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Abstract. Static symmetry breaking is a well-established technique to
speed up the solving process of symmetric Constraint Satisfaction Pro-
grams (CSPs). Static symmetry breaking suffers from two inherent prob-
lems: symmetry breaking constraints come in great numbers and are of
high arity. Here, we consider the problem of high arity. We prove that
not even for binary csps can we always reduce the arity of the com-
monly used lexleader constraints. We further prove that for binary csps
we sometimes have to rely on at least ternary constraints to break all
symmetries. On the positive side, we prove that symmetry breaking con-
straints with arity [n/2] + 1 exist that always break the symmetries of a
csp completely. For various special cases of Ccsps, we prove that binary
symmetry breaking constraints may break all symmetries.

1 Introduction

Symmetry breaking has been the subject of intense investigation for almost
two decades in Constraint Programming, see e.g. [5]. Symmetry breaking has
an empirically proved potential to speed up constructive search methods. The
classic and practically most used technique in symmetry breaking is the addition
of symmetry breaking constraints before search [2, 11].

For complete symmetry breaking, we have to add one lexleader constraint
(LLC) [2] per symmetry, and the arity of each symmetry breaking constraint
is the number of variables. In the worst case, a CSP can have an exponential
number of symmetries. Adding an exponential number of constraints to a CSP
is prohibitively costly. High arity slows down propagation [3]. Various remedies
have been proposed: for special symmetry groups, we can find polynomial sized
sets of constraints with reasonable arity that break all symmetries [6], or some-
times one can use the problem structure in combination with the symmetries to
reduce the number and arity of the constraints [8,12]. Also, various reduction
rules [4,6,10] are known that reduce both the number and the arity of LLCs
while maintaining the ability to completely break symmetries. Another remedy
that we do not want to consider here is partial symmetry breaking.
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In this paper, we consider upper and lower bounds on the arities of symmetry
breaking constraints for complete symmetry breaking in binary csps. Our lower
bounds hold for any symmetry breaking constraint and any reduction rule. We
prove the following for csps with n variables:

upper bound (i): the arity of LLCs cannot always be reduced, even if we as-
sume the CSP to be binary,

upper bound (ii): symmetry breaking constraints of arity |n/2] +1 exist that
completely break the symmetries of any Csp,

lower bound: for complete symmetry breaking in binary CSPs, we sometimes
have to rely on ternary constraints, and

special cases: we identify various special cases, where binary symmetry break-
ing constraints suffice for complete symmetry breaking.

To the best of our knowledge, these results are new. We think that our results
are an important theoretical contribution to the study of symmetry breaking
constraints. Our results could be applied to study the optimality of reduction
rules in terms of the arity of symmetry breaking constraints. If a reduction rule
can reduce the arity of symmetry breaking constraints for all binary cSPs to at
most three, the reduction rule could be considered optimal. On the other hand,
if the reduction rule does not succeed to reduce the arity of symmetry breaking
constraints below [n/2] 4+ 1 for all csps, then the rule is surely not optimal.

2 Notation and Definitions

A constraint satisfaction problem CsP is a triple (V, D, Cons), where V is the set
of variables of the Csp, every variable x has a domain D(z) € D, and Cons is the
set of constraint of the csp. Every constraint has an arity. The k-ary constraint
cis a pair (s, r), where s is a list of k variables x1, ..., z) which is called the scope
and r C D(x1) X -+ X D(xy) is called the relation of ¢ consisting of the tuples
that ¢ allows. The arity of a CSP is the maximum arity over all constraints in the
CSP. A cspP is called binary if all constraints are of arity at most 2. A literal is a
(variable,value)-assignment. A partial assignment is a set of literals in which no
variable appears twice. If a partial assignment is allowed by the constraints of the
Ccsp we call it consistent. A solution is a consistent assignment on all variables.
If a ¢sP has a solution, the CSP is satisfiable, otherwise it is unsatisfiable.

We associate to any CSP a hypergraph called the microstructure complement
(Msc), see e.g. [1]. The Msc has as nodes the literals of the csp. We have a
hyperedge between every set of literals that is not contained in the relation of
a constraint of the csp. For a binary cSp, the MSC is a graph and for binary
csps we define the microstructure as the complement graph of the Msc. The
constraint symmetries [1] of a CSP are the automorphisms of the MSC. Symme-
tries partition the set of solutions of a CSP into a set of equivalences classes
or orbits. For a solution 7', we denote by orbit(7") the set of solutions that are
symmetric to T. Apart from constraint symmetries, other symmetries exist as
well, notably solution symmetries. However, constraint programmers work with



constraint symmetries mostly [1]. Here, we only consider constraint symmetries
which we shall abbreviate to symmetries.

Given a ¢csp P, a valid reduction P’ [7,11] is a CSP on the same variables,
subsets of the domains and supersets of the constraints of P, such that for
every orbit of solutions in P, at least one solution in P’ exists. Among the
solutions in P’ that exist for every orbit of solutions in P, we can choose one
as an orbit-representative solution per orbit in P. A single-representative valid
reduction (SRVR) is a valid reduction that has ezactly one solution per orbit of
solutions in P. If P’ is a SRVR, the set of solutions of P’ is a complete set of orbit
representative solutions.

We call members of a family of constraints symmetry breaking constraints,
if adding the family to a cSP leads to a valid reduction. Lexleader constraints
(LLCs) [2,13] are well-known symmetry breaking constraints. To construct a LLC
for a symmetry ¢ of a cSP, we choose a variable order, say x1 < o2 < -+ < xy,
and an order on the domains. The LLC enforces that any assignment on the
variables is lexicographically less than its symmetric counterpart with respect to
the chosen orders:

([Ilv s azﬂ]) <lez d)([gjly .- ,-Tn]) .

We note that ¢ may not map a complete assignment to another complete as-
signment. In this case however, the assignment under consideration cannot be a
solution and must be forbidden by some constraints of the CSP under consider-
ation, otherwise ¢ would not be a symmetry.

SRVRs exist for any ¢SP and we can always find a SRVR using LLCs. With LLCs,
the choice of orbit representative solutions depends on the order of the variables
that we choose to define the LLCs as well as the orders on the domains. However,
also for arbitrary choices of orbit representatives, a SRVR always exists: we could
simply add an n-ary constraint forbidding any non-representative solution [7]. If
the arity of the constraints we add to a CSP to obtain the SRVR is at most k, we
say that the SRVR is k-ary realisable.

In the context of this paper, we consider the full group of (constraint) symme-
tries. Our intuition is that the full group of symmetries is more closely connected
to the MSc than subgroups. Results obtained for subgroups may not hold for the
full group as orbits of solutions tend to interact in a less complicated way for
smaller groups. Indeed, the number of orbits of solutions typically decreases for
increasing sizes of subgroups. This also helps to explain, why it seems more dif-
ficult to obtain results for the full group of symmetries than for subgroups. In
this paper, we investigate complete symmetry breaking, or rather the existence
of SRVRs.

3 Related Work

This work is based on Puget’s systematic approach to introduce symmetry break-
ing constraints via valid reductions [11]. This approach was generalised and ex-
tended in [7]. There, we also posed the question, whether for any k-ary CsP,
there always is a k-ary realisable SRVR. Here, we will give a negative answer to
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Fig.1: A csp with 3 variables where we have to use a ternary LLC in order to
disallow the thickly edged solution S, see Example 1. The only symmetry that
maps solutions to solutions is a reflection about the dashed line.

this question for the case k = 2. However, we also provide a range of special
cases where we can answer the question affirmatively.

Reduction rules for LLCs have been studied in [4, 6, 10]. These reduction rules
reduce the arity and number of LLCs. Grayland et al. [6] manage to show the min-
imality of certain sets of constraints with respect to the reduction rules under
consideration. In a way, we study minimality of symmetry breaking constraints
both independently of concrete reduction rules and independently of concrete
constraints used for symmetry breaking. Solely based on the way orbits of solu-
tions may interact, we show that LLCs exist whose arity cannot be reduced.

We consider the arity of symmetry breaking constraints on the original vari-
ables. For value symmetries, the introduction of auxiliary variables has been
shown to be useful for finding sets of sometimes binary symmetry breaking con-
straints [9]. However, as we are interested in general results here, we focus on
the original variables: any constraint can be turned into a binary constraint with
the help of auxiliary variables.

4 Upper Bounds on the Arities

In this section, we want to consider upper bounds on the arities of symmetry
breaking constraints. More precisely, we prove that for the commonly used LLCs
with a given variable order, no reduction rule may always reduce the arity. We
show, however, that symmetry breaking constraints always exist whose arity
does not exceed [n/2] + 1.

4.1 Fixed-order LLCcs Are Intrinsically n-ary

In this section, we show that we cannot reduce the arity of LLCs in all CSPs.
Before giving a general proof, let us consider the following example.

Ezample 1. Let P = ({z,y, 2z}, D, Cons). We have D(x) = D(y) = {1, 2,3}, and
D(z) = {1,2,...,8}. The constraints are such that P has a microstructure as
depicted in Figure 1. By inspection, it is obvious that the only symmetry that



(a) The initial solutions S; and Sz, with thin (b) To ensure that the solu-

edges, contain all literals corresponding to as- tions S and T are only sym-
signments of value 1 to all variables in the set metric to themselves, we add
{z1,...,25} and value 1, respectively 2 to vari- more literals to the literals
able z¢. Here, we also depict two solutions S and (zs5,¢), and (z5,¢ 4+ 1), we de-
T with dotted edges. Solution S contains all lit- pict the edges as dashed.

erals of S; except for (x5, 1) and solution 7 is the
symmetric counterpart of S under the reflection.

Fig. 2: Construction of the €SP as in the proof of Theorem 1 for the 6 variable
case. The only symmetry that maps solutions to different solutions is a reflection
about an axis going through {(z1,1),..., (z5,1)}.

permutes a solution to another solution is a reflection about the dashed line.
We choose x < y < z and the natural order on the integers for lexicographic
comparison. The solution S = {(z, 1), (y, 1), (2,2)} is not a lex-minimal solution
in its orbit, but all pairs of literals in S are contained in lex-minimal solutions.
In order to exclude any solution that is not lex-minimal, as LLCs would, we need
a ternary constraint in order to disallow S.

We generalise the example in the following and show that for every n > 1,
we can find a ¢sP with the same property that the csP in Example 1 has: we
need n-ary constraints to obtain a SRVR whose orbit representative solutions are
the lex-minimal ones. We illustrate our proof with a binary csp with 6 variables
whose microstructure we partially depict in Figure 2. From the construction of
the CSP in our proof, it will be clear that we cannot expect LLCs for a binary CSP
with n variables to have arity less than n. This means that the various reduction
rules that are known to reduce the complexity of the LLCs will not be able to
reduce the arity of LLCs for all csps—in fact, we show that this is true for any
possible reduction rule.

Theorem 1. For any n > 1, a binary CSP with n variables and an order on
its variables exist such that any SRVR that has lex-minimal (wrt to the variable
order) solutions as orbit representative solutions is n-ary realisable.



Proof. We construct a ¢SP with n variables ordered as 1 < x9 < --- < x,,. We
construct the domains of the variables during the proof and we use the natural
order on the integers for lexicographic comparison. Whenever we say that we
construct a solution of the cspP, we really mean that we add or modify constraints
to the csp such that they allow these solutions. We construct the solutions of
the ¢sP in such a way that the symmetries of the cSp will be immediate. We
start with two solutions S; = {(z1,1),...,(@n-1,1), (2n,7)} where i = 1,2. We
have depicted the solutions S; and Sy in Figure 2a for the case where n = 6.

Our aim is to add solutions to the CSP such that every subset of size up to
n — 1 in Sy is contained in a lex-minimal solution. When we add the solutions,
care has to be taken in two aspects. First, we need to ensure that S; and S,
remain symmetric under the symmetry of the csp that swaps (x,,, 1) with (x,,, 2)
while leaving all other literals unchanged. We call this symmetry a reflection due
to the geometric intuition, see Figure 2. Every time we add literals to the csp,
we have to ensure that we can extend the reflection to the new literals. Second,
we need to ensure that S; and Sy are symmetric only to each other. Solution
S1 is, with respect to the chosen orders, lex-less than S5. Hence, we need to
exclude Sy. Having constructed a lex-minimal solution for every subset of size
up to n — 1 in Sy, it follows that if we want to find a SRVR with the lex-minimal
orbit representatives, we have to use an n-ary constraint to remove Ss.

We construct symmetric solutions for symmetric subsets of solutions S; and
So with size up to n — 1. We first note that any subset of S5 not involving
literal (x,,2) is contained in S; by construction and hence, we cannot add a
constraint that forbids this subset. We note next that it suffices to consider
only subsets of size exactly n — 1. For any subset of size n — 1 that includes
literal (z,,,2), we construct a solution that uses this subset. For the subset of
size n — 1 to be a solution, we introduce a literal (z, £), such that ¢ does not yet
appear in the CSP and ensure that the subset with the new literal is a solution
T'. We construct another solution S containing all literals corresponding to value
1in T, it contains (x,, 1) as well as a new literal (z, ¢+ 1). We ensure that S is
symmetric to T with respect to the reflection by extending the reflection to swap
(x,£) and (z,£41). In Figure 2a, we have depicted T for the subset of 5 literals of
solution S5 consisting of the set of literals {(z1,1), (z2,1), (23, 1), (24, 1), (zs, 2)}.
Solution T contains the new literal (x5, ¢), where £ is chosen appropriately.

With our construction so far, we have ensured that 7" and S are symmetric
and that S; and S5 remain symmetric. To ensure that 7" and S are not symmetric
to other solutions, we add a set of literals L. In the microstructure, we make half
of the literals in L adjacent to (x,¢) and the other half adjacent to (z,£+1). We
choose the cardinality of L in such a way that (z,¢) and (z,£+ 1) have a (node)
degree in the microstructure that only these two literals have, see Figure 2b. By
addition of the literals, the CSP gains more non-trivial symmetries that permute
the recently added literals while leaving all other literals unchanged. However,
we do not have to consider these new symmetries, as they are the identity when
restricted to solutions.



With this construction, solutions S; and S; remain symmetric. Furthermore,
solutions S and T are the only members of their orbit, due to the degrees of the
literals (z,¢), and (z,¢+ 1). The lex-minimal solution in this orbit is 7. Hence,
we cannot forbid any set of literals of size up to n — 1 in Sy. This shows that the
constraint that forbids solution Se must be n-ary. O

In other words, Theorem 1 shows that no reduction rule will be able to
reduce the arity of LLCs below the original arity for all csps. The step of the
proof depicted in Figure 2b is not necessary, if we want to prove the theorem
only for a subgroup of the symmetry group.

4.2 A |n/2] + 1l-ary Realisable SRVR Always Exist

In this section, we prove the existence of symmetry breaking constraints with
arity |n/2| + 1. In order to show this, we need more notation.

In the following we introduce distinguished sets of orbit representative solu-
tions for a csp. We refer to the set of literals of a CSP by lits. For a complete set of
orbit representative solutions R, we define a function ¢(-, R). For a literal v € lit,
we have ¢(v, R) = 0 if v is contained in at most one solution in R. If v is contained
in k orbit representative solutions in R, where k > 2, then ¢(v, R) = k—1. We de-
fine c(R) = >, cirs ¢(v, R). For the set S of complete sets of orbit representative
solutions, we call a set R € S such that R = argmaxges ¢(Q) a maz-common
set. The advantage of a max-common set is that it helps to break down the
globality of the symmetries into some desirable “local” properties which we will
then explore. We need the following observation to prove such a property.

Proposition 1. Let S and T be two solutions and let ¢ be any symmetry of the
csp. Then |SNT| = |¢(S)Ne(T)|.

This is enough to prove following property of any max-common set.

Proposition 2. For a maz-common set of orbit representative solutions R =
{S1,..., 8¢} and a non-representative solution T € orbit(S;), any S; with |S; N
T| =k has |Sl ﬂSj| Z k.

Proof. By contradiction. Let S; be a solution in a max-common set such that
|S; NT| = k. We assume that |S; NS;| < k. Let ¢ be a symmetry such that
#(S;) = T. By Proposition 1, we know that |$(S;) N ¢(S;)| = k. Hence, for the
set ¢(R) := {o(S1),...,90(St)}, we have c(¢(R)) > c¢(R). This is a contradiction
to the fact that Sy, ..., S; is a max-common set of orbit representative solutions.

We can now prove the main result of this section.
Theorem 2. A [n/2|+1-ary realisable SRVR exists for any CSP with n variables.

Proof. Consider a CsP with n variables and a max-common set of orbit repre-
sentative solutions R. Let T' be any solution with T ¢ R. Let S € R be such
that T € orbit(.S)..



Fig.3: The MSc of a binary ¢SP for which no binary realisable SRVR exists. The
only symmetry of the CSP is a reflection about the dashed line. Nodes in the
dotted boxes are literals corresponding to the same variable.

Let n be even. We assume first that [SNT| < n/2. We show that a subset of
n/2 4 1 literals in T\ S exists that is not contained in any orbit representative
in R. For the sake of contradiction, we assume that no such subset exists, so we
assume all n/2 + 1 literals are contained in a member of R. By Proposition 2,
any S € R that contains n/2+1 literals in T'\ S contains at least n/2+1 literals
in S\ T. Hence, S; contains more than n literals, which is a contradiction. This
means that a set of literals in T exists that is not in any orbit representative
solution and we can forbid this set safely.

Next, we assume that |[S N T| > n/2. We show that all of the, say k, literals
in T\ S and n/2 — k literals in T'N .S cannot be contained in any S; € R. If the
n/2 literals were contained in S, then S; would also contain at least k literals
in S\ T. However, the literals in S\ T have the same variables as the k literals
in T'\ S. Therefore, Sy is not a solution, which is a contradiction and we can
forbid a set of n/2 4 1 literals in T safely.

For an odd number of variables the argumentation is similar and we omit
this case due to space restrictions. O

5 A Lower Bound on the Arity

In this section, we show that for binary cSPs we sometimes have to rely on non-
binary constraints to break all symmetries. This provides a lower bound for the
afore-mentioned reduction rules: If a reduction rule for binary CSPs can reduce
the arity of symmetry breaking constraints for any cSP to the lower bound we
provide here, then the reduction rule is optimal.

Theorem 3. A binary CSP exists that does not have a binary realisable SRVR.



Proof. We consider a 10 variable CSP Pj,. where every variable has domains
{0,1}. The MSC of Py is a tree. We depict it in Figure 3. By inspection of the
MSC, it is obvious that there is only one non-trivial symmetry of the Msc. It swaps
literals (x;, j) with (2,41, 7) for odd 7 and j € {0,1}. The symmetry is a reflection
about the dotted line in Figure 3. We define a set L := U;c(1,2,5,6,0,101{(2i, 1)}
The solutions of P we consider in the following, have L in common. We
consider the following four self-symmetric solutions of Pi:

Lu {(xda 1)7 ($47 1)7 (.’E77 0)7 (x87 0)} ) Ly {(.’E37 1)7 ($4, ]-)7 (1’7, 1)7 (x87 ]-)} B
LU{(ISaO)v(I470)7(x771)3(1'831)}3 and LU{(‘T&O)a(1'430)7(33770)7(50870)}'
Orbits of solutions that consist of more than one solution contain exactly two

solutions because the CSP only has one non-trivial symmetry. From the orbits of
solutions with two members, we consider the following eight solutions:

Ar=L U {($3,1),(x470),($7,1),(:Cg,l)},
Ay =L U {(23,0), (4,1), (27,1), (ws, 1)},
By =L U {(z3,1), (z4,1), (z7,0), (zs, 1)},
By =L U {(z3,1), (24,1), (27,1), (xs,0)},
Ci=1L U {(x3,1),(24,0), (x7,0), (s, 1)},
Cy =1L U {(3,0), (24,1), (x7,1), (2s,0)},
Dy =L U {(z3,1),(24,0), (z7,1), (z5,0)},
Dy =L U {(z3,0),(24,1), (27,0), (zs,1)}

Members of the same orbit have the same capital letter. In order to find a SRVR we
need to choose an orbit representative among solutions A; and As. The only pair
of literals in A; that is not contained in any of the four self-symmetric solutions
is pair p := {(z3,1), (24,0)}. Disallowing p, makes Ay the orbit representative
of {A1, A2} and removes C; and D; and hence, Cy and Dy must be the orbit
representatives of the respective orbits. Consider {Bi, B2} next. The only pair
of literals in B; that we can forbid is the pair of literals ¢ := {(x7,0), (zs,1)}.
Disallowing ¢ however would disallow solution D5, an orbit representative. The
same is true for Ba. The only pair of literals we could disallow is {(z7,1), (xs, 0)}
which would lead to orbit representative Cs being forbidden. Hence, solution Ao
cannot be an orbit representative.

A symmetric argumentation holds if we choose solution A, as an orbit rep-
resentative, which shows that Py... does not have a binary realisable SRVR. [

The CSP Py in the proof of Theorem 3 has rather many solutions and orbits.
Unfortunately, our attempts to construct a less complex example have failed. In
the next section, we shall see reasons for the complexity of the example: for
various special cases of CSPs, binary realisable SRVRs always exist.

6 Special Cases

In this section, we present special cases in which binary realisable SRVRs exist.



Theorem 4 (Sufficient Conditions). In all of the following cases, a (not
necessarily binary) csP P has a binary realisable SRVR:

— for any pair of solutions S,T of P from different orbits we have SNT = (),
— P has only one orbit of solutions with cardinality greater or equal to 1, and
— P has exactly 2 orbits of solutions.

Proof. If solutions in different orbits do not share literals, we can consider each
orbit on its own. In each orbit, we choose an orbit representative S. Any other
solution T in orbit(S) differs from S in at least one literal ¢. Since solutions
from different orbits are disjoint from T, literal ¢ is not contained in any or-
bit representative. Hence, we can forbid this literal and even unary constraints
suffice.

The second case is a corollary of Theorem 15 in [7].

For the case of exactly two orbits of solutions, we choose a solution S; from
the first orbit and a solution S5 from the second orbit. Any other solution S3
with S5 # S1 and S3 # S5 has a literal v € S3\ S7 and a literal w € S5\ Sy. If
v = w we can add a constraint to forbid w and thus forbid S5 without affecting
neither Sy nor Sy, since w is contained exclusively in solution Ss. If v # w, we
can add a constraint forbidding {v, w} without affecting neither S; nor S, since
the pair of literals {v,w} ¢ S and {v,w} ¢ S2. So, a binary realisable SRVR
exists that has S7 and Sy as orbit representative solutions. O

The first two cases of Theorem 4 subsume the case where there is only one
orbit of solutions, like a CSP consisting of an alldifferent constraint. For this
case, Puget [12] showed that LLCs reduced to binary constraints suffice. Other
Csps that only have one orbit of solutions include n-queens for n = 4,5,6 and
the graceful graph problem for K5 x P [1]. Another example that can easily be
generalised to a class of problems is the cSP with 4 variables z1, z2, x3, x4, the
domain {1,...,4} and constraints x; # x9, T3 # 4.

In the reminder of this section, we focus on binary csps. First we consider
CSPs with a restriction on the number of orbits and then, we consider csps with
a restriction on the MScC.

6.1 Binary Csps with Three Orbits of Solutions

In this section, we prove that for binary cSps with three orbits of solutions,
there always is a binary realisable SRVR. We need some more notation. In the
microstructure of a binary CSP with a complete set of orbit representative solu-
tions, we call an edge erasable if it does not belong to any orbit representative
solution in the complete set. Similar to Section 4.2, we set apart certain complete
sets of orbit representative solutions. We call a complete set of orbit represen-
tative solutions a max-erasable set, if the number of erasable edges is maximal.
A max-erasable set is a rather special complete set of orbit representative solu-
tion for which we show that a binary realisable SRVR exists. We first prove two
properties of max-erasable sets.



Proposition 3. For a cSP with three orbits of solutions, let R = {S1, Sa, S35}
be a max-erasable set and let T ¢ R be a solution with the following property.
Every pair of literals in T is contained in at least one member of R. Then, T
and the orbit representative solution S; € R of orbit(T) have at least one pair
of literals in common.

Proof. All pairs of literals of T" are contained in some orbit representative solution
in R by assumption in the proposition. We prove that a pair of literals in 7" exists,
that is contained in S;.

Solution S5 may contain all literals in 7" apart from, say, literal v. Solution
S3 may contain all of the literals in T" apart from, say, literal w. If v = w, then
any edge {-,w} C Sy, since we have {-,w} ¢ Se and {-,w} ¢ S3. If v # w, then
the pair of literals {v, w} must be contained in either Sy, Se or Sz, because of the
assumption that all pairs in 7" are contained in an orbit representative solution.
Since v ¢ Sy and w ¢ Sz, we have {v,w} C 5. O

Proposition 4. With the prerequisites of Proposition 3 the following holds. A
literal x € Sy \ T exists that is not contained in Sy U Ss.

Proof. For the sake of contradiction we assume that all literals in Sy \ T are
contained in either S5 or S3. With this assumption, we show the existence of a
clique of size n+ 1 in the microstructure. As we noted in Proposition 3, solution
S contains at least a pair of literals of T. Assume that |S; NT| = 2, the case
[S1 NT| > 2 is similar.

We first show, that a literal ¢ in 7'\ S} exists with ¢ € Sy and ¢ € S5. Assume
that this is not the case, say, literal t € So and t ¢ S3. A literal s € T exists with
s ¢ Sy because T # So. The pair of literals {s,t}, we have {s,t} C S5 because
s ¢ So. Furthermore, {s,t} € S5 by the assumption ¢ € Sy, t ¢ S3 and literal
t is chosen in such that ¢t ¢ S;. Hence, the pair {s,¢} is not contained in any
orbit representative solution, which is a a contradiction to the assumption that
all pair of literals in T are contained in an orbit representative solution.

So, a literal t € T'\ S exists with ¢t € Sy and ¢t € S3. By assumption, all
literals in Sy \ T are either contained in Sy or S3. Hence, any literal in Sy \ T
is adjacent in the microstructure to literal ¢ with ¢t € Sy and t € S3. All literals
in T, in particular the literals in 7' N S are adjacent to literal ¢ because t € T
Hence, S; U{t} is a n + 1-clique which can never occur in a microstructure of a
CSP with n variables. O

We can now prove the main result of this section.

Theorem 5. A binary realisable SRVR exists for any binary n-variable CSP with
three orbits of solutions.

Proof. By contradiction. Consider a max-erasable set of orbit representative so-
lutions consisting of solutions S7,S; and S3. We assume that in some orbit of
solutions orbit(Sy), a solution T' # S exists such that all pairs of literals in T’
are contained in solutions in the max-erasable set, otherwise there is nothing
to prove. By Proposition 4, one of the literals, say, x € S; \ T is not contained



Sy U S3. Hence, making T the orbit representative solution of orbit(T"), we aug-
ment the number of erasable pairs of literals which is a contradiction to the
assumption that {51, Sz, S5} is a max-erasable set. O

The above theorem could probably be generalised to more orbits of solutions,
as a more direct use of the symmetries should provide extra leverage for proofs.
We leave such generalisations for future work.

6.2 Binary Csps with Restricted Mscs

So far, we have proved that for cSPs with a restricted number of orbits, there
always is a binary realisable SRVR. In general, however, we assume solutions to
be unknown to the constraint programmer and hence, our existence results are
of limited practical importance. Next, we consider CSPs with a restriction on the
MsSC without restricting the solutions of the csp directly.

We define PATH as the class of ¢SPs whose MSC is a path. We note that any
CSP in PATH has domains of size at most 2. The constraints of the CSPs in PATH
can be thought of as generalised implications.

Proposition 5. A binary realisable SRVR exists for any CSP in PATH.

Proof. We note first that any CSP in PATH that has a variable whose domain is of
size 1, admits at most one solution, hence we consider the case where all domains
have size 2. We also assume that the CcSP has more than 2 literals, otherwise we
simply forbid one of the two literals. Let the csp have variables x1,...,x,.
Without loss of generality, we may assume that each variables has domain {1, 2}
and that {(z;,2), (;41,1)} is an edge in the Msc for every i € {1,...,n—1}. We
note that a path has one non-trivial symmetry. For all ¢ < [n/2] and j € {1, 2},
the symmetry swaps (z;,7) with (x,_;11,j + 1 mod 3). This symmetry can be
thought of as a reflection about the centre of the path. In a CSP in PATH we
have the following solutions. The solutions where all variables have value 1 is
symmetric to the solution where all variables have value 2. Next, we have a
solution, where the first ¢ variables have value 1 and n — ¢ variables have value
2. This solution is symmetric to a solution where the first n — ¢ variables have
value 1 and the last 7 variables have value 2. The €SP has no other solutions.
We forbid the pair of literals {(x1,2), (z2,2)}. This removes the solution
where all variables have value 2, but leaves the other orbit member. Next, we
consider the other solutions where the first ¢ variables have value 1 and the
next n — i variables have value 2. If we have n — i = 4, then we do not add
a binary constraint, because in this case the orbit only has one member. If we
have n — i # 4, then the orbit has two solutions. We forbid {(z;, 1), (zi+1,2)}.
Certainly, this leaves the solution where all variables have value 1. It also does
not disallow any other solution from other orbits, but it forbids one member of
its own orbit. Hence, a binary realisable SRVR exists for CSPs in PATH. O

Next, we consider Ccsps with MSC whose connected components are paths.
We denote this class by PATH*.
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(a) A connected compo-  (b) The c-solution is self- (c) The c-solution is c-
nent corresponding to symmetric with respect to symmetric to the partial so-
one variable. the p-symmetries. lution in Figure 4c.

Fig.4: Connected components of a MSC that are allowed by the constraints of
Proposition 5 as in the proof of Theorem 6. The literals in the c-solutions are
depicted as black.

Theorem 6. A binary realisable SRVR exists for any CSP in PATH*.

Applying Proposition 5 to every connected component is not enough to prove
the above theorem. If the MSC of a CSP consists of connected components as
depicted in Figures 4b and 4c, the symmetry that swaps the two connected com-
ponents is not broken by the constraints presented in the proof of Proposition 5.

Proof. Consider a ¢sp P whose MSC is a disjoint union of paths. We call a
partial solution that is a solution in the connected component a c-solution. We
distinguish between two types of symmetries. We call symmetries that permute
literals within a connected component p-symmetries. We call symmetries that
permute entire connected components c-symmetries. Any symmetry of P is a
composition of p- and c-symmetries. As in the proof of Proposition 5, we assume
without loss of generality that the domains of the variables are subsets of {1,2}
and that the only edges in the Msc are {(x;,2), (z;+1,1)}. Unlike Proposition 5,
we need to consider variables that have a single value in their domains.

We first consider the case of a CSP whose MSC has symmetrically distinct
connected component, i.e., P has no c-symmetries. We can rely on the ar-
guments in the proof of Proposition 5. We consider every connected compo-
nent on its own. For a connected component with an even number of literals
greater than 3, we add a constraint as in the proof of Proposition 5, i.e., forbid-
ding {(z;,2), (z;+1,2)}. The set of constraints we have introduced so far, forbid
all solutions that contain no c-solution that is a) self symmetric under the p-
symmetries and b) that consists of a variable and its domain (see Figure 4 for
examples). By the assumption of connected components not being symmetric, a
c-solution that is p-self-symmetric can only be in a solution that has an orbit of
size greater than 1, if another c-solution is not p-self-symmetric. Hence, we only
need to consider solutions that contain a c-solution on a connected component
similar to Figure 4a and consists of, say, literals (z;,1) and (z;,2). Here, it is
easy to show that binary realisable SRVR exists. Any solution that contains (z;, 2)
can be disallowed, since a symmetric equivalent exists that contains (x;,1). So,
unary constraints suffice.

Next, we consider the case where P has symmetric connected components. In
this case, a p-self-symmetric c-solution can be symmetric to a c-solution that a p-
symmetry maps to a different c-solution, see Figures 4b and 4c. For this case, we
need arguments that are beyond the proof of Proposition 5. The interesting case
of p-self-symmetric c-solutions are solutions with an even number of variables



and every variable has domain of size 2 as we argue in the following. As soon as a
variable has a domain of size 1 in the connected component there can only be one
c-solution in the connected component. This case is uninteresting because a p-
self-symmetric c-solution is c-symmetric to a p-self-symmetric c-solution. So, we
assume to have k symmetric connected components each of which has ¢ variables.
Each variable has domain of size 2. We number the connected components and
denote variables with two indices, the first for the connected component and
the second for the number in which the variable appears in a straight-forward
order of the literals in the path. We add the following constraints. Any solution
that contains (2;14¢/2,2) we forbid by simply adding a constraint that does
not allow the combination of this literal with (x;_1,14¢/2,1). Let us prove that
this constraint does not remove an entire orbit. The literal (2;_1,14¢/2, 1) is only
contained in the p-self-symmetric c-solution. No other c-solution contains this
literal. We note however that we cannot simply remove the literal (x314¢/2,2).
This would remove an orbit of solutions, namely the orbits where all c-solutions
in the symmetric connected components are the same and self-symmetric. Hence,
we have shown that a binary realisable SRVR exists. O

For csps with a MSC whose connected components are cycles, denoted by
CYCLE*, we can prove an analogous result to Theorem 6.

Proposition 6. A binary realisable SRVR exists for any CSP in CYCLE*.

Proof. We consider the case of a single connected component first. For an odd
number of literals in the MScC, the only case where a solution exists, is the case
of a csp with 1 variable and domain size 3. In this case, we can simply add
constraints that forbid 2 literals with unary constraints. A MSC that is an odd
cycle of length greater than 3 does not have a solution. For a satisfiable csp with
a MSC that is an even cycle of size 2n, the CSP has n variables each with domain
size 2 and we have one orbit of solutions, so we can rely on Theorem 4.

For csps with more than one connected component, we note that we do not
have the case of self-symmetric solutions in the connected components as in the
proof of Theorem 6. Hence, the arguments for the case of a single connected
component suffice to terminate this proof. O

Theorem 6 and Proposition 6 extend naturally to any Csp with a MScC that
consists of connected components that are either cycles or paths.

7 Conclusion and Further Work

We considered complete symmetry breaking for the full group of constraint sym-
metries in this paper. We obtained the following bounds on the arities of symme-
try breaking constraints. We showed that no reduction rule for LLCs will succeed
in reducing the arity of the LLCs of all csPs, therefore obtaining an upper bound
on the arities of LLCs. However, we also showed that constraints of arity [n/2]+1
always exist that provide complete symmetry breaking. The latter is an existence



result and does not come with an algorithm. Further work could try to find vari-
able ordering strategies, such that reduction rules will always reduce the arity of
LLCs. We found a lower bound on the arities of symmetry breaking constraints:
we proved that binary csps exist where complete symmetry breaking constraints
must be at least ternary. However, we also presented various special cases of CSPs
where binary constraints break all symmetries.
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