variables and values. In: 13th International Conference on Principles and Practices
of Constraint Programming (CP-2007), Springer-Verlag (2007)

11. Walsh, T.: Breaking value symmetry. In: 13th International Conference on Princi-
ples and Practices of Constraint Programming (CP-2007), Springer-Verlag (2007)

12. Katsirelos, G., Walsh, T.: Symmetries of symmetry breaking constraints. In:
Proceedings of the 19th ECAI, IOS Press (2010)

13. Katsirelos, G., Narodytska, N., Walsh, T.: Static constraints for breaking row and
column symmetry. In: 16th International Conference on Principles and Practices
of Constraint Programming (CP-2010), Springer-Verlag (2010)

14. Rabung, J.R.: Some progression-free partitions constructed using Folkman’s
method. Canadian Mathematical Bulletin 22(1) (1979) 87–91

15. Herwig, P., Heule, M.J., van Lambalgen, M., van Maaren, H.: A new method to
construct lower bounds for Van der Waerden numbers. The Electronic Journal of
Combinatorics 14 (2007)

16. Gallian, J.A.: A dynamic survey of graph labelling. The Electronic Journal of
Combinatorics 5 (1998) #DS6 Updated in 2008.

17. Petrie, K.E., Smith, B.M.: Symmetry breaking in graceful graphs. In: Principles
and Practice of Constraint Programming. Volume 2833 of LNCS. (2003) 930–934

18. Brown, C., Finkelstein, L., Jr., P.P.: Backtrack searching in the presence of symme-
try. In Mora, T., ed.: Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, 6th International Conference. Volume 357 of LNCS. (1988) 99–110

19. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22(3) (1985)
253–275

20. Benhamou, B., Sais, L.: Theoretical study of symmetries in propositional calculus
and applications. In: Proceedings of 11th International Conference on Automated
Deduction. Volume 607 of LNCS. (1992) 281–294

21. Puget, J.F.: Symmetry breaking using stabilizers. In Rossi, F., ed.: Proceedings
of 9th International Conference on Principles and Practice of Constraint Program-
ming (CP2003), Springer (2003)

22. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Principles and
Practice of Constraint Programming CP 2004. Volume 3258 of Lecture Notes in
Computer Science. (2004) 274–289

23. Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance.
In: Theory and Applications of Satisfiability Testing. Volume 3569 of Lecture Notes
in Computer Science. (2005) 143–157

Symmetries and Lazy Clause Generation

Geoffrey Chu1, Maria Garcia de la Banda2, Chris Mears2, and Peter J.
Stuckey1

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 Faculty of Information Technology,
Monash University, Australia

{cmears,mbanda}@infotech.monash.edu.au

Abstract. Lazy clause generation is a powerful approach to reducing
search in constraint programming. This is achieved by recording sets of
domain restrictions that previously lead to failure as new clausal prop-
agators. Symmetry breaking approaches are also powerful methods for
reducing search by recognizing that parts of the search tree are symmet-
ric and do not need to be explored. In this paper we show how we can
successfully combine symmetry breaking methods with lazy clause gen-
eration. Further, we show that the more precise nogoods generated by a
lazy clause solver allow our combined approach to exploit redundancies
that cannot be exploited via any previous symmetry breaking method,
be it static or dynamic.

1 Introduction

Lazy clause generation [6] is a hybrid approach to constraint solving that com-
bines features of finite domain propagation and Boolean satisfiability. Finite
domain propagation is instrumented to record the reasons for each propagation
step. This creates an implication graph like that built by a SAT solver, which may
be used to create efficient nogoods that record the reasons for failure. These no-
goods can be propagated efficiently using SAT unit propagation technology. The
resulting hybrid system combines some of the advantages of finite domain con-
straint programming (high level model and programmable search) with some of
the advantages of SAT solvers (reduced search by nogood creation, and effective
autonomous search using variable activities). Thanks to this lazy clause genera-
tion provides state of the art solutions to a number of combinatorial optimization
problems such as Resource Constrained Project Scheduling Problems [7].

Symmetry breaking methods aim at speeding up the execution by pruning
parts of the search tree known to be symmetric to those explored. While static
symmetry breaking methods achieve this by adding constraints to the origi-
nal problem, dynamic symmetry breaking methods alter the search. As we will
see later, combining static symmetry breaking with lazy clause generation is
straightforward and quite successful. However, dynamic symmetry breaking can
sometimes be more effective than static symmetry breaking. Thus, we are also

interested in combining lazy clause generation with dynamic symmetry breaking
methods. While this combination is much more complex, it also allows us to ex-
ploit certain types of redundancies which were previously impossible to exploit
via any other traditional static or dynamic symmetry breaking method.

As we will show in this paper, the key to the success of our combination
resides in the fact that dynamic symmetry breaking methods can also be defined
in terms of nogoods. In particular, they can be thought of as utilising symmetric
versions of nogoods derived at each search node to prune off symmetric portions
of the search space. Thus, both lazy clause generation and dynamic symmetry
breaking use nogoods to prune the search space. The differences arise in the kind
of nogoods used and in the way these nogoods are used. Traditional dynamic
symmetry breaking methods such as SBDS [4] and SBDD [3, 1], use what we will
call the choice nogood, i.e. the nogood formed by taking the entire set of current
decision assignments. On the other hand, lazy clause solvers [6] use what is
called the first unique implication point (1UIP) nogood (described in Section 3),
which has been empirically found to be much stronger than choice nogoods in
terms of pruning strength as clausal propagators. As our theoretical exploration
will show, this difference in pruning strength carries over to dynamic symmetry
breaking methods. Combining lazy clause generation and dynamic symmetry
breaking allows us to take advantage of 1UIP nogoods (as lazy evaluation does)
and of symmetric 1UIP nogoods (rather than of symmetric choice nogoods, as
dynamic symmetry breaking does). This leads to strictly more pruning.

2 Finite Domain Propagation

Let ≡ denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. We use ⇒ and ⇔ to denote logical implication and logical equivalence,
respectively.

A constraint problem P is a tuple (C, D), where C is a set of constraints and
D is a domain which maps each variable x ∈ vars(C) to a finite set of integers
D(x). The set C is logically interpreted as the conjunction of its elements, while
D is interpreted as ∧x∈vars(C)x ∈ D(x). A variable x is said to be Boolean if
D(x) = [0, 1], where 0 represents false and 1 represents true.

An equality literal of P ≡ (C, D) is of the form x = d, where x ∈ vars(C)
and d ∈ D(x). A valuation θ of P over set of variables V ⊆ vars(C) is a set
of equality literals of P with exactly one literal per variable in V . It can be
understood as a mapping of variables to values. The projection of valuation θ

over a set of variables U ⊆ vars(θ) is the valuation θU = {x = θ(x)|x ∈ U}.
A constraint c ∈ C can be considered a set of valuations solns(c) over the

variables vars(c). Valuation θ satisfies constraint c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ c. A solution of P is a valuation over vars(P) that satisfies every
constraint in C. We let solns(P) be the set of all its solutions. Problem P is
satisfiable if it has at least one solution and unsatisfiable otherwise.

An inequality literal for problem P = (C, D) has the form x ≤ d or x ≥ d

where x ∈ vars(C) and d ∈ D(x). A disequality literal for x has the form x �= d

where d ∈ D(x). The equality, inequality and disequality literals of P , together
with the special literal false representing failure, are denoted the literals of P .
Literals represent the basic changes in domain that occur during propagation.

A constraint c is implemented by a propagator fc which is a function from
domains to domains that ensures that c ∧ D ⇔ c ∧ fc(D). We can record the
new information obtained by running fc on domain D as the set of literals which
are newly implied: new(fc, D) = {l | D �⇒ l ∧ fc(D) ⇒ l}. We will assume that
we remove from this set literals that are redundant. Note that if the propagator
detects failure we assume new(fc, D) = {false}.

Example 1. Consider the actions of propagator fc of constraint c ≡
�5

i=1 xi ≤ 12
on the domain D(x1) = {1}, D(x2) = D(x3) = D(x4) = D(x5) = [2 .. 10]. Now
D� = fc(D) has D(x2) = D(x3) = D(x4) = D(x5) = [2 .. 5]. Hence, as defined
new(fc, D) includes x2 ≥ 2, x2 ≤ 5, x2 ≤ 6, x2 ≤ 7, Since the second literal
makes those following redundant, we assume they are not part of the result. ��

Given a root constraint problem P ≡ (C, D), constraint programming solves
P by a search process that first uses a constraint solver to determine whether P

can immediately be classified as satisfiable or unsatisfiable. We assume a prop-
agation solver, denoted by solv, which when applied to P repeatedly applies
propagators, updating the domain, until each returns an empty set of new liter-
als. The final resulting domain D� is such that D� ⇒ D and C∧D ⇔ C∧D�. The
solver detects unsatisfiability if any D�(x) = ∅ for some x ∈ vars(C). We assume
that if the solver returns a domain D� where all variables are fixed then the solver
has detected satisfiability of the problem and D� is a solution. If the solver can-
not immediately determine whether P is satisfiable or unsatisfiable, the search
splits P into n subproblems Pi = (C∧ci, D

�) where C∧D� ⇒ (c1∨c2∨ . . .∨cn))
and iteratively searches for solutions to them.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P where each node
represents a new (though perhaps logically equivalent) subproblem P �, which will
be used as the node’s label. In this paper we restrict ourselves to the case where
each ci added by the search takes the form of a literal (referred to as a decision
literal). While this is not a strong restriction, it does rule out some kinds of
constraint programming search. We can identify any subproblem P � appearing
in the search tree for P = (C, D) by the set of decision literals c1, . . . , cn taken
to reach P �. We define choices(P �) = C � where P � = (C ∪ C �, D�).

3 Lazy Clause Generation

Lazy clause generation [6] is a hybrid of finite domain and SAT solving where
each FD propagator is extended to be able to explain its propagations. An integer
variable x in problem P = (C, D) with initial domain D(x) = [l .. u] is correlated
to a set of Boolean variables {[[x = d]] | l ≤ d ≤ u} ∪ {[[x ≤ d]] | l ≤ d < u} that
represent the domain changes possible for the variable (note that [[x ≤ u]] is
always true). Note that for variables x with initial domain D(x) = [0 .. 1] we
can represent them using the single Boolean variable [[x = 1]]. In order to prevent
meaningless assignments to these Boolean variables we add Boolean constraints

to the constraint problem that define the conditions that relate them.

[[x ≤ d]]→ [[x ≤ d + 1]], l ≤ d ≤ u− 2
[[x ≤ d]] ∧ ¬[[x ≤ d− 1]]↔ [[x = d]], l < d ≤ u− 1

[[x ≤ l]]↔ [[x = l]]
¬[[x ≤ u− 1]]↔ [[x = u]]

Rather than directly using the Boolean variables attached to an integer vari-
able we will use equality, inequality and disequality literals. Each equality, in-
equality and disequality literal can be considered as simply more explicit notation
for a Boolean literal using the Boolean variables defined above:

x = d ≡ [[x = d]] x ≤ u ≡ true
x �= d ≡ ¬[[x = d]] x ≥ d ≡ ¬[[x ≤ d− 1]], l < d

x ≤ d ≡ [[x ≤ d]], d < u x ≥ l ≡ true.

For lazy clause generation, if a propagator fc implementing constraint c in-
fers a new literal (equality, inequality, or disequality) on the domain of one of its
variables, or failure, it must explain this literal in terms of the Boolean repre-
sentation of the variables involved in the propagator. An explanation for literal
l is S → l where S is a set of literals. A correct explanation for l by fc prop-
agating on a problem with initial domain D, is an explanation S → l where
c ∧ S ∧ D ⇒ l. Clearly, an explanation corresponds directly to a clause on the
underlying Boolean representation. For example, the propagator for constraint
x �= y may infer literal y �= 3 given literal x = 3. This might be explained as
{x = 3} → y �= 3 corresponding to the clause [[x = 3]]→ ¬[[y = 3]].

In a lazy clause generation solver each new literal l inferred by a propagator
fc is recorded in a stack in the order of generation. Furthermore, the propagator
returns an explanation for l that is attached to l. The implication graph is thus
a stack of literals each with an attached explanation, or marked as a decision
literal. We define the decision level for any literal as the number of decision
literals pushed in before it in the stack.

Example 2. Consider the following constraint problem P = (C, D) where C ≡
{
�5

i=1 xi ≤ 12, alldiff ([x1, x2, x3, x4, x5])} and D(xi) = [1 .. 8] , 1 ≤ i ≤ 5. If
the search chooses x1 = 1 we arrive at subproblem P1 = (C ∪ {x1 = 1}, D).
Then the alldiff constraint determines that x2 �= 1 from set of literals {x1 = 1}
(i.e., with explanation {x1 = 1} → x2 �= 1), and similarly for x3, x4 and x5.
This builds the second column of the implication graph in Figure 1. Then, the
domain constraints for x2 determine that x2 ≥ 2 from {x2 �= 1} and similarly
for the domain constraints of x3, x4, and x5, building the third column. The sum
constraint determines that the upper bound of each of x2, x3, x4 and x5 is 5
from the lower bounds in the third column, thus building the fourth column.
The new domain is D�(x1) = {1}, D�(xi) = [2 .. 5] , 2 ≤ i ≤ 5. If the search
now chooses x2 = 2, we arrive at subproblem P2 = (C ∪ {x1 = 1, x2 = 2}, D�).
Then the alldiff constraint determines x3 �= 2, x4 �= 2, and x5 �= 2 (the 6th
column) from {x2 = 2}. The domain constraints determine that x3 ≥ 3 from
{x3 ≥ 2, x3 �= 2}, similarly for x4 and x5. The sum constraint determines that
x4 ≤ 3 from {x2 = 2, x3 ≥ 3, x5 ≥ 3}, similarly for x5 ≤ 3. Then, the domain

x1 = 1

�����
��

��

��

��

x2 �= 1 �� x2 ≥ 2

��

��

��

��

��

x2 ≤ 5 x2 = 2

�����
��

��

��

x3 �= 1 �� x3 ≥ 2

��

��

��

��
x3 ≤ 5 x3 �= 2 �� x3 ≥ 3

�����
��

���
��

��
��

��
�

x4 �= 1 �� x4 ≥ 2

��

��

��

��
x4 ≤ 5 x4 �= 2 �� x4 ≥ 3

�����
��

��
x4 ≤ 3 �� x4 = 3

�����
��

x5 �= 1 �� x5 ≥ 2

��

��

��

��x5 ≤ 5 x5 �= 2 �� x5 ≥ 3

�������

��x5 ≤ 3 �� x5 = 3 �� false

Fig. 1. Implication graph of propagation. Decision literals are double boxed.

constraints determine x4 = 3 from {x4 ≥ 3, x4 ≤ 3}, similarly for x5 = 3 and
finally the alldiff constraint determines unsatisfiability of x4 = 3 and x5 = 3. ��

A nogood N is set of literals. A correct nogood N from problem P = (C, D)
is one where C∧D ⇒ ¬∧l∈N l, that is, in all solutions of P the conjunction of the
literals in N is false. Once we have an implication graph we can use it determine
a correct nogood that explains each failure. The usual approach to building a
nogood is to use the implication graph to eliminate literals starting from original
nogood N from the explanation of failure N → false, until only one literal at the
the current decision level remains. This is the 1UIP (First Unique Implication
Point) nogood. The search then records this nogood as a clausal propagator and
backtracks to the decision level of the second latest literal in the nogood, where
it applies the newly derived nogood propagator.

Example 3. Continuing from Example 2 using the implication graph in Figure 1,
we start with the explanation of failure {x4 = 3, x5 = 3} → false which gives
us the initial nogood {x4 = 3, x5 = 3}. Since both literals were determined at
the current decision level, we replace the last one x5 = 3 by the antecedents in
its explanation {x5 ≥ 3, x5 ≤ 3} → x5 = 3 to obtain {x5 ≥ 3, x5 ≤ 3, x4 =
3}. We keep removing the last literal with the current decision level until only
one literal remains at the current decision level. The resulting 1UIP nogood is
{x2 ≥ 2, x3 ≥ 2, x4 ≥ 2, x5 ≥ 2, x2 = 2} which can be simplified to {x3 ≥ 2, x4 ≥
2, x5 ≥ 2, x2 = 2}, since the last literal implies the first.

On backtracking to undo the choice x2 = 2, the search arrives at subproblem
P1 and immediately determines that x2 �= 2 using the new nogood. The impor-
tant point is that if the search ever reaches a state where {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2}
hold we will make the same inference, or indeed if it reaches a point where
{x2 = 2, x3 ≥ 2, x4 ≥ 2} we will infer that x5 < 2. ��

In general, we restrict ourselves to creating nogoods which are asserting,
that is, there should be only a single literal l in the nogood with the latest
decision level. This allows us, upon backtracking to the decision level of the
second latest literal, to assert ¬l since the remaining literals are true. Another

possible asserting nogood generation approach is the so called decision nogood,
where we start from the original explanation of failure and keep eliminating all
literals which are not decision literals (that is, have an explanation). This builds
much weaker nogoods in general than 1UIP nogoods.

Example 4. Nogood {x2 ≥ 2, x3 ≥ 3, x4 ≥ 3, x5 ≥ 3} is correct for Example 2
but is not asserting since the last 3 literals belong to the latest decision level.
The decision nogood for Example 2 is {x1 = 1, x2 = 2}. ��

4 Symmetries and Nogoods

A symmetry of constraint problem P = (C, D) is a bijection ρ on the equality
literals of P such that, for each valuation θ of P , ρ(θ) = {ρ(l) | l ∈ θ} is a
solution of P iff θ is a solution of P . Variable symmetries, value symmetries and
variable-value symmetries are all particular cases of symmetries.

Example 5. A variable symmetry ρ swapping variables x1 and x2 is defined as
ρ(x1 = d) ≡ (x2 = d), ρ(x2 = d) ≡ (x1 = d), and ρ(v = d) ≡ (v = d), v �∈
{x1, x2} for all values d. We denote it � x1 ��� x2 �. A value symmetry
ρ swapping value 1 for 3 and 2 for 4 is defined by ρ(v = 1) ≡ (v = 3), ρ(v =
2) ≡ (v = 4), ρ(v = 3) ≡ (v = 1), ρ(v = 4) ≡ (v = 2), ρ(v = d) ≡ (v = d), d �∈
{1, 2, 3, 4} for all variables v ∈ vars(P). We denote it �1, 2���3, 4�. ��

Static Symmetry Breaking effectively reduces the search required to find the
first, all or the best solution to a constraint problem by adding constraints that
remove symmetric solutions. In particular, lexicographical constraints have been
used to statically eliminate symmetries (see e.g.[2]) with excellent results. This
is good news since static symmetry breaking is obviously compatible with lazy
clause generation: we only require the new symmetry breaking constraints to
have explaining propagators, which are used just like other propagators. How-
ever, static symmetry breaking is not always the best option. If we have multiple
symmetries, care must be taken so that the static symmetry breaking constraints
for each symmetry do not interact badly. Also, static symmetry breaking con-
straints may interact badly with a given search strategy, making the search take
even longer to find a solution. Hence, we are also interested in dynamic symmetry
breaking methods.

Dynamic Symmetry Breaking techniques can be interpreted as pruning sym-
metric portions of the search space by propagating symmetric versions of no-
goods. Consider a search strategy where only equality literals are used to split
search, as it is usual for symmetry papers. Then if subproblem P � fails choices(P �)
is a correct nogood of P . Let us denote this as the choice nogood. Since a gen-
erated nogood N is a globally true statement, it holds at any point during the
search and, hence, any symmetric version of N is also a correct nogood. Note
that the symmetric version, ρ(N), of a nogood N consisting of only equality
literals is easy to define: ρ(N) = {ρ(l) | l ∈ N}.

Example 6. In problem P of Example 2 the variables {x1, x2, x3, x4, x5} are in-
distinguishable (i.e., any two can be swapped). Since the subproblem P � with

choices(P �) = {x1 = 1, x2 = 2} fails, we have that {x1 = 1, x2 = 2} is a cor-
rect nogood for P . Clearly, any symmetric version, such as {x2 = 1, x1 = 2} or
{x3 = 1, x5 = 2}, is also a correct nogood. ��

Such nogoods can be used to prune search in two main ways. Symmetry
breaking by dominance detection (SBDD) [3, 1] keeps a store N of the non-
subsumed choice nogoods derived during search so far. For each subproblem P �,
it checks whether there exists N ∈ N and symmetry ρ, such that choices(P �) ⇒
ρ(N). If such a pair exists it can immediately fail subproblem P �. Symmetry
breaking during search (SBDS) [4] works as follows. Whenever a subproblem P �

with choices(P �) = {d1, d2, . . . , dn, dn+1} fails, SBDS backtracks to the parent
suproblem P �� in level n and, for each symmetry ρ, it locally posts in P �� the con-
ditional constraint (ρ(d1)∧ . . .∧ρ(dn)) → ¬ρ(dn+1). Note that these constraints
will only propagate when reaching a subproblem P ��� such that C ∪ choices(P ���)
entails the left hand side of the constraint. This will never happen if the symme-
try is broken, i.e., if ∃di s.t. ¬ρ(di) is entailed, and that is why SBDS ignores any
symmetry ρ which is known to be broken at P ��. Still, SBDS can post too many
local constraints when the number of symmetries is high. Thus, some incomplete
methods ([5] and the shortcut method in [4]) post only those constraints that
are known to immediately propagate.

We decided to integrate SBDS, rather than SBDD, with our lazy clause
generation since SBDS is much closer to the lazy clause generation approach:
they both compute and post nogoods. The main differences being that SBDS
only computes decision nogoods and posts symmetric versions of these nogoods.

5 Symmetries and Lazy Clause Generation

5.1 SBDS-choice

We can naively add SBDS to a lazy clause solver by simply using symmetric
versions of the choice nogood at each node to prune off symmetric branches.
Hence, we just reimplement standard SBDS in the lazy clause generation solver,
but still gain the advantage of reduced search through the lazy clause generation
nogoods.

5.2 SBDS-1UIP

Adapting SBDS to use 1UIP nogoods is simple: every time a 1UIP nogood
{l1, . . . , ln} → ln+1 is inferred for subproblem P �, upon backtracking to parent
P �� and for each symmetry ρ, we post the symmetric nogood {ρ(l1), . . . , ρ(ln)} →
¬ρ(ln+1), ignoring those ρ that are known to be broken at P ��. We can check this
last condition during the construction of the symmetric nogood, as we produce
the literals ρ(l1), . . . , ρ(ln) one at a time. If at any point, one of ρ(li) is false in
P ��, we can immediately abort and move on to the next symmetry.

In contrast to SBDS-choice, in SBDS-1UIP we have to post the symmetric
nogoods as global rather than local constraints. This is because in SBDS-choice,
when you backtrack from parent P �� to grandparent P ���, the choice nogood at
P ��� subsumes that at P �� and, therefore, SBDS-choice will always post a set of

symmetric nogoods that subsumes the symmetric nogoods posted below that
point. In contrast, there is no guarantee that the 1UIP nogood at P ��� subsumes
the one at P �� (and in general it doesn’t).

Example 7. Consider the problem of Example 2. On backtracking to P1 we infer
the nogood {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2} → x2 �= 2. With this we not only infer
x2 �= 2 but also the symmetric inferences x3 �= 2 (from {x2 ≥ 2, x4 ≥ 2, x5 ≥ 2}),
x4 �= 2 and x5 �= 2. At this point, a domain consistent alldiff will determine
unsatisfiability, and generate the nogood ∅ → x1 �= 1, which does not imply the
previously generated nogood. ��

We show that SBDS-1UIP exploits strictly more symmetries than SBDS-
choice if the asserting literals in the nogoods are the same, and propagation has
the following property:

Definition 1. A set of propagators for problem P has global symmetric mono-
tonicity iff, for any explanation {d1, . . . , dn} → l produced and any symmetry ρ

of P , whenever ρ(d1), . . . , ρ(dn) are entailed, then ρ(l) must also be entailed. ��

A sufficient condition for global symmetric monotonicity is the following:
all propagators are monotonic, and all symmetries are propagator symmetric
(propagators map to propagators under the symmetry). The proof of this is
straightforward and we omit it for lack of space. Global symmetric monotonicity
is therefore very common, as most propagators are monotonic, and the vast
majority of symmetries that are usually exploited are propagator symmetric.

Theorem 1. Suppose global symmetric monotonicity holds, and we derive the
choice nogood {d1, . . . , dn} → ¬dn+1, and the 1UIP nogood {l1, . . . , lm} → ¬dn+1

from the same conflict. If the nogood {ρ(d1), . . . , ρ(dn)} → ¬ρ(dn+1) propagates
then so does {ρ(l1), . . . , ρ(lm)} → ¬ρ(dn+1).

Proof. Suppose the symmetric version of the choice nogood can propagate for
domain D�. Then ρ(d1), . . . , ρ(dn) must all be entailed. From the implication
graph from which we derived the 1UIP nogood, we know that d1 ∧ . . .∧ dn ⇒ li

for any i. Since global symmetric monotonicity holds and ρ(d1), . . . , ρ(dn) are
entailed, we know that ρ(li) must also be entailed for any i. This means that the
symmetric version of the 1UIP nogood can also propagate. ��

The theorem shows that the symmetric 1UIP nogood subsumes the symmet-
ric choice nogood, since it will always produce any implication that the sym-
metric choice nogood can, but not vice versa. This means that SBDS-1UIP can
exploit strictly more symmetry than SBDS-choice. This result is valid for both
complete SBDS, as well as for incomplete SBDS methods which only post no-
goods that will immediately produce an implication.

5.3 Beyond complete methods?

The previous result is somewhat surprising considering that SBDS-choice is a
“complete” symmetry breaking method, which guarantees that once we have
examined a certain partial assignment, we will never examine any symmetric

•
x3 = 3

��
��

��
�

��
��

��
��

��
��

� •
x6 ∈ {1, 2, 3, 4, 5}

��
��

��
��

��
��

�

��
��

��
�

•x2 = 2 •
x4 = 4

��
��

��
�

��
��

��
��

��
��

�

�������������� •x7 ∈ {1, 2, 3}

��
��
��
��
��
��
�

•x1 = 1 •
x10 ∈ {2, 3, 5}

•

x5 = 5

��������������

��
��

��
� •x8 ∈ {1, 2, 3}

•

�������

x9 ∈ {1, 2, 3}

Fig. 2. A graph colouring problem where we can exploit additional symmetries

version of it. However, this does not actually mean that we have exploited all
possibly redundancies arising from symmetry. Roughly speaking, SBDS can only
exploit symmetries on the already labelled parts of the problem. It is incapable
of exploiting symmetries in the unlabelled parts of the problem.

Example 8. Consider the graph colouring problem shown in Figure 2, where we
are trying to colour the nodes with at most 5 colours (all of which are inter-
changeable). After making the decisions x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5,
we have domains as shown in Figure 2. Suppose we label x6 = 1 next. Then
propagation gives x7 ∈ {2, 3}, x8 ∈ {2, 3}, x9 ∈ {2, 3}. Now, suppose we try
x7 = 2. This forces x8 = 3, x9 = 3, which conflicts. The 1UIP nogood from this
conflict is {x8 �= 1, x8 �= 4, x8 �= 5, x9 �= 1, x9 �= 4, x9 �= 5} → x7 �= 2. After
propagating this nogood, we have x7 = 3, which after further propagation, once
again conflicts. At this point, we backtrack to before x6 is labelled and derive
the nogood {x7 �= 4, x7 �= 5, x8 �= 4, x8 �= 5, x9 �= 4, x9 �= 5} → x6 �= 1.

Now, let’s examine what SBDS-1UIP can do at this point. It is clear that
if we apply the value symmetries � 1��� 2� or � 1��� 3� to this
nogood, the LHS remains unchanged while the RHS changes. Therefore, we can
post these two symmetric nogoods and immediately get the inferences x6 �= 2
and x6 �= 3. On the other hand, SBDS-choice can’t do anything. The choice
nogood is {x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5} → x6 �= 1, and it is easy to
see that no matter which value symmetry we use on it, the LHS will have a set
of literals incompatible with the current set of decisions and thus cannot imply
the RHS. ��

The kind of redundancy we exploit here certainly arises from symmetry. How-
ever, it is extremely difficult to exploit. Roughly speaking, we can say that we are
exploiting the symmetry that exists in the sub-component of a subproblem which
is the actual cause of failure. In this case, they are the variables x6, x7, x8, x9,
their current domains in the subproblem, and the constraints linking them. Even
conditional symmetry breaking constraints are powerless to exploit such symme-
tries, as the subproblem shown in Figure 2 does not have the value symmetries
�1���2� or�1���3� due to the existence of x10. It is only because

a lazy clause solver gives us such precise information about which variables are
involved in failures that we can exploit this kind of redundancy. Although the
above example might seem somewhat contrived, we show in our experiments
in Section 7 that these kinds of redundancies do occur in practice and can be
exploited for more speedup.

6 Symmetries on 1UIP nogoods

SBDS-1UIP is much more powerful than SBDS-choice, however, having to ma-
nipulate 1UIP nogoods raises a whole host of other problems. In particular,
unlike the choice nogoods which usually only involve equality literals on search
variables, 1UIP nogoods can contain virtually any literal in the problem, i.e.
they may include disequality literals, inequality literals, and also literals involv-
ing intermediate variables. The last is a rather serious issue as symmetries are
often defined in terms of the output or search variables, and may not properly
describe how intermediate variables map to each other. We now examine each
of these issues in more detail.

6.1 Disequality and Inequality Literals

One of the strengths of lazy clause generation is the use of both equality literals
and inequality literals in explanations and nogoods. This makes many explana-
tions much shorter and is effectively essential for explaining bounds propagation.

Extending a literal symmetry ρ to disequality literals is straightforward: if
ρ(x = d) ≡ x� = d�, then ρ(x �= d) ≡ x� �= d�. Extending a literal symmetry
ρ to map inequality literals is harder. Given a nogood N which may involve
equality, inequality and disequality literals and a variable symmetry σ it is easy
to generate σ(N) by simply applying the variable renaming σ to N .

Example 9. Consider the problem of Example 2. This problem has variable inter-
changeability symmetries since each of {x1, x2, x3, x4, x5} are indistinguishable.
Hence, any variable renaming of the generated nogood {x3 ≥ 2, x4 ≥ 2, x5 ≥
2, x2 = 2} is valid, e.g. {x2 ≥ 2, x3 ≥ 2, x4 ≥ 2, x5 = 2} or {x1 ≥ 2, x3 ≥ 2, x5 ≥
2, x4 = 2} ��

However, it’s not so straightforward for value symmetries and variable-value
symmetries. For such symmetries, inequality literals do not map simply to other
literals. To apply such a symmetry to a nogood then, we first need to transform
the nogood into an equivalent nogood involving only equality and disequality
literals. After this we can apply the symmetry as usual.

Assume that in P = (D,C) that D(x) = [l .. u] then the transformation eq
on x literals is defined as

eq(x = d) ≡ {x = d} eq(x �= d) ≡ {x �= d}
eq(x ≤ d) ≡ {x �= d� | d ≤ d� < u} eq(x ≥ d) ≡ {x �= d� | l < d� ≤ d}

We can extend this to a nogood N : eq(N) = ∪l∈N eq(l). We can then define
the symmetric version of a nogood N for any symmetry ρ defined as a bijection on

equality literals as ρ(N) = {ρ(l) | l ∈ eq(N)} Of course while this transformation
to equality and disequality literals is theoretically fine, in practice it may create
very unwieldy nogoods.

We can, in effect, implement this transformation by slightly modifying the
nogood learning process. We will require that no inequality literals appear in the
nogood, hence we must continue to explain them until none remain. As long as
all decisions are either equality or disequalities this will still result in asserting
nogoods always being discovered.

Example 10. Revisiting the explanation process of Example 3, the nogood dis-
covered includes inequality literals, so rather than stopping the explanation pro-
cess at this point we continue. The current nogood is {x2 ≥ 2, x3 ≥ 2, x4 ≥
2, x2 = 2}, we explain each of the inequalities using the implication graph to
arrive at {x2 �= 1, x3 �= 1, x4 �= 1, x2 = 2} which can again be simplified to
{x3 �= 1, x4 �= 1, x2 = 2} and which does involve inequality literals. ��

6.2 Intermediate variables

An important problem for combining dynamic symmetry breaking and lazy
clause generation is the fact that intermediate variables may be introduced in
the course of converting a high level model to the low level variables and con-
straints implemented by the solver. For example, a high level model written in
the modeling language MiniZinc is first flattened into primitive constraints, with
intermediate variables introduced as necessary, and then given to a solver, which
may then introduce its own variables, e.g. in global propagators implemented by
decomposition. 1UIP nogoods often contain literals from such intermediate vari-
ables. However, if the symmetry declaration was made only in the high level
model, it may not specify how literals on such introduced intermediate variables
map to each other. Thus it is necessary to consider how symmetries can be
extended to include the literals on intermediate variables.

Intermediate variables are sometimes idempotent under the symmetries, that
is for each symmetry ρ of P , we can extend ρ to ρ� where ρ�(l) = ρ(l), vars(l) ⊆
vars(C) and ρ�(l) = l otherwise. The extended ρ� is a symmetry of the problem
with intermediate variables. We can imagine automating the proof of idempo-
tence of intermediate variables under symmetries.

Example 11. Consider a model for concert hall scheduling The problem has a
value interchangeability between all values [1 .. k] for the k identical concert
halls. The model includes the constraint

constraint forall (i, j in Offers where i < j /\ o[i,j])

(x[i] = k+1 \/ x[j] = k+1 \/ x[i] != x[j]);

which requires that for two overlapping concerts i and j (input data o[i, j] is
true) either i is not scheduled (represented as the hall used x[i] is k+1), j is not
scheduled, or the halls used are different. But this constraint is implemented, by
reification, as something equivalent to

array[Offers] of var bool: unscheduled;

array[Offers,Offers] of var bool: different;

constraint forall(i in Offers)(unscheduled[i] = (x[i] = k+1));

constraint forall (i, j in Offers where i < j /\ o[i,j])(

different[i,j] = (x[i] != x[j]) /\

(unscheduled[i] \/ unscheduled[j] \/ different[i,j]));

since the clausal propagator works on Boolean variables, and hence we need to
reify the subexpressions. Each introduced variable unscheduled [i] and different [i, j]
is idempotent under the value symmetries. Hence, for any symmetry ρ on the
original variables we can extend it trivially. ��

Sometimes we need to extend our symmetry declarations to take into account
the intermediate variables.

Example 12. In the graceful graph problem each node is labelled by an number
from 0 to the number of edges. The difference between each edges node labels
must be different. This is encoded as

constraint alldifferent([abs(m[o[i]] - m[d[i]]) | i in Edges]);

where m is the labelling on nodes, and o[i], d[i] are the origin and destination of
edge i. This constraint is implemented by flattening as something equivalent to

array[Edges] of var int: diff;

constraint forall(i in Edges)(diff[i] == m[o[i]] - m[d[i]]);

srray[Edges] of var int: adiff;

constraint forall(i in Edges)(adiff[i] == abs(diff[i]));

constraint alldifferent(adiff);

The graceful graph problem can have symmetries arising from symmetries in
the underlying graph. Suppose the underlying graph has 3 nodes and 2 edges
(1,2) and (3,2) numbered 1 and 2. There is a symmetry between the two edges
captures by the row interchangeability ρ =� m[1], m[2] ��� m[3], m[2] �
which indicates we can swap the edges.

Once we consider the intermediate variables, we need to extend this sym-
metry to �m[1], m[2], diff [1], adiff [1]���m[3], m[2], diff [2], adiff [2]� thus
interchanging all information on about the edges simultaneously. ��

Sometimes it is not easy to see how to extend symmetries to all intermediate
variables, and indeed quite often intermediate variables are introduced far below
the modelling level. In order to handle these cases we modify learning as follows.

We extend the model to explicitly mark which literals are allowed to appear in
nogoods. Then we modify the learning process to always explain any literals that
are not marked. There is a requirement that all literals generated by search are
allowed to appear in nogoods. This ensures that the process always terminates
and always generates an asserting nogood.

Example 13. In order to tell the solver that the concert hall scheduling model
that it can use only equality and disequality literals for the x variables as well
as the the intermediate variables in nogoods we annotate the declarations:

array[Offers] of var 1..k+1:x :: symmetric_nogoods_eq;

array[Offers] of var bool: unscheduled :: symmetric_nogoods;

array[Offers,Offers] of var bool: different :: symmetric_nogoods;

The declarations ensure that any other literal will never appear in a nogood to
which we apply symmetry. Note that his means that bounds literals x[i] ≤ d will
be replaced by inequality literals. ��

7 Experiments

We now provide experimental evidence for the claims we made in the earlier parts
of the paper. The two problem we will examine are the Concert Hall Schedul-
ing problem and the Graph Colouring problem. We take the benchmarks used
by [5].The benchmarks are available at http://www.cmears.id.au/symmetry/
symcache.tar.gz.

We implemented SBDS in Chuffed, which is a state of the art lazy clause
solver. We run Chuffed with three different versions of SBDS. The first version
is choice, where we use symmetric versions of choice nogoods. The second is
1UIP, where we use symmetric versions of 1UIP nogoods. The third version we
call crippled, where we use symmetric versions of 1UIP nogoods, but only those
nogoods derived from symmetries where choice could also exploit the symmetry.
We compare against Chuffed with no symmetry breaking (none) and with stati-
cally added symmetry breaking constraints (static). Finally, we compare against
an implementation of SBDS in [5], which is called Lightweight Dynamic Sym-
metry Breaking (LDSB). LDSB is implemented on the Eclipse constraint pro-
gramming platform and was the fastest implementations of dynamic symmetry
breaking on the two problems we examine, beating GAP-SBDS and GAP-SBDD
by significant margins.

All versions of Chuffed are run on Xeon Pro 2.4GHz processors. The results
for LDSB were run on an Core i7 920 2.67 GHz processor. We group the instances
by size, so that the times displayed are the average run times for the instances
of each size. A timeout of 600 seconds was used. Instances which timeout are
counted as 600 seconds.

The results are shown in Tables 1 and 2. Eclipse LDSB fails to solve many
instances before timeout, and choice fails to solve a few instances. 1UIP, crippled
and static all solve every instance in the benchmarks. In fact, this set of instances,
which is of an appropriate size for normal CP solvers, is a bit too easy for lazy
clause solvers such as Chuffed, as is apparent from the run times.

Comparison between choice and 1UIP shows that SBDS-1UIP is superior
to SBDS-choice. Comparison between crippled and 1UIP shows that the addi-
tional symmetries that we can only exploit with SBDS-1UIP indeed gives us
reduced search and additional speedup. Comparison with static shows that dy-
namic symmetry breaking can be superior to static symmetry breaking on ap-
propriate problems. The comparison with LDSB shows that lazy clause solvers
can be much faster than normal CP solvers, and that they retain this advantage
when integrated with symmetry breaking methods. It also show by proxy that
SBDS-1UIP is superior to GAP-SBDS or GAP-SBDD on these problems.

The total speed difference between 1UIP and LDSB is up to 2 orders of mag-
nitude for the Concert Hall problems and up to 4 orders of magnitude for the
Graph Colouring problems. Most of this speedup can be explained by the dra-
matic reduction in search space, which is apparent from the node counts in the

Table 1. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Concert Hall Scheduling problem

Size none 1UIP crippled choice static LDSB
Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes

20 259.8 686018 0.04 84 0.05 130 0.07 350 0.05 134 0.29 3283
22 381.5 749462 0.07 181 0.08 299 0.17 1207 0.07 183 0.73 7786
24 576.9 1438509 0.10 275 0.11 316 0.78 3426 0.15 486 2.70 12611
26 483.4 1189930 0.10 282 0.19 677 2.26 5605 0.25 685 2.71 12724
28 530.7 1282797 0.68 1611 1.12 2613 3.64 10530 0.42 1041 9.94 57284
30 581.3 1251980 0.27 761 0.53 2042 19.52 48474 0.52 2300 121.50 722668
32 – – 0.40 1522 1.01 4845 21.48 65157 1.31 5712 97.90 641071
34 – – 1.10 2636 3.22 8761 19.86 48837 1.60 4406 72.73 425718
36 – – 1.40 3156 5.02 13606 59.70 131142 2.37 5707 171.14 938439
38 – – 1.91 5053 12.56 26556 82.77 178170 3.51 10518 268.05 1211086
40 – – 2.96 6648 10.27 27028 102.1 219454 6.40 18169 240.84 1220934

Table 2. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Graph Colouring problems

Uniform
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
30 140.7 282974 0.00 14 0.06 474 0.26 3049 0.02 277 19.63 56577
32 211.4 390392 0.00 17 0.00 146 0.24 3677 0.00 84 14.11 27178
34 213.9 272772 0.00 25 0.29 1182 3.53 11975 0.03 433 22.06 30127
36 – – 0.00 36 0.04 467 6.91 23842 0.01 200 35.66 85505
38 – – 0.00 55 0.04 516 23.55 69480 0.03 526 51.18 107574
40 – – 0.00 83 0.31 1879 21.07 78918 0.06 878 84.16 185707

Biased
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
20 13.25 39551 0.00 27 0.00 32 0.01 639 0.00 29 0.72 1376
22 11.53 63984 0.00 25 0.00 34 0.02 727 0.00 25 0.16 538
24 66.60 154409 0.00 35 0.00 47 0.07 1992 0.00 32 1.91 2114
26 74.77 277290 0.00 55 0.00 93 0.12 3385 0.00 104 9.56 34210
28 130.5 280649 0.00 62 0.00 84 0.58 6402 0.00 103 9.14 37738
30 267.6 480195 0.00 101 0.01 239 10.48 43835 0.01 359 57.18 215932
32 331.7 600772 0.01 232 0.24 1597 9.98 44216 0.16 1864 110.16 288707
34 219.9 387213 0.20 806 0.40 1946 10.26 47470 0.45 1730 64.14 165943
36 – – 0.01 317 0.04 857 27.39 113252 0.80 3226 152.62 327472
38 – – 0.10 798 1.01 5569 31.63 138787 4.12 9413 193.40 508164
40 – – 0.02 410 0.36 2660 24.68 91847 0.12 2133 196.02 476486

results table. The redundancies exploited by lazy clause solvers are different from
those redundancies caused by symmetries, and it is very clear here that by ex-
ploiting both at the same time with SBDS-1UIP, we get much higher speedups
than possible with either of them separately. It should also be noted that Chuffed
with static symmetry breaking constraints is also reasonably fast. While symme-

try breaking constraints cannot exploit the extra redundancies that SBDS-1UIP
can, it does have very low overhead and integrates well with lazy clause.

8 Conclusion

In this paper we have examined dynamic symmetry breaking methods, and un-
derstood them as manipulating the choice nogoods created by normal depth first
search. We show how we can extend these approaches to make use of the better
nogoods generated by lazy clause solvers. This extension introduces a number
of new issues, such as how to deal with disequality and inequality literals, and
literals from intermediate variables. We have built a prototype implementation
combining SBDS with lazy clause generation, which we call SBDS-1UIP. The re-
sulting system can exploit types of redundancies previously impossible to exploit,
and can outperform LDSB by several orders of magnitudes on some problems.

Acknowledgements. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council.

References

1. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Principles
and Practice of Constraint Programming - CP 2001, 7th International Conference,
pages 93–107, 2001.

2. Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models.
In Principles and Practice of Constraint Programming - CP 2002, 8th International
Conference, pages 462–476, 2002.

3. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proceedings of the International Conference on Principles and Practice of Constraint
Programming, pages 77–92, 2001.

4. I. Gent and B.M. Smith. Symmetry breaking in constraint programming. In 14th
European Conference on Artificial Intelligence, pages 599–603, 2000.

5. C. Mears. Automatic Symmetry Detection and Dynamic Symmetry Breaking for
Constraint Programming. PhD thesis, Clayton School of Information Technology,
Monash University, 2010.

6. O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

7. A. Schutt, T. Feydy, P.J. Stuckey, and M. Wallace. Why cumulative decomposition
is not as bad as it sounds. In I. Gent, editor, Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, volume 5732 of
LNCS, pages 746–761. Springer-Verlag, 2009.

Arities of Symmetry Breaking Constraints

Tim Januschowski�

Cork Constraint Computation Centre
Computer Science Department
University College Cork Ireland

janus@cs.ucc.ie

Abstract. Static symmetry breaking is a well-established technique to
speed up the solving process of symmetric Constraint Satisfaction Pro-
grams (csps). Static symmetry breaking suffers from two inherent prob-
lems: symmetry breaking constraints come in great numbers and are of
high arity. Here, we consider the problem of high arity. We prove that
not even for binary csps can we always reduce the arity of the com-
monly used lexleader constraints. We further prove that for binary csps
we sometimes have to rely on at least ternary constraints to break all
symmetries. On the positive side, we prove that symmetry breaking con-
straints with arity �n/2�+1 exist that always break the symmetries of a
csp completely. For various special cases of csps, we prove that binary
symmetry breaking constraints may break all symmetries.

1 Introduction

Symmetry breaking has been the subject of intense investigation for almost
two decades in Constraint Programming, see e.g. [5]. Symmetry breaking has
an empirically proved potential to speed up constructive search methods. The
classic and practically most used technique in symmetry breaking is the addition
of symmetry breaking constraints before search [2, 11].

For complete symmetry breaking, we have to add one lexleader constraint
(llc) [2] per symmetry, and the arity of each symmetry breaking constraint
is the number of variables. In the worst case, a csp can have an exponential
number of symmetries. Adding an exponential number of constraints to a csp
is prohibitively costly. High arity slows down propagation [3]. Various remedies
have been proposed: for special symmetry groups, we can find polynomial sized
sets of constraints with reasonable arity that break all symmetries [6], or some-
times one can use the problem structure in combination with the symmetries to
reduce the number and arity of the constraints [8, 12]. Also, various reduction
rules [4, 6, 10] are known that reduce both the number and the arity of llcs
while maintaining the ability to completely break symmetries. Another remedy
that we do not want to consider here is partial symmetry breaking.
� Tim Januschowski is supported by the Embark initiative of the Irish Research Coun-

cil for Science, Engineering and Technology.

In this paper, we consider upper and lower bounds on the arities of symmetry
breaking constraints for complete symmetry breaking in binary csps. Our lower
bounds hold for any symmetry breaking constraint and any reduction rule. We
prove the following for csps with n variables:

upper bound (i): the arity of llcs cannot always be reduced, even if we as-
sume the csp to be binary,

upper bound (ii): symmetry breaking constraints of arity �n/2�+1 exist that
completely break the symmetries of any csp,

lower bound: for complete symmetry breaking in binary csps, we sometimes
have to rely on ternary constraints, and

special cases: we identify various special cases, where binary symmetry break-
ing constraints suffice for complete symmetry breaking.

To the best of our knowledge, these results are new. We think that our results
are an important theoretical contribution to the study of symmetry breaking
constraints. Our results could be applied to study the optimality of reduction
rules in terms of the arity of symmetry breaking constraints. If a reduction rule
can reduce the arity of symmetry breaking constraints for all binary csps to at
most three, the reduction rule could be considered optimal. On the other hand,
if the reduction rule does not succeed to reduce the arity of symmetry breaking
constraints below �n/2�+ 1 for all csps, then the rule is surely not optimal.

2 Notation and Definitions

A constraint satisfaction problem csp is a triple (V,D,Cons), where V is the set
of variables of the csp, every variable x has a domain D(x) ∈ D, and Cons is the
set of constraint of the csp. Every constraint has an arity . The k-ary constraint
c is a pair �s, r�, where s is a list of k variables x1, . . . , xk which is called the scope
and r ⊆ D(x1) × · · · ×D(xk) is called the relation of c consisting of the tuples
that c allows. The arity of a csp is the maximum arity over all constraints in the
csp. A csp is called binary if all constraints are of arity at most 2. A literal is a
(variable,value)-assignment. A partial assignment is a set of literals in which no
variable appears twice. If a partial assignment is allowed by the constraints of the
csp we call it consistent. A solution is a consistent assignment on all variables.
If a csp has a solution, the csp is satisfiable, otherwise it is unsatisfiable.

We associate to any csp a hypergraph called the microstructure complement
(msc), see e.g. [1]. The msc has as nodes the literals of the csp. We have a
hyperedge between every set of literals that is not contained in the relation of
a constraint of the csp. For a binary csp, the msc is a graph and for binary
csps we define the microstructure as the complement graph of the msc. The
constraint symmetries [1] of a csp are the automorphisms of the msc. Symme-
tries partition the set of solutions of a csp into a set of equivalences classes
or orbits. For a solution T , we denote by orbit(T) the set of solutions that are
symmetric to T . Apart from constraint symmetries, other symmetries exist as
well, notably solution symmetries. However, constraint programmers work with

constraint symmetries mostly [1]. Here, we only consider constraint symmetries
which we shall abbreviate to symmetries.

Given a csp P , a valid reduction P � [7, 11] is a csp on the same variables,
subsets of the domains and supersets of the constraints of P , such that for
every orbit of solutions in P , at least one solution in P � exists. Among the
solutions in P � that exist for every orbit of solutions in P , we can choose one
as an orbit-representative solution per orbit in P . A single-representative valid
reduction (srvr) is a valid reduction that has exactly one solution per orbit of
solutions in P . If P � is a srvr, the set of solutions of P � is a complete set of orbit
representative solutions.

We call members of a family of constraints symmetry breaking constraints,
if adding the family to a csp leads to a valid reduction. Lexleader constraints
(llcs) [2, 13] are well-known symmetry breaking constraints. To construct a llc
for a symmetry φ of a csp, we choose a variable order, say x1 ≺ x2 ≺ · · · ≺ xn

and an order on the domains. The llc enforces that any assignment on the
variables is lexicographically less than its symmetric counterpart with respect to
the chosen orders:

([x1, . . . , xn]) ≤lex φ([x1, . . . , xn]) .

We note that φ may not map a complete assignment to another complete as-
signment. In this case however, the assignment under consideration cannot be a
solution and must be forbidden by some constraints of the csp under consider-
ation, otherwise φ would not be a symmetry.

Srvrs exist for any csp and we can always find a srvr using llcs. With llcs,
the choice of orbit representative solutions depends on the order of the variables
that we choose to define the llcs as well as the orders on the domains. However,
also for arbitrary choices of orbit representatives, a srvr always exists: we could
simply add an n-ary constraint forbidding any non-representative solution [7]. If
the arity of the constraints we add to a csp to obtain the srvr is at most k, we
say that the srvr is k-ary realisable.

In the context of this paper, we consider the full group of (constraint) symme-
tries. Our intuition is that the full group of symmetries is more closely connected
to the msc than subgroups. Results obtained for subgroups may not hold for the
full group as orbits of solutions tend to interact in a less complicated way for
smaller groups. Indeed, the number of orbits of solutions typically decreases for
increasing sizes of subgroups. This also helps to explain, why it seems more dif-
ficult to obtain results for the full group of symmetries than for subgroups. In
this paper, we investigate complete symmetry breaking, or rather the existence
of srvrs.

3 Related Work

This work is based on Puget’s systematic approach to introduce symmetry break-
ing constraints via valid reductions [11]. This approach was generalised and ex-
tended in [7]. There, we also posed the question, whether for any k-ary csp,
there always is a k-ary realisable srvr. Here, we will give a negative answer to

z, 4

z, 3

y, 2

y, 3

x, 1
y, 1

z, 2

z, 1

S

x, 2

x, 3

z, 8

z, 5

z, 7

z, 6

Fig. 1: A csp with 3 variables where we have to use a ternary llc in order to
disallow the thickly edged solution S, see Example 1. The only symmetry that
maps solutions to solutions is a reflection about the dashed line.

this question for the case k = 2. However, we also provide a range of special
cases where we can answer the question affirmatively.

Reduction rules for llcs have been studied in [4, 6, 10]. These reduction rules
reduce the arity and number of llcs. Grayland et al. [6] manage to show the min-
imality of certain sets of constraints with respect to the reduction rules under
consideration. In a way, we study minimality of symmetry breaking constraints
both independently of concrete reduction rules and independently of concrete
constraints used for symmetry breaking. Solely based on the way orbits of solu-
tions may interact, we show that llcs exist whose arity cannot be reduced.

We consider the arity of symmetry breaking constraints on the original vari-
ables. For value symmetries, the introduction of auxiliary variables has been
shown to be useful for finding sets of sometimes binary symmetry breaking con-
straints [9]. However, as we are interested in general results here, we focus on
the original variables: any constraint can be turned into a binary constraint with
the help of auxiliary variables.

4 Upper Bounds on the Arities

In this section, we want to consider upper bounds on the arities of symmetry
breaking constraints. More precisely, we prove that for the commonly used llcs
with a given variable order, no reduction rule may always reduce the arity. We
show, however, that symmetry breaking constraints always exist whose arity
does not exceed �n/2�+ 1.

4.1 Fixed-order Llcs Are Intrinsically n-ary

In this section, we show that we cannot reduce the arity of llcs in all csps.
Before giving a general proof, let us consider the following example.

Example 1. Let P = ({x, y, z}, D,Cons). We have D(x) = D(y) = {1, 2, 3}, and
D(z) = {1, 2, . . . , 8}. The constraints are such that P has a microstructure as
depicted in Figure 1. By inspection, it is obvious that the only symmetry that

(x5, �)

(x5, �+ 1)

T

S

(x1, 1)

(x2, 1)

(x3, 1)

(x4, 1)

(x5, 1)

(x6, 1)

(x6, 2)

S2

S1

(a) The initial solutions S1 and S2, with thin
edges, contain all literals corresponding to as-
signments of value 1 to all variables in the set
{x1, . . . , x5} and value 1, respectively 2 to vari-
able x6. Here, we also depict two solutions S and
T with dotted edges. Solution S contains all lit-
erals of S1 except for (x5, 1) and solution T is the
symmetric counterpart of S under the reflection.

(x5, �)

(x5, �+ 1)

(b) To ensure that the solu-
tions S and T are only sym-
metric to themselves, we add
more literals to the literals
(x5, �), and (x5, � + 1), we de-
pict the edges as dashed.

Fig. 2: Construction of the csp as in the proof of Theorem 1 for the 6 variable
case. The only symmetry that maps solutions to different solutions is a reflection
about an axis going through {(x1, 1), . . . , (x5, 1)}.

permutes a solution to another solution is a reflection about the dashed line.
We choose x ≺ y ≺ z and the natural order on the integers for lexicographic
comparison. The solution S = {(x, 1), (y, 1), (z, 2)} is not a lex-minimal solution
in its orbit, but all pairs of literals in S are contained in lex-minimal solutions.
In order to exclude any solution that is not lex-minimal, as llcs would, we need
a ternary constraint in order to disallow S.

We generalise the example in the following and show that for every n > 1,
we can find a csp with the same property that the csp in Example 1 has: we
need n-ary constraints to obtain a srvr whose orbit representative solutions are
the lex-minimal ones. We illustrate our proof with a binary csp with 6 variables
whose microstructure we partially depict in Figure 2. From the construction of
the csp in our proof, it will be clear that we cannot expect llcs for a binary csp
with n variables to have arity less than n. This means that the various reduction
rules that are known to reduce the complexity of the llcs will not be able to
reduce the arity of llcs for all csps—in fact, we show that this is true for any
possible reduction rule.

Theorem 1. For any n > 1, a binary csp with n variables and an order on
its variables exist such that any srvr that has lex-minimal (wrt to the variable
order) solutions as orbit representative solutions is n-ary realisable.

Proof. We construct a csp with n variables ordered as x1 ≺ x2 ≺ · · · ≺ xn. We
construct the domains of the variables during the proof and we use the natural
order on the integers for lexicographic comparison. Whenever we say that we
construct a solution of the csp, we really mean that we add or modify constraints
to the csp such that they allow these solutions. We construct the solutions of
the csp in such a way that the symmetries of the csp will be immediate. We
start with two solutions Si = {(x1, 1), . . . , (xn−1, 1), (xn, i)} where i = 1, 2. We
have depicted the solutions S1 and S2 in Figure 2a for the case where n = 6.

Our aim is to add solutions to the csp such that every subset of size up to
n − 1 in S2 is contained in a lex-minimal solution. When we add the solutions,
care has to be taken in two aspects. First, we need to ensure that S1 and S2

remain symmetric under the symmetry of the csp that swaps (xn, 1) with (xn, 2)
while leaving all other literals unchanged. We call this symmetry a reflection due
to the geometric intuition, see Figure 2. Every time we add literals to the csp,
we have to ensure that we can extend the reflection to the new literals. Second,
we need to ensure that S1 and S2 are symmetric only to each other. Solution
S1 is, with respect to the chosen orders, lex-less than S2. Hence, we need to
exclude S2. Having constructed a lex-minimal solution for every subset of size
up to n− 1 in S2, it follows that if we want to find a srvr with the lex-minimal
orbit representatives, we have to use an n-ary constraint to remove S2.

We construct symmetric solutions for symmetric subsets of solutions S1 and
S2 with size up to n − 1. We first note that any subset of S2 not involving
literal (xn, 2) is contained in S1 by construction and hence, we cannot add a
constraint that forbids this subset. We note next that it suffices to consider
only subsets of size exactly n − 1. For any subset of size n − 1 that includes
literal (xn, 2), we construct a solution that uses this subset. For the subset of
size n− 1 to be a solution, we introduce a literal (x, �), such that � does not yet
appear in the csp and ensure that the subset with the new literal is a solution
T . We construct another solution S containing all literals corresponding to value
1 in T , it contains (xn, 1) as well as a new literal (x, �+ 1). We ensure that S is
symmetric to T with respect to the reflection by extending the reflection to swap
(x, �) and (x, �+1). In Figure 2a, we have depicted T for the subset of 5 literals of
solution S2 consisting of the set of literals {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x6, 2)}.
Solution T contains the new literal (x5, �), where � is chosen appropriately.

With our construction so far, we have ensured that T and S are symmetric
and that S1 and S2 remain symmetric. To ensure that T and S are not symmetric
to other solutions, we add a set of literals L. In the microstructure, we make half
of the literals in L adjacent to (x, �) and the other half adjacent to (x, �+1). We
choose the cardinality of L in such a way that (x, �) and (x, �+1) have a (node)
degree in the microstructure that only these two literals have, see Figure 2b. By
addition of the literals, the csp gains more non-trivial symmetries that permute
the recently added literals while leaving all other literals unchanged. However,
we do not have to consider these new symmetries, as they are the identity when
restricted to solutions.

With this construction, solutions S1 and S2 remain symmetric. Furthermore,
solutions S and T are the only members of their orbit, due to the degrees of the
literals (x, �), and (x, �+ 1). The lex-minimal solution in this orbit is T . Hence,
we cannot forbid any set of literals of size up to n− 1 in S2. This shows that the
constraint that forbids solution S2 must be n-ary.

In other words, Theorem 1 shows that no reduction rule will be able to
reduce the arity of llcs below the original arity for all csps. The step of the
proof depicted in Figure 2b is not necessary, if we want to prove the theorem
only for a subgroup of the symmetry group.

4.2 A �n/2� + 1-ary Realisable Srvr Always Exist

In this section, we prove the existence of symmetry breaking constraints with
arity �n/2�+ 1. In order to show this, we need more notation.

In the following we introduce distinguished sets of orbit representative solu-
tions for a csp. We refer to the set of literals of a csp by lits. For a complete set of
orbit representative solutions R, we define a function c(·, R). For a literal v ∈ lit,
we have c(v,R) = 0 if v is contained in at most one solution in R. If v is contained
in k orbit representative solutions in R, where k ≥ 2, then c(v,R) = k−1. We de-
fine c(R) =

�
v∈lits c(v,R). For the set S of complete sets of orbit representative

solutions, we call a set R ∈ S such that R = argmaxQ∈S c(Q) a max-common
set . The advantage of a max-common set is that it helps to break down the
globality of the symmetries into some desirable “local” properties which we will
then explore. We need the following observation to prove such a property.

Proposition 1. Let S and T be two solutions and let φ be any symmetry of the
csp. Then |S ∩ T | = |φ(S) ∩ φ(T)|.

This is enough to prove following property of any max-common set.

Proposition 2. For a max-common set of orbit representative solutions R =
{S1, . . . , St} and a non-representative solution T ∈ orbit(Sj), any Si with |Si ∩
T | = k has |Si ∩ Sj | ≥ k.

Proof. By contradiction. Let Si be a solution in a max-common set such that
|Si ∩ T | = k. We assume that |Si ∩ Sj | < k. Let φ be a symmetry such that
φ(Sj) = T . By Proposition 1, we know that |φ(Si) ∩ φ(Sj)| = k. Hence, for the
set φ(R) := {φ(S1), . . . , φ(St)}, we have c(φ(R)) > c(R). This is a contradiction
to the fact that S1, . . . , St is a max-common set of orbit representative solutions.

We can now prove the main result of this section.

Theorem 2. A �n/2�+1-ary realisable srvr exists for any csp with n variables.

Proof. Consider a csp with n variables and a max-common set of orbit repre-
sentative solutions R. Let T be any solution with T /∈ R. Let S ∈ R be such
that T ∈ orbit(S)..

x1

0

1

x2

0

1

x5

0

1

x6

0

1

x9

0

1

x10

0

1

x3 0

1

x7 0

1

x40

1

x80

1

Fig. 3: The msc of a binary csp for which no binary realisable srvr exists. The
only symmetry of the csp is a reflection about the dashed line. Nodes in the
dotted boxes are literals corresponding to the same variable.

Let n be even. We assume first that |S ∩T | < n/2. We show that a subset of
n/2 + 1 literals in T \ S exists that is not contained in any orbit representative
in R. For the sake of contradiction, we assume that no such subset exists, so we
assume all n/2 + 1 literals are contained in a member of R. By Proposition 2,
any S1 ∈ R that contains n/2+1 literals in T \S contains at least n/2+1 literals
in S \ T . Hence, S1 contains more than n literals, which is a contradiction. This
means that a set of literals in T exists that is not in any orbit representative
solution and we can forbid this set safely.

Next, we assume that |S ∩ T | ≥ n/2. We show that all of the, say k, literals
in T \ S and n/2− k literals in T ∩ S cannot be contained in any S1 ∈ R. If the
n/2 literals were contained in S1, then S1 would also contain at least k literals
in S \ T . However, the literals in S \ T have the same variables as the k literals
in T \ S. Therefore, S1 is not a solution, which is a contradiction and we can
forbid a set of n/2 + 1 literals in T safely.

For an odd number of variables the argumentation is similar and we omit
this case due to space restrictions.

5 A Lower Bound on the Arity

In this section, we show that for binary csps we sometimes have to rely on non-
binary constraints to break all symmetries. This provides a lower bound for the
afore-mentioned reduction rules: If a reduction rule for binary csps can reduce
the arity of symmetry breaking constraints for any csp to the lower bound we
provide here, then the reduction rule is optimal.

Theorem 3. A binary csp exists that does not have a binary realisable srvr.

Proof. We consider a 10 variable csp Ptree where every variable has domains
{0, 1}. The msc of Ptree is a tree. We depict it in Figure 3. By inspection of the
msc, it is obvious that there is only one non-trivial symmetry of the msc. It swaps
literals (xi, j) with (xi+1, j) for odd i and j ∈ {0, 1}. The symmetry is a reflection
about the dotted line in Figure 3. We define a set L := ∪i∈{1,2,5,6,9,10}{(xi, 1)}.
The solutions of Ptree we consider in the following, have L in common. We
consider the following four self-symmetric solutions of Ptree:

L∪{(x3, 1), (x4, 1), (x7, 0), (x8, 0)} , L∪{(x3, 1), (x4, 1), (x7, 1), (x8, 1)} ,
L∪{(x3, 0), (x4, 0), (x7, 1), (x8, 1)} , and L∪{(x3, 0), (x4, 0), (x7, 0), (x8, 0)}.

Orbits of solutions that consist of more than one solution contain exactly two
solutions because the csp only has one non-trivial symmetry. From the orbits of
solutions with two members, we consider the following eight solutions:

A1 = L ∪ {(x3, 1), (x4, 0), (x7, 1), (x8, 1)} ,
A2 = L ∪ {(x3, 0), (x4, 1), (x7, 1), (x8, 1)},
B1 = L ∪ {(x3, 1), (x4, 1), (x7, 0), (x8, 1)} ,
B2 = L ∪ {(x3, 1), (x4, 1), (x7, 1), (x8, 0)},
C1 = L ∪ {(x3, 1), (x4, 0), (x7, 0), (x8, 1)} ,
C2 = L ∪ {(x3, 0), (x4, 1), (x7, 1), (x8, 0)},
D1 = L ∪ {(x3, 1), (x4, 0), (x7, 1), (x8, 0)} ,
D2 = L ∪ {(x3, 0), (x4, 1), (x7, 0), (x8, 1)} .

Members of the same orbit have the same capital letter. In order to find a srvr we
need to choose an orbit representative among solutions A1 and A2. The only pair
of literals in A1 that is not contained in any of the four self-symmetric solutions
is pair p := {(x3, 1), (x4, 0)}. Disallowing p, makes A2 the orbit representative
of {A1, A2} and removes C1 and D1 and hence, C2 and D2 must be the orbit
representatives of the respective orbits. Consider {B1, B2} next. The only pair
of literals in B1 that we can forbid is the pair of literals q := {(x7, 0), (x8, 1)}.
Disallowing q however would disallow solution D2, an orbit representative. The
same is true for B2. The only pair of literals we could disallow is {(x7, 1), (x8, 0)}
which would lead to orbit representative C2 being forbidden. Hence, solution A2

cannot be an orbit representative.
A symmetric argumentation holds if we choose solution A2 as an orbit rep-

resentative, which shows that Ptree does not have a binary realisable srvr.

The csp Ptree in the proof of Theorem 3 has rather many solutions and orbits.
Unfortunately, our attempts to construct a less complex example have failed. In
the next section, we shall see reasons for the complexity of the example: for
various special cases of csps, binary realisable srvrs always exist.

6 Special Cases

In this section, we present special cases in which binary realisable srvrs exist.

Theorem 4 (Sufficient Conditions). In all of the following cases, a (not
necessarily binary) csp P has a binary realisable srvr:

– for any pair of solutions S, T of P from different orbits we have S ∩ T = ∅,
– P has only one orbit of solutions with cardinality greater or equal to 1, and
– P has exactly 2 orbits of solutions.

Proof. If solutions in different orbits do not share literals, we can consider each
orbit on its own. In each orbit, we choose an orbit representative S. Any other
solution T in orbit(S) differs from S in at least one literal �. Since solutions
from different orbits are disjoint from T , literal � is not contained in any or-
bit representative. Hence, we can forbid this literal and even unary constraints
suffice.

The second case is a corollary of Theorem 15 in [7].
For the case of exactly two orbits of solutions, we choose a solution S1 from

the first orbit and a solution S2 from the second orbit. Any other solution S3

with S3 �= S1 and S3 �= S2 has a literal v ∈ S3 \ S1 and a literal w ∈ S3 \ S1. If
v = w we can add a constraint to forbid w and thus forbid S3 without affecting
neither S2 nor S1, since w is contained exclusively in solution S2. If v �= w, we
can add a constraint forbidding {v, w} without affecting neither S1 nor S2, since
the pair of literals {v, w} � S1 and {v, w} � S2. So, a binary realisable srvr
exists that has S1 and S2 as orbit representative solutions.

The first two cases of Theorem 4 subsume the case where there is only one
orbit of solutions, like a csp consisting of an alldifferent constraint. For this
case, Puget [12] showed that llcs reduced to binary constraints suffice. Other
csps that only have one orbit of solutions include n-queens for n = 4, 5, 6 and
the graceful graph problem for K5 ×P2 [1]. Another example that can easily be
generalised to a class of problems is the csp with 4 variables x1, x2, x3, x4, the
domain {1, . . . , 4} and constraints x1 �= x2, x3 �= x4.

In the reminder of this section, we focus on binary csps. First we consider
csps with a restriction on the number of orbits and then, we consider csps with
a restriction on the msc.

6.1 Binary Csps with Three Orbits of Solutions

In this section, we prove that for binary csps with three orbits of solutions,
there always is a binary realisable srvr. We need some more notation. In the
microstructure of a binary csp with a complete set of orbit representative solu-
tions, we call an edge erasable if it does not belong to any orbit representative
solution in the complete set. Similar to Section 4.2, we set apart certain complete
sets of orbit representative solutions. We call a complete set of orbit represen-
tative solutions a max-erasable set , if the number of erasable edges is maximal.
A max-erasable set is a rather special complete set of orbit representative solu-
tion for which we show that a binary realisable srvr exists. We first prove two
properties of max-erasable sets.

Proposition 3. For a csp with three orbits of solutions, let R = {S1, S2, S3}
be a max-erasable set and let T �∈ R be a solution with the following property.
Every pair of literals in T is contained in at least one member of R. Then, T
and the orbit representative solution S1 ∈ R of orbit(T) have at least one pair
of literals in common.

Proof. All pairs of literals of T are contained in some orbit representative solution
in R by assumption in the proposition. We prove that a pair of literals in T exists,
that is contained in S1.

Solution S2 may contain all literals in T apart from, say, literal v. Solution
S3 may contain all of the literals in T apart from, say, literal w. If v = w, then
any edge {·, w} ⊂ S1, since we have {·, w} �⊂ S2 and {·, w} �⊂ S3. If v �= w, then
the pair of literals {v, w} must be contained in either S1, S2 or S3, because of the
assumption that all pairs in T are contained in an orbit representative solution.
Since v /∈ S2 and w /∈ S3, we have {v, w} ⊆ S1.

Proposition 4. With the prerequisites of Proposition 3 the following holds. A
literal x ∈ S1 \ T exists that is not contained in S2 ∪ S3.

Proof. For the sake of contradiction we assume that all literals in S1 \ T are
contained in either S2 or S3. With this assumption, we show the existence of a
clique of size n+1 in the microstructure. As we noted in Proposition 3, solution
S1 contains at least a pair of literals of T . Assume that |S1 ∩ T | = 2, the case
|S1 ∩ T | > 2 is similar.

We first show, that a literal t in T \S1 exists with t ∈ S2 and t ∈ S3. Assume
that this is not the case, say, literal t ∈ S2 and t /∈ S3. A literal s ∈ T exists with
s /∈ S2 because T �= S2. The pair of literals {s, t}, we have {s, t} ⊆ S2 because
s /∈ S2. Furthermore, {s, t} �⊆ S3 by the assumption t ∈ S2, t /∈ S3 and literal
t is chosen in such that t /∈ S1. Hence, the pair {s, t} is not contained in any
orbit representative solution, which is a a contradiction to the assumption that
all pair of literals in T are contained in an orbit representative solution.

So, a literal t ∈ T \ S1 exists with t ∈ S2 and t ∈ S3. By assumption, all
literals in S1 \ T are either contained in S2 or S3. Hence, any literal in S1 \ T
is adjacent in the microstructure to literal t with t ∈ S2 and t ∈ S3. All literals
in T , in particular the literals in T ∩ S1 are adjacent to literal t because t ∈ T .
Hence, S1 ∪ {t} is a n+ 1-clique which can never occur in a microstructure of a
csp with n variables.

We can now prove the main result of this section.

Theorem 5. A binary realisable srvr exists for any binary n-variable csp with
three orbits of solutions.

Proof. By contradiction. Consider a max-erasable set of orbit representative so-
lutions consisting of solutions S1, S2 and S3. We assume that in some orbit of
solutions orbit(S1), a solution T �= S1 exists such that all pairs of literals in T
are contained in solutions in the max-erasable set, otherwise there is nothing
to prove. By Proposition 4, one of the literals, say, x ∈ S1 \ T is not contained

S2 ∪ S3. Hence, making T the orbit representative solution of orbit(T), we aug-
ment the number of erasable pairs of literals which is a contradiction to the
assumption that {S1, S2, S3} is a max-erasable set.

The above theorem could probably be generalised to more orbits of solutions,
as a more direct use of the symmetries should provide extra leverage for proofs.
We leave such generalisations for future work.

6.2 Binary Csps with Restricted Mscs

So far, we have proved that for csps with a restricted number of orbits, there
always is a binary realisable srvr. In general, however, we assume solutions to
be unknown to the constraint programmer and hence, our existence results are
of limited practical importance. Next, we consider csps with a restriction on the
msc without restricting the solutions of the csp directly.

We define path as the class of csps whose msc is a path. We note that any
csp in path has domains of size at most 2. The constraints of the csps in path
can be thought of as generalised implications.

Proposition 5. A binary realisable srvr exists for any csp in path.

Proof. We note first that any csp in path that has a variable whose domain is of
size 1, admits at most one solution, hence we consider the case where all domains
have size 2. We also assume that the csp has more than 2 literals, otherwise we
simply forbid one of the two literals. Let the csp have variables x1, . . . , xn.
Without loss of generality, we may assume that each variables has domain {1, 2}
and that {(xi, 2), (xi+1, 1)} is an edge in the msc for every i ∈ {1, . . . , n−1}. We
note that a path has one non-trivial symmetry. For all i < �n/2� and j ∈ {1, 2},
the symmetry swaps (xi, j) with (xn−i+1, j + 1 mod 3). This symmetry can be
thought of as a reflection about the centre of the path. In a csp in path we
have the following solutions. The solutions where all variables have value 1 is
symmetric to the solution where all variables have value 2. Next, we have a
solution, where the first i variables have value 1 and n − i variables have value
2. This solution is symmetric to a solution where the first n − i variables have
value 1 and the last i variables have value 2. The csp has no other solutions.

We forbid the pair of literals {(x1, 2), (x2, 2)}. This removes the solution
where all variables have value 2, but leaves the other orbit member. Next, we
consider the other solutions where the first i variables have value 1 and the
next n − i variables have value 2. If we have n − i = i, then we do not add
a binary constraint, because in this case the orbit only has one member. If we
have n − i �= i, then the orbit has two solutions. We forbid {(xi, 1), (xi+1, 2)}.
Certainly, this leaves the solution where all variables have value 1. It also does
not disallow any other solution from other orbits, but it forbids one member of
its own orbit. Hence, a binary realisable srvr exists for csps in path.

Next, we consider csps with msc whose connected components are paths.
We denote this class by path�.

(a) A connected compo-
nent corresponding to
one variable.

(b) The c-solution is self-
symmetric with respect to
the p-symmetries.

(c) The c-solution is c-
symmetric to the partial so-
lution in Figure 4c.

Fig. 4: Connected components of a msc that are allowed by the constraints of
Proposition 5 as in the proof of Theorem 6. The literals in the c-solutions are
depicted as black.

Theorem 6. A binary realisable srvr exists for any csp in path�.

Applying Proposition 5 to every connected component is not enough to prove
the above theorem. If the msc of a csp consists of connected components as
depicted in Figures 4b and 4c, the symmetry that swaps the two connected com-
ponents is not broken by the constraints presented in the proof of Proposition 5.

Proof. Consider a csp P whose msc is a disjoint union of paths. We call a
partial solution that is a solution in the connected component a c-solution. We
distinguish between two types of symmetries. We call symmetries that permute
literals within a connected component p-symmetries. We call symmetries that
permute entire connected components c-symmetries. Any symmetry of P is a
composition of p- and c-symmetries. As in the proof of Proposition 5, we assume
without loss of generality that the domains of the variables are subsets of {1, 2}
and that the only edges in the msc are {(xi, 2), (xi+1, 1)}. Unlike Proposition 5,
we need to consider variables that have a single value in their domains.

We first consider the case of a csp whose msc has symmetrically distinct
connected component, i.e., P has no c-symmetries. We can rely on the ar-
guments in the proof of Proposition 5. We consider every connected compo-
nent on its own. For a connected component with an even number of literals
greater than 3, we add a constraint as in the proof of Proposition 5, i.e., forbid-
ding {(xi, 2), (xi+1, 2)}. The set of constraints we have introduced so far, forbid
all solutions that contain no c-solution that is a) self symmetric under the p-
symmetries and b) that consists of a variable and its domain (see Figure 4 for
examples). By the assumption of connected components not being symmetric, a
c-solution that is p-self-symmetric can only be in a solution that has an orbit of
size greater than 1, if another c-solution is not p-self-symmetric. Hence, we only
need to consider solutions that contain a c-solution on a connected component
similar to Figure 4a and consists of, say, literals (xi, 1) and (xi, 2). Here, it is
easy to show that binary realisable srvr exists. Any solution that contains (xi, 2)
can be disallowed, since a symmetric equivalent exists that contains (xi, 1). So,
unary constraints suffice.

Next, we consider the case where P has symmetric connected components. In
this case, a p-self-symmetric c-solution can be symmetric to a c-solution that a p-
symmetry maps to a different c-solution, see Figures 4b and 4c. For this case, we
need arguments that are beyond the proof of Proposition 5. The interesting case
of p-self-symmetric c-solutions are solutions with an even number of variables

and every variable has domain of size 2 as we argue in the following. As soon as a
variable has a domain of size 1 in the connected component there can only be one
c-solution in the connected component. This case is uninteresting because a p-
self-symmetric c-solution is c-symmetric to a p-self-symmetric c-solution. So, we
assume to have k symmetric connected components each of which has � variables.
Each variable has domain of size 2. We number the connected components and
denote variables with two indices, the first for the connected component and
the second for the number in which the variable appears in a straight-forward
order of the literals in the path. We add the following constraints. Any solution
that contains (xi,1+�/2, 2) we forbid by simply adding a constraint that does
not allow the combination of this literal with (xi−1,1+�/2, 1). Let us prove that
this constraint does not remove an entire orbit. The literal (xi−1,1+�/2, 1) is only
contained in the p-self-symmetric c-solution. No other c-solution contains this
literal. We note however that we cannot simply remove the literal (x2,1+�/2, 2).
This would remove an orbit of solutions, namely the orbits where all c-solutions
in the symmetric connected components are the same and self-symmetric. Hence,
we have shown that a binary realisable srvr exists.

For csps with a msc whose connected components are cycles, denoted by
cycle�, we can prove an analogous result to Theorem 6.

Proposition 6. A binary realisable srvr exists for any csp in cycle�.

Proof. We consider the case of a single connected component first. For an odd
number of literals in the msc, the only case where a solution exists, is the case
of a csp with 1 variable and domain size 3. In this case, we can simply add
constraints that forbid 2 literals with unary constraints. A msc that is an odd
cycle of length greater than 3 does not have a solution. For a satisfiable csp with
a msc that is an even cycle of size 2n, the csp has n variables each with domain
size 2 and we have one orbit of solutions, so we can rely on Theorem 4.

For csps with more than one connected component, we note that we do not
have the case of self-symmetric solutions in the connected components as in the
proof of Theorem 6. Hence, the arguments for the case of a single connected
component suffice to terminate this proof.

Theorem 6 and Proposition 6 extend naturally to any csp with a msc that
consists of connected components that are either cycles or paths.

7 Conclusion and Further Work

We considered complete symmetry breaking for the full group of constraint sym-
metries in this paper. We obtained the following bounds on the arities of symme-
try breaking constraints. We showed that no reduction rule for llcs will succeed
in reducing the arity of the llcs of all csps, therefore obtaining an upper bound
on the arities of llcs. However, we also showed that constraints of arity �n/2�+1
always exist that provide complete symmetry breaking. The latter is an existence

result and does not come with an algorithm. Further work could try to find vari-
able ordering strategies, such that reduction rules will always reduce the arity of
llcs. We found a lower bound on the arities of symmetry breaking constraints:
we proved that binary csps exist where complete symmetry breaking constraints
must be at least ternary. However, we also presented various special cases of csps
where binary constraints break all symmetries.

Acknowledgements

The author thanks Barbara Smith for discussions and Marc van Dongen for the
same as well as insightful comments during the preparation of this paper.

References

1. D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry definitions
for constraint satisfaction problems. Constraints 11, 2006.

2. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for
search problems. In Principles of Knowledge Representation and Reasoning (KR

’96). Morgan Kaufmann, 1996.
3. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for

lexicographic orderings. In Principles and Practice of Constraint Programming

(CP 02), 2002.
4. A. M. Frisch and W. Harvey. Constraints for breaking all row and column sym-

metries in a three-by-two matrix. In In Proceedings of SymCon’03, 2003.
5. I. P. Gent, K. E. Petrie, and J.-F. Puget. Symmetry in constraint programming. In

F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming,
pages 329–376. Elsevier, 2006.

6. A. Grayland, C. Jefferson, I. Miguel, and C. Roney-Dougal. Minimal ordering
constraints for some families of variable symmetries. Annals of Mathematics and

AI, 2009.
7. T. Januschowski, B. M. Smith, and M. R. C. van Dongen. Foundations of symmetry

breaking revisited. In Proceedings of SymCon’09, 2009.
8. V. Kaibel and M. E. Pfetsch. Packing and partitioning orbitopes. Mathematical

Programming, 114, Number 1 / July, 2008:1–36, 2008.
9. Y. C. Law and J. H. Lee. Symmetry breaking constraints for value symmetries in

constraint satisfaction. Constraints, 11(2-3):221–267, 2006.
10. H. Öhrmann. Breaking symmetries in matrix models. Master’s thesis, Dept. In-

formation Technology, Uppsala University, 2005.
11. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction prob-

lems. In Methodologies for Intelligent Systems, pages 350–361, London, UK, 1993.
Springer-Verlag.

12. J.-F. Puget. Breaking symmetries in all-different problems. In International Joint

Conferences on Artificial Intelligence, pages 272–277, 2005.
13. T. Walsh. General symmetry breaking constraints. In Principles and Practice

of Constraint Programming – CP 2006, volume 4204/2006 of Lecture Notes in

Computer Science 4204, 2006, pages 650–664, 2006.

