
Symmetries and Lazy Clause Generation

Geoffrey Chu1, Maria Garcia de la Banda2, Chris Mears2, and Peter J.
Stuckey1

1 National ICT Australia, Victoria Laboratory,
Department of Computer Science and Software Engineering,

University of Melbourne, Australia
{gchu,pjs}@csse.unimelb.edu.au

2 Faculty of Information Technology,
Monash University, Australia

{cmears,mbanda}@infotech.monash.edu.au

Abstract. Lazy clause generation is a powerful approach to reducing
search in constraint programming. This is achieved by recording sets of
domain restrictions that previously lead to failure as new clausal prop-
agators. Symmetry breaking approaches are also powerful methods for
reducing search by recognizing that parts of the search tree are symmet-
ric and do not need to be explored. In this paper we show how we can
successfully combine symmetry breaking methods with lazy clause gen-
eration. Further, we show that the more precise nogoods generated by a
lazy clause solver allow our combined approach to exploit redundancies
that cannot be exploited via any previous symmetry breaking method,
be it static or dynamic.

1 Introduction

Lazy clause generation [6] is a hybrid approach to constraint solving that com-
bines features of finite domain propagation and Boolean satisfiability. Finite
domain propagation is instrumented to record the reasons for each propagation
step. This creates an implication graph like that built by a SAT solver, which may
be used to create efficient nogoods that record the reasons for failure. These no-
goods can be propagated efficiently using SAT unit propagation technology. The
resulting hybrid system combines some of the advantages of finite domain con-
straint programming (high level model and programmable search) with some of
the advantages of SAT solvers (reduced search by nogood creation, and effective
autonomous search using variable activities). Thanks to this lazy clause genera-
tion provides state of the art solutions to a number of combinatorial optimization
problems such as Resource Constrained Project Scheduling Problems [7].

Symmetry breaking methods aim at speeding up the execution by pruning
parts of the search tree known to be symmetric to those explored. While static
symmetry breaking methods achieve this by adding constraints to the origi-
nal problem, dynamic symmetry breaking methods alter the search. As we will
see later, combining static symmetry breaking with lazy clause generation is
straightforward and quite successful. However, dynamic symmetry breaking can
sometimes be more effective than static symmetry breaking. Thus, we are also

interested in combining lazy clause generation with dynamic symmetry breaking
methods. While this combination is much more complex, it also allows us to ex-
ploit certain types of redundancies which were previously impossible to exploit
via any other traditional static or dynamic symmetry breaking method.

As we will show in this paper, the key to the success of our combination
resides in the fact that dynamic symmetry breaking methods can also be defined
in terms of nogoods. In particular, they can be thought of as utilising symmetric
versions of nogoods derived at each search node to prune off symmetric portions
of the search space. Thus, both lazy clause generation and dynamic symmetry
breaking use nogoods to prune the search space. The differences arise in the kind
of nogoods used and in the way these nogoods are used. Traditional dynamic
symmetry breaking methods such as SBDS [4] and SBDD [3, 1], use what we will
call the choice nogood, i.e. the nogood formed by taking the entire set of current
decision assignments. On the other hand, lazy clause solvers [6] use what is
called the first unique implication point (1UIP) nogood (described in Section 3),
which has been empirically found to be much stronger than choice nogoods in
terms of pruning strength as clausal propagators. As our theoretical exploration
will show, this difference in pruning strength carries over to dynamic symmetry
breaking methods. Combining lazy clause generation and dynamic symmetry
breaking allows us to take advantage of 1UIP nogoods (as lazy evaluation does)
and of symmetric 1UIP nogoods (rather than of symmetric choice nogoods, as
dynamic symmetry breaking does). This leads to strictly more pruning.

2 Finite Domain Propagation

Let ≡ denote syntactic identity and vars(O) denote the set of variables of ob-
ject O. We use ⇒ and ⇔ to denote logical implication and logical equivalence,
respectively.

A constraint problem P is a tuple (C,D), where C is a set of constraints and
D is a domain which maps each variable x ∈ vars(C) to a finite set of integers
D(x). The set C is logically interpreted as the conjunction of its elements, while
D is interpreted as ∧x∈vars(C)x ∈ D(x). A variable x is said to be Boolean if
D(x) = [0, 1], where 0 represents false and 1 represents true.

An equality literal of P ≡ (C,D) is of the form x = d, where x ∈ vars(C)
and d ∈ D(x). A valuation θ of P over set of variables V ⊆ vars(C) is a set
of equality literals of P with exactly one literal per variable in V . It can be
understood as a mapping of variables to values. The projection of valuation θ
over a set of variables U ⊆ vars(θ) is the valuation θU = {x = θ(x)|x ∈ U}.

A constraint c ∈ C can be considered a set of valuations solns(c) over the
variables vars(c). Valuation θ satisfies constraint c iff vars(c) ⊆ vars(θ) and
θvars(c) ∈ c. A solution of P is a valuation over vars(P) that satisfies every
constraint in C. We let solns(P) be the set of all its solutions. Problem P is
satisfiable if it has at least one solution and unsatisfiable otherwise.

An inequality literal for problem P = (C,D) has the form x ≤ d or x ≥ d
where x ∈ vars(C) and d ∈ D(x). A disequality literal for x has the form x 6= d
where d ∈ D(x). The equality, inequality and disequality literals of P , together
with the special literal false representing failure, are denoted the literals of P .
Literals represent the basic changes in domain that occur during propagation.

A constraint c is implemented by a propagator fc which is a function from
domains to domains that ensures that c ∧ D ⇔ c ∧ fc(D). We can record the
new information obtained by running fc on domain D as the set of literals which
are newly implied: new(fc, D) = {l | D 6⇒ l ∧ fc(D)⇒ l}. We will assume that
we remove from this set literals that are redundant. Note that if the propagator
detects failure we assume new(fc, D) = {false}.

Example 1. Consider the actions of propagator fc of constraint c ≡
∑5

i=1 xi ≤ 12
on the domain D(x1) = {1}, D(x2) = D(x3) = D(x4) = D(x5) = [2 .. 10]. Now
D′ = fc(D) has D(x2) = D(x3) = D(x4) = D(x5) = [2 .. 5]. Hence, as defined
new(fc, D) includes x2 ≥ 2, x2 ≤ 5, x2 ≤ 6, x2 ≤ 7, Since the second literal
makes those following redundant, we assume they are not part of the result. ut

Given a root constraint problem P ≡ (C,D), constraint programming solves
P by a search process that first uses a constraint solver to determine whether P
can immediately be classified as satisfiable or unsatisfiable. We assume a prop-
agation solver, denoted by solv, which when applied to P repeatedly applies
propagators, updating the domain, until each returns an empty set of new liter-
als. The final resulting domain D′ is such that D′ ⇒ D and C∧D ⇔ C∧D′. The
solver detects unsatisfiability if any D′(x) = ∅ for some x ∈ vars(C). We assume
that if the solver returns a domain D′ where all variables are fixed then the solver
has detected satisfiability of the problem and D′ is a solution. If the solver can-
not immediately determine whether P is satisfiable or unsatisfiable, the search
splits P into n subproblems Pi = (C∧ci, D′) where C∧D′ ⇒ (c1∨c2∨ . . .∨cn))
and iteratively searches for solutions to them.

The idea is for the search to drive towards subproblems that can be immedi-
ately detected by solv as being satisfiable or unsatisfiable. This solving process
implicitly defines a search tree rooted by the original problem P where each node
represents a new (though perhaps logically equivalent) subproblem P ′, which will
be used as the node’s label. In this paper we restrict ourselves to the case where
each ci added by the search takes the form of a literal (referred to as a decision
literal). While this is not a strong restriction, it does rule out some kinds of
constraint programming search. We can identify any subproblem P ′ appearing
in the search tree for P = (C,D) by the set of decision literals c1, . . . , cn taken
to reach P ′. We define choices(P ′) = C ′ where P ′ = (C ∪ C ′, D′).

3 Lazy Clause Generation

Lazy clause generation [6] is a hybrid of finite domain and SAT solving where
each FD propagator is extended to be able to explain its propagations. An integer
variable x in problem P = (C,D) with initial domain D(x) = [l .. u] is correlated
to a set of Boolean variables {[[x = d]] | l ≤ d ≤ u} ∪ {[[x ≤ d]] | l ≤ d < u} that
represent the domain changes possible for the variable (note that [[x ≤ u]] is
always true). Note that for variables x with initial domain D(x) = [0 .. 1] we
can represent them using the single Boolean variable [[x = 1]]. In order to prevent
meaningless assignments to these Boolean variables we add Boolean constraints

to the constraint problem that define the conditions that relate them.

[[x ≤ d]]→ [[x ≤ d+ 1]], l ≤ d ≤ u− 2
[[x ≤ d]] ∧ ¬[[x ≤ d− 1]]↔ [[x = d]], l < d ≤ u− 1

[[x ≤ l]]↔ [[x = l]]
¬[[x ≤ u− 1]]↔ [[x = u]]

Rather than directly using the Boolean variables attached to an integer vari-
able we will use equality, inequality and disequality literals. Each equality, in-
equality and disequality literal can be considered as simply more explicit notation
for a Boolean literal using the Boolean variables defined above:

x = d ≡ [[x = d]] x ≤ u ≡ true
x 6= d ≡ ¬[[x = d]] x ≥ d ≡ ¬[[x ≤ d− 1]], l < d
x ≤ d ≡ [[x ≤ d]], d < u x ≥ l ≡ true.

For lazy clause generation, if a propagator fc implementing constraint c in-
fers a new literal (equality, inequality, or disequality) on the domain of one of its
variables, or failure, it must explain this literal in terms of the Boolean repre-
sentation of the variables involved in the propagator. An explanation for literal
l is S → l where S is a set of literals. A correct explanation for l by fc prop-
agating on a problem with initial domain D, is an explanation S → l where
c ∧ S ∧ D ⇒ l. Clearly, an explanation corresponds directly to a clause on the
underlying Boolean representation. For example, the propagator for constraint
x 6= y may infer literal y 6= 3 given literal x = 3. This might be explained as
{x = 3} → y 6= 3 corresponding to the clause [[x = 3]]→ ¬[[y = 3]].

In a lazy clause generation solver each new literal l inferred by a propagator
fc is recorded in a stack in the order of generation. Furthermore, the propagator
returns an explanation for l that is attached to l. The implication graph is thus
a stack of literals each with an attached explanation, or marked as a decision
literal. We define the decision level for any literal as the number of decision
literals pushed in before it in the stack.

Example 2. Consider the following constraint problem P = (C,D) where C ≡
{
∑5

i=1 xi ≤ 12, alldiff ([x1, x2, x3, x4, x5])} and D(xi) = [1 .. 8] , 1 ≤ i ≤ 5. If
the search chooses x1 = 1 we arrive at subproblem P1 = (C ∪ {x1 = 1}, D).
Then the alldiff constraint determines that x2 6= 1 from set of literals {x1 = 1}
(i.e., with explanation {x1 = 1} → x2 6= 1), and similarly for x3, x4 and x5.
This builds the second column of the implication graph in Figure 1. Then, the
domain constraints for x2 determine that x2 ≥ 2 from {x2 6= 1} and similarly
for the domain constraints of x3, x4, and x5, building the third column. The sum
constraint determines that the upper bound of each of x2, x3, x4 and x5 is 5
from the lower bounds in the third column, thus building the fourth column.
The new domain is D′(x1) = {1}, D′(xi) = [2 .. 5] , 2 ≤ i ≤ 5. If the search
now chooses x2 = 2, we arrive at subproblem P2 = (C ∪ {x1 = 1, x2 = 2}, D′).
Then the alldiff constraint determines x3 6= 2, x4 6= 2, and x5 6= 2 (the 6th
column) from {x2 = 2}. The domain constraints determine that x3 ≥ 3 from
{x3 ≥ 2, x3 6= 2}, similarly for x4 and x5. The sum constraint determines that
x4 ≤ 3 from {x2 = 2, x3 ≥ 3, x5 ≥ 3}, similarly for x5 ≤ 3. Then, the domain

x1 = 1

&&MMMMM

$$

��

��

x2 6= 1 // x2 ≥ 2

&&

��

��

��

44

x2 ≤ 5 x2 = 2

&&MMMMM

##

��

x3 6= 1 // x3 ≥ 2

&&

��

88
**

x3 ≤ 5 x3 6= 2 // x3 ≥ 3

&&MMMMM

��;;;;;;;;;;

x4 6= 1 // x4 ≥ 2

&&

AA

88
++

x4 ≤ 5 x4 6= 2 // x4 ≥ 3

&&MMMMM
**

x4 ≤ 3 // x4 = 3

%%KKKKK

x5 6= 1 // x5 ≥ 2

88

AA

FF

55x5 ≤ 5 x5 6= 2 // x5 ≥ 3

88qqqqq
44x5 ≤ 3 // x5 = 3 // false

Fig. 1. Implication graph of propagation. Decision literals are double boxed.

constraints determine x4 = 3 from {x4 ≥ 3, x4 ≤ 3}, similarly for x5 = 3 and
finally the alldiff constraint determines unsatisfiability of x4 = 3 and x5 = 3. ut

A nogood N is set of literals. A correct nogood N from problem P = (C,D)
is one where C∧D ⇒ ¬∧l∈N l, that is, in all solutions of P the conjunction of the
literals in N is false. Once we have an implication graph we can use it determine
a correct nogood that explains each failure. The usual approach to building a
nogood is to use the implication graph to eliminate literals starting from original
nogood N from the explanation of failure N → false, until only one literal at the
the current decision level remains. This is the 1UIP (First Unique Implication
Point) nogood. The search then records this nogood as a clausal propagator and
backtracks to the decision level of the second latest literal in the nogood, where
it applies the newly derived nogood propagator.

Example 3. Continuing from Example 2 using the implication graph in Figure 1,
we start with the explanation of failure {x4 = 3, x5 = 3} → false which gives
us the initial nogood {x4 = 3, x5 = 3}. Since both literals were determined at
the current decision level, we replace the last one x5 = 3 by the antecedents in
its explanation {x5 ≥ 3, x5 ≤ 3} → x5 = 3 to obtain {x5 ≥ 3, x5 ≤ 3, x4 =
3}. We keep removing the last literal with the current decision level until only
one literal remains at the current decision level. The resulting 1UIP nogood is
{x2 ≥ 2, x3 ≥ 2, x4 ≥ 2, x5 ≥ 2, x2 = 2} which can be simplified to {x3 ≥ 2, x4 ≥
2, x5 ≥ 2, x2 = 2}, since the last literal implies the first.

On backtracking to undo the choice x2 = 2, the search arrives at subproblem
P1 and immediately determines that x2 6= 2 using the new nogood. The impor-
tant point is that if the search ever reaches a state where {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2}
hold we will make the same inference, or indeed if it reaches a point where
{x2 = 2, x3 ≥ 2, x4 ≥ 2} we will infer that x5 < 2. ut

In general, we restrict ourselves to creating nogoods which are asserting,
that is, there should be only a single literal l in the nogood with the latest
decision level. This allows us, upon backtracking to the decision level of the
second latest literal, to assert ¬l since the remaining literals are true. Another

possible asserting nogood generation approach is the so called decision nogood,
where we start from the original explanation of failure and keep eliminating all
literals which are not decision literals (that is, have an explanation). This builds
much weaker nogoods in general than 1UIP nogoods.

Example 4. Nogood {x2 ≥ 2, x3 ≥ 3, x4 ≥ 3, x5 ≥ 3} is correct for Example 2
but is not asserting since the last 3 literals belong to the latest decision level.
The decision nogood for Example 2 is {x1 = 1, x2 = 2}. ut

4 Symmetries and Nogoods

A symmetry of constraint problem P = (C,D) is a bijection ρ on the equality
literals of P such that, for each valuation θ of P , ρ(θ) = {ρ(l) | l ∈ θ} is a
solution of P iff θ is a solution of P . Variable symmetries, value symmetries and
variable-value symmetries are all particular cases of symmetries.

Example 5. A variable symmetry ρ swapping variables x1 and x2 is defined as
ρ(x1 = d) ≡ (x2 = d), ρ(x2 = d) ≡ (x1 = d), and ρ(v = d) ≡ (v = d), v 6∈
{x1, x2} for all values d. We denote it � x1 ��� x2 �. A value symmetry
ρ swapping value 1 for 3 and 2 for 4 is defined by ρ(v = 1) ≡ (v = 3), ρ(v =
2) ≡ (v = 4), ρ(v = 3) ≡ (v = 1), ρ(v = 4) ≡ (v = 2), ρ(v = d) ≡ (v = d), d 6∈
{1, 2, 3, 4} for all variables v ∈ vars(P). We denote it �1, 2���3, 4�. ut

Static Symmetry Breaking effectively reduces the search required to find the
first, all or the best solution to a constraint problem by adding constraints that
remove symmetric solutions. In particular, lexicographical constraints have been
used to statically eliminate symmetries (see e.g.[2]) with excellent results. This
is good news since static symmetry breaking is obviously compatible with lazy
clause generation: we only require the new symmetry breaking constraints to
have explaining propagators, which are used just like other propagators. How-
ever, static symmetry breaking is not always the best option. If we have multiple
symmetries, care must be taken so that the static symmetry breaking constraints
for each symmetry do not interact badly. Also, static symmetry breaking con-
straints may interact badly with a given search strategy, making the search take
even longer to find a solution. Hence, we are also interested in dynamic symmetry
breaking methods.

Dynamic Symmetry Breaking techniques can be interpreted as pruning sym-
metric portions of the search space by propagating symmetric versions of no-
goods. Consider a search strategy where only equality literals are used to split
search, as it is usual for symmetry papers. Then if subproblem P ′ fails choices(P ′)
is a correct nogood of P . Let us denote this as the choice nogood. Since a gen-
erated nogood N is a globally true statement, it holds at any point during the
search and, hence, any symmetric version of N is also a correct nogood. Note
that the symmetric version, ρ(N), of a nogood N consisting of only equality
literals is easy to define: ρ(N) = {ρ(l) | l ∈ N}.

Example 6. In problem P of Example 2 the variables {x1, x2, x3, x4, x5} are in-
distinguishable (i.e., any two can be swapped). Since the subproblem P ′ with

choices(P ′) = {x1 = 1, x2 = 2} fails, we have that {x1 = 1, x2 = 2} is a cor-
rect nogood for P . Clearly, any symmetric version, such as {x2 = 1, x1 = 2} or
{x3 = 1, x5 = 2}, is also a correct nogood. ut

Such nogoods can be used to prune search in two main ways. Symmetry
breaking by dominance detection (SBDD) [3, 1] keeps a store N of the non-
subsumed choice nogoods derived during search so far. For each subproblem P ′,
it checks whether there exists N ∈ N and symmetry ρ, such that choices(P ′)⇒
ρ(N). If such a pair exists it can immediately fail subproblem P ′. Symmetry
breaking during search (SBDS) [4] works as follows. Whenever a subproblem P ′

with choices(P ′) = {d1, d2, . . . , dn, dn+1} fails, SBDS backtracks to the parent
suproblem P ′′ in level n and, for each symmetry ρ, it locally posts in P ′′ the con-
ditional constraint (ρ(d1)∧ . . .∧ρ(dn))→ ¬ρ(dn+1). Note that these constraints
will only propagate when reaching a subproblem P ′′′ such that C ∪ choices(P ′′′)
entails the left hand side of the constraint. This will never happen if the symme-
try is broken, i.e., if ∃di s.t. ¬ρ(di) is entailed, and that is why SBDS ignores any
symmetry ρ which is known to be broken at P ′′. Still, SBDS can post too many
local constraints when the number of symmetries is high. Thus, some incomplete
methods ([5] and the shortcut method in [4]) post only those constraints that
are known to immediately propagate.

We decided to integrate SBDS, rather than SBDD, with our lazy clause
generation since SBDS is much closer to the lazy clause generation approach:
they both compute and post nogoods. The main differences being that SBDS
only computes decision nogoods and posts symmetric versions of these nogoods.

5 Symmetries and Lazy Clause Generation

5.1 SBDS-choice

We can naively add SBDS to a lazy clause solver by simply using symmetric
versions of the choice nogood at each node to prune off symmetric branches.
Hence, we just reimplement standard SBDS in the lazy clause generation solver,
but still gain the advantage of reduced search through the lazy clause generation
nogoods.

5.2 SBDS-1UIP

Adapting SBDS to use 1UIP nogoods is simple: every time a 1UIP nogood
{l1, . . . , ln} → ln+1 is inferred for subproblem P ′, upon backtracking to parent
P ′′ and for each symmetry ρ, we post the symmetric nogood {ρ(l1), . . . , ρ(ln)} →
¬ρ(ln+1), ignoring those ρ that are known to be broken at P ′′. We can check this
last condition during the construction of the symmetric nogood, as we produce
the literals ρ(l1), . . . , ρ(ln) one at a time. If at any point, one of ρ(li) is false in
P ′′, we can immediately abort and move on to the next symmetry.

In contrast to SBDS-choice, in SBDS-1UIP we have to post the symmetric
nogoods as global rather than local constraints. This is because in SBDS-choice,
when you backtrack from parent P ′′ to grandparent P ′′′, the choice nogood at
P ′′′ subsumes that at P ′′ and, therefore, SBDS-choice will always post a set of

symmetric nogoods that subsumes the symmetric nogoods posted below that
point. In contrast, there is no guarantee that the 1UIP nogood at P ′′′ subsumes
the one at P ′′ (and in general it doesn’t).

Example 7. Consider the problem of Example 2. On backtracking to P1 we infer
the nogood {x3 ≥ 2, x4 ≥ 2, x5 ≥ 2} → x2 6= 2. With this we not only infer
x2 6= 2 but also the symmetric inferences x3 6= 2 (from {x2 ≥ 2, x4 ≥ 2, x5 ≥ 2}),
x4 6= 2 and x5 6= 2. At this point, a domain consistent alldiff will determine
unsatisfiability, and generate the nogood ∅ → x1 6= 1, which does not imply the
previously generated nogood. ut

We show that SBDS-1UIP exploits strictly more symmetries than SBDS-
choice if the asserting literals in the nogoods are the same, and propagation has
the following property:

Definition 1. A set of propagators for problem P has global symmetric mono-
tonicity iff, for any explanation {d1, . . . , dn} → l produced and any symmetry ρ
of P , whenever ρ(d1), . . . , ρ(dn) are entailed, then ρ(l) must also be entailed. ut

A sufficient condition for global symmetric monotonicity is the following:
all propagators are monotonic, and all symmetries are propagator symmetric
(propagators map to propagators under the symmetry). The proof of this is
straightforward and we omit it for lack of space. Global symmetric monotonicity
is therefore very common, as most propagators are monotonic, and the vast
majority of symmetries that are usually exploited are propagator symmetric.

Theorem 1. Suppose global symmetric monotonicity holds, and we derive the
choice nogood {d1, . . . , dn} → ¬dn+1, and the 1UIP nogood {l1, . . . , lm} → ¬dn+1

from the same conflict. If the nogood {ρ(d1), . . . , ρ(dn)} → ¬ρ(dn+1) propagates
then so does {ρ(l1), . . . , ρ(lm)} → ¬ρ(dn+1).

Proof. Suppose the symmetric version of the choice nogood can propagate for
domain D′. Then ρ(d1), . . . , ρ(dn) must all be entailed. From the implication
graph from which we derived the 1UIP nogood, we know that d1 ∧ . . .∧ dn ⇒ li
for any i. Since global symmetric monotonicity holds and ρ(d1), . . . , ρ(dn) are
entailed, we know that ρ(li) must also be entailed for any i. This means that the
symmetric version of the 1UIP nogood can also propagate. ut

The theorem shows that the symmetric 1UIP nogood subsumes the symmet-
ric choice nogood, since it will always produce any implication that the sym-
metric choice nogood can, but not vice versa. This means that SBDS-1UIP can
exploit strictly more symmetry than SBDS-choice. This result is valid for both
complete SBDS, as well as for incomplete SBDS methods which only post no-
goods that will immediately produce an implication.

5.3 Beyond complete methods?

The previous result is somewhat surprising considering that SBDS-choice is a
“complete” symmetry breaking method, which guarantees that once we have
examined a certain partial assignment, we will never examine any symmetric

•
x3 = 3

~~~~~~~

///////////// •
x6 ∈ {1, 2, 3, 4, 5}

/////////////

@@@@@@@

•x2 = 2 •
x4 = 4

~~~~~~~

/////////////

OOOOOOOOOOOOOO •x7 ∈ {1, 2, 3}

�������������

•x1 = 1 •
x10 ∈ {2, 3, 5}

•

x5 = 5

oooooooooooooo

@@@@@@@ •x8 ∈ {1, 2, 3}

•

~~~~~~~

x9 ∈ {1, 2, 3}

Fig. 2. A graph colouring problem where we can exploit additional symmetries

version of it. However, this does not actually mean that we have exploited all
possibly redundancies arising from symmetry. Roughly speaking, SBDS can only
exploit symmetries on the already labelled parts of the problem. It is incapable
of exploiting symmetries in the unlabelled parts of the problem.

Example 8. Consider the graph colouring problem shown in Figure 2, where we
are trying to colour the nodes with at most 5 colours (all of which are inter-
changeable). After making the decisions x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5,
we have domains as shown in Figure 2. Suppose we label x6 = 1 next. Then
propagation gives x7 ∈ {2, 3}, x8 ∈ {2, 3}, x9 ∈ {2, 3}. Now, suppose we try
x7 = 2. This forces x8 = 3, x9 = 3, which conflicts. The 1UIP nogood from this
conflict is {x8 6= 1, x8 6= 4, x8 6= 5, x9 6= 1, x9 6= 4, x9 6= 5} → x7 6= 2. After
propagating this nogood, we have x7 = 3, which after further propagation, once
again conflicts. At this point, we backtrack to before x6 is labelled and derive
the nogood {x7 6= 4, x7 6= 5, x8 6= 4, x8 6= 5, x9 6= 4, x9 6= 5} → x6 6= 1.

Now, let’s examine what SBDS-1UIP can do at this point. It is clear that
if we apply the value symmetries � 1��� 2� or � 1��� 3� to this
nogood, the LHS remains unchanged while the RHS changes. Therefore, we can
post these two symmetric nogoods and immediately get the inferences x6 6= 2
and x6 6= 3. On the other hand, SBDS-choice can’t do anything. The choice
nogood is {x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5} → x6 6= 1, and it is easy to
see that no matter which value symmetry we use on it, the LHS will have a set
of literals incompatible with the current set of decisions and thus cannot imply
the RHS. ut

The kind of redundancy we exploit here certainly arises from symmetry. How-
ever, it is extremely difficult to exploit. Roughly speaking, we can say that we are
exploiting the symmetry that exists in the sub-component of a subproblem which
is the actual cause of failure. In this case, they are the variables x6, x7, x8, x9,
their current domains in the subproblem, and the constraints linking them. Even
conditional symmetry breaking constraints are powerless to exploit such symme-
tries, as the subproblem shown in Figure 2 does not have the value symmetries
�1���2� or�1���3� due to the existence of x10. It is only because



a lazy clause solver gives us such precise information about which variables are
involved in failures that we can exploit this kind of redundancy. Although the
above example might seem somewhat contrived, we show in our experiments
in Section 7 that these kinds of redundancies do occur in practice and can be
exploited for more speedup.

6 Symmetries on 1UIP nogoods

SBDS-1UIP is much more powerful than SBDS-choice, however, having to ma-
nipulate 1UIP nogoods raises a whole host of other problems. In particular,
unlike the choice nogoods which usually only involve equality literals on search
variables, 1UIP nogoods can contain virtually any literal in the problem, i.e.
they may include disequality literals, inequality literals, and also literals involv-
ing intermediate variables. The last is a rather serious issue as symmetries are
often defined in terms of the output or search variables, and may not properly
describe how intermediate variables map to each other. We now examine each
of these issues in more detail.

6.1 Disequality and Inequality Literals

One of the strengths of lazy clause generation is the use of both equality literals
and inequality literals in explanations and nogoods. This makes many explana-
tions much shorter and is effectively essential for explaining bounds propagation.

Extending a literal symmetry ρ to disequality literals is straightforward: if
ρ(x = d) ≡ x′ = d′, then ρ(x 6= d) ≡ x′ 6= d′. Extending a literal symmetry
ρ to map inequality literals is harder. Given a nogood N which may involve
equality, inequality and disequality literals and a variable symmetry σ it is easy
to generate σ(N) by simply applying the variable renaming σ to N .

Example 9. Consider the problem of Example 2. This problem has variable inter-
changeability symmetries since each of {x1, x2, x3, x4, x5} are indistinguishable.
Hence, any variable renaming of the generated nogood {x3 ≥ 2, x4 ≥ 2, x5 ≥
2, x2 = 2} is valid, e.g. {x2 ≥ 2, x3 ≥ 2, x4 ≥ 2, x5 = 2} or {x1 ≥ 2, x3 ≥ 2, x5 ≥
2, x4 = 2} ut

However, it’s not so straightforward for value symmetries and variable-value
symmetries. For such symmetries, inequality literals do not map simply to other
literals. To apply such a symmetry to a nogood then, we first need to transform
the nogood into an equivalent nogood involving only equality and disequality
literals. After this we can apply the symmetry as usual.

Assume that in P = (D,C) that D(x) = [ l .. u ] then the transformation eq
on x literals is defined as

eq(x = d) ≡ {x = d} eq(x 6= d) ≡ {x 6= d}
eq(x ≤ d) ≡ {x 6= d′ | d ≤ d′ < u} eq(x ≥ d) ≡ {x 6= d′ | l < d′ ≤ d}

We can extend this to a nogood N : eq(N) = ∪l∈N eq(l). We can then define
the symmetric version of a nogoodN for any symmetry ρ defined as a bijection on



equality literals as ρ(N) = {ρ(l) | l ∈ eq(N)} Of course while this transformation
to equality and disequality literals is theoretically fine, in practice it may create
very unwieldy nogoods.

We can, in effect, implement this transformation by slightly modifying the
nogood learning process. We will require that no inequality literals appear in the
nogood, hence we must continue to explain them until none remain. As long as
all decisions are either equality or disequalities this will still result in asserting
nogoods always being discovered.

Example 10. Revisiting the explanation process of Example 3, the nogood dis-
covered includes inequality literals, so rather than stopping the explanation pro-
cess at this point we continue. The current nogood is {x2 ≥ 2, x3 ≥ 2, x4 ≥
2, x2 = 2}, we explain each of the inequalities using the implication graph to
arrive at {x2 6= 1, x3 6= 1, x4 6= 1, x2 = 2} which can again be simplified to
{x3 6= 1, x4 6= 1, x2 = 2} and which does involve inequality literals. ut

6.2 Intermediate variables

An important problem for combining dynamic symmetry breaking and lazy
clause generation is the fact that intermediate variables may be introduced in
the course of converting a high level model to the low level variables and con-
straints implemented by the solver. For example, a high level model written in
the modeling language MiniZinc is first flattened into primitive constraints, with
intermediate variables introduced as necessary, and then given to a solver, which
may then introduce its own variables, e.g. in global propagators implemented by
decomposition. 1UIP nogoods often contain literals from such intermediate vari-
ables. However, if the symmetry declaration was made only in the high level
model, it may not specify how literals on such introduced intermediate variables
map to each other. Thus it is necessary to consider how symmetries can be
extended to include the literals on intermediate variables.

Intermediate variables are sometimes idempotent under the symmetries, that
is for each symmetry ρ of P , we can extend ρ to ρ′ where ρ′(l) = ρ(l), vars(l) ⊆
vars(C) and ρ′(l) = l otherwise. The extended ρ′ is a symmetry of the problem
with intermediate variables. We can imagine automating the proof of idempo-
tence of intermediate variables under symmetries.

Example 11. Consider a model for concert hall scheduling The problem has a
value interchangeability between all values [ 1 .. k ] for the k identical concert
halls. The model includes the constraint

constraint forall (i, j in Offers where i < j /\ o[i,j])
(x[i] = k+1 \/ x[j] = k+1 \/ x[i] != x[j]);

which requires that for two overlapping concerts i and j (input data o[i, j] is
true) either i is not scheduled (represented as the hall used x[i] is k+1), j is not
scheduled, or the halls used are different. But this constraint is implemented, by
reification, as something equivalent to

array[Offers] of var bool: unscheduled;
array[Offers,Offers] of var bool: different;



constraint forall(i in Offers)(unscheduled[i] = (x[i] = k+1));
constraint forall (i, j in Offers where i < j /\ o[i,j])(

different[i,j] = (x[i] != x[j]) /\
(unscheduled[i] \/ unscheduled[j] \/ different[i,j]));

since the clausal propagator works on Boolean variables, and hence we need to
reify the subexpressions. Each introduced variable unscheduled [i] and different [i, j]
is idempotent under the value symmetries. Hence, for any symmetry ρ on the
original variables we can extend it trivially. ut

Sometimes we need to extend our symmetry declarations to take into account
the intermediate variables.

Example 12. In the graceful graph problem each node is labelled by an number
from 0 to the number of edges. The difference between each edges node labels
must be different. This is encoded as

constraint alldifferent([ abs(m[o[i]] - m[d[i]]) | i in Edges]);

where m is the labelling on nodes, and o[i], d[i] are the origin and destination of
edge i. This constraint is implemented by flattening as something equivalent to

array[Edges] of var int: diff;
constraint forall(i in Edges)(diff[i] == m[o[i]] - m[d[i]]);
srray[Edges] of var int: adiff;
constraint forall(i in Edges)(adiff[i] == abs(diff[i]));
constraint alldifferent(adiff);

The graceful graph problem can have symmetries arising from symmetries in
the underlying graph. Suppose the underlying graph has 3 nodes and 2 edges
(1,2) and (3,2) numbered 1 and 2. There is a symmetry between the two edges
captures by the row interchangeability ρ =� m[1],m[2] ��� m[3],m[2] �
which indicates we can swap the edges.

Once we consider the intermediate variables, we need to extend this sym-
metry to �m[1],m[2], diff [1], adiff [1]���m[3],m[2], diff [2], adiff [2]� thus
interchanging all information on about the edges simultaneously. ut

Sometimes it is not easy to see how to extend symmetries to all intermediate
variables, and indeed quite often intermediate variables are introduced far below
the modelling level. In order to handle these cases we modify learning as follows.

We extend the model to explicitly mark which literals are allowed to appear in
nogoods. Then we modify the learning process to always explain any literals that
are not marked. There is a requirement that all literals generated by search are
allowed to appear in nogoods. This ensures that the process always terminates
and always generates an asserting nogood.

Example 13. In order to tell the solver that the concert hall scheduling model
that it can use only equality and disequality literals for the x variables as well
as the the intermediate variables in nogoods we annotate the declarations:

array[Offers] of var 1..k+1:x :: symmetric_nogoods_eq;
array[Offers] of var bool: unscheduled :: symmetric_nogoods;
array[Offers,Offers] of var bool: different :: symmetric_nogoods;



The declarations ensure that any other literal will never appear in a nogood to
which we apply symmetry. Note that his means that bounds literals x[i] ≤ d will
be replaced by inequality literals. ut

7 Experiments

We now provide experimental evidence for the claims we made in the earlier parts
of the paper. The two problem we will examine are the Concert Hall Schedul-
ing problem and the Graph Colouring problem. We take the benchmarks used
by [5].The benchmarks are available at http://www.cmears.id.au/symmetry/
symcache.tar.gz.

We implemented SBDS in Chuffed, which is a state of the art lazy clause
solver. We run Chuffed with three different versions of SBDS. The first version
is choice, where we use symmetric versions of choice nogoods. The second is
1UIP, where we use symmetric versions of 1UIP nogoods. The third version we
call crippled, where we use symmetric versions of 1UIP nogoods, but only those
nogoods derived from symmetries where choice could also exploit the symmetry.
We compare against Chuffed with no symmetry breaking (none) and with stati-
cally added symmetry breaking constraints (static). Finally, we compare against
an implementation of SBDS in [5], which is called Lightweight Dynamic Sym-
metry Breaking (LDSB). LDSB is implemented on the Eclipse constraint pro-
gramming platform and was the fastest implementations of dynamic symmetry
breaking on the two problems we examine, beating GAP-SBDS and GAP-SBDD
by significant margins.

All versions of Chuffed are run on Xeon Pro 2.4GHz processors. The results
for LDSB were run on an Core i7 920 2.67 GHz processor. We group the instances
by size, so that the times displayed are the average run times for the instances
of each size. A timeout of 600 seconds was used. Instances which timeout are
counted as 600 seconds.

The results are shown in Tables 1 and 2. Eclipse LDSB fails to solve many
instances before timeout, and choice fails to solve a few instances. 1UIP, crippled
and static all solve every instance in the benchmarks. In fact, this set of instances,
which is of an appropriate size for normal CP solvers, is a bit too easy for lazy
clause solvers such as Chuffed, as is apparent from the run times.

Comparison between choice and 1UIP shows that SBDS-1UIP is superior
to SBDS-choice. Comparison between crippled and 1UIP shows that the addi-
tional symmetries that we can only exploit with SBDS-1UIP indeed gives us
reduced search and additional speedup. Comparison with static shows that dy-
namic symmetry breaking can be superior to static symmetry breaking on ap-
propriate problems. The comparison with LDSB shows that lazy clause solvers
can be much faster than normal CP solvers, and that they retain this advantage
when integrated with symmetry breaking methods. It also show by proxy that
SBDS-1UIP is superior to GAP-SBDS or GAP-SBDD on these problems.

The total speed difference between 1UIP and LDSB is up to 2 orders of mag-
nitude for the Concert Hall problems and up to 4 orders of magnitude for the
Graph Colouring problems. Most of this speedup can be explained by the dra-
matic reduction in search space, which is apparent from the node counts in the



Table 1. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Concert Hall Scheduling problem

Size none 1UIP crippled choice static LDSB
Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes

20 259.8 686018 0.04 84 0.05 130 0.07 350 0.05 134 0.29 3283
22 381.5 749462 0.07 181 0.08 299 0.17 1207 0.07 183 0.73 7786
24 576.9 1438509 0.10 275 0.11 316 0.78 3426 0.15 486 2.70 12611
26 483.4 1189930 0.10 282 0.19 677 2.26 5605 0.25 685 2.71 12724
28 530.7 1282797 0.68 1611 1.12 2613 3.64 10530 0.42 1041 9.94 57284
30 581.3 1251980 0.27 761 0.53 2042 19.52 48474 0.52 2300 121.50 722668
32 – – 0.40 1522 1.01 4845 21.48 65157 1.31 5712 97.90 641071
34 – – 1.10 2636 3.22 8761 19.86 48837 1.60 4406 72.73 425718
36 – – 1.40 3156 5.02 13606 59.70 131142 2.37 5707 171.14 938439
38 – – 1.91 5053 12.56 26556 82.77 178170 3.51 10518 268.05 1211086
40 – – 2.96 6648 10.27 27028 102.1 219454 6.40 18169 240.84 1220934

Table 2. Comparison of three SBDS implementations in Chuffed, static symmetry
breaking in Chuffed, and LDSB in Eclipse, on the Graph Colouring problems

Uniform
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
30 140.7 282974 0.00 14 0.06 474 0.26 3049 0.02 277 19.63 56577
32 211.4 390392 0.00 17 0.00 146 0.24 3677 0.00 84 14.11 27178
34 213.9 272772 0.00 25 0.29 1182 3.53 11975 0.03 433 22.06 30127
36 – – 0.00 36 0.04 467 6.91 23842 0.01 200 35.66 85505
38 – – 0.00 55 0.04 516 23.55 69480 0.03 526 51.18 107574
40 – – 0.00 83 0.31 1879 21.07 78918 0.06 878 84.16 185707

Biased
Size none 1UIP crippled choice static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Nodes
20 13.25 39551 0.00 27 0.00 32 0.01 639 0.00 29 0.72 1376
22 11.53 63984 0.00 25 0.00 34 0.02 727 0.00 25 0.16 538
24 66.60 154409 0.00 35 0.00 47 0.07 1992 0.00 32 1.91 2114
26 74.77 277290 0.00 55 0.00 93 0.12 3385 0.00 104 9.56 34210
28 130.5 280649 0.00 62 0.00 84 0.58 6402 0.00 103 9.14 37738
30 267.6 480195 0.00 101 0.01 239 10.48 43835 0.01 359 57.18 215932
32 331.7 600772 0.01 232 0.24 1597 9.98 44216 0.16 1864 110.16 288707
34 219.9 387213 0.20 806 0.40 1946 10.26 47470 0.45 1730 64.14 165943
36 – – 0.01 317 0.04 857 27.39 113252 0.80 3226 152.62 327472
38 – – 0.10 798 1.01 5569 31.63 138787 4.12 9413 193.40 508164
40 – – 0.02 410 0.36 2660 24.68 91847 0.12 2133 196.02 476486

results table. The redundancies exploited by lazy clause solvers are different from
those redundancies caused by symmetries, and it is very clear here that by ex-
ploiting both at the same time with SBDS-1UIP, we get much higher speedups
than possible with either of them separately. It should also be noted that Chuffed
with static symmetry breaking constraints is also reasonably fast. While symme-



try breaking constraints cannot exploit the extra redundancies that SBDS-1UIP
can, it does have very low overhead and integrates well with lazy clause.

8 Conclusion

In this paper we have examined dynamic symmetry breaking methods, and un-
derstood them as manipulating the choice nogoods created by normal depth first
search. We show how we can extend these approaches to make use of the better
nogoods generated by lazy clause solvers. This extension introduces a number
of new issues, such as how to deal with disequality and inequality literals, and
literals from intermediate variables. We have built a prototype implementation
combining SBDS with lazy clause generation, which we call SBDS-1UIP. The re-
sulting system can exploit types of redundancies previously impossible to exploit,
and can outperform LDSB by several orders of magnitudes on some problems.

Acknowledgements. NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council.

References

1. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In Principles
and Practice of Constraint Programming - CP 2001, 7th International Conference,
pages 93–107, 2001.

2. Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models.
In Principles and Practice of Constraint Programming - CP 2002, 8th International
Conference, pages 462–476, 2002.

3. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proceedings of the International Conference on Principles and Practice of Constraint
Programming, pages 77–92, 2001.

4. I. Gent and B.M. Smith. Symmetry breaking in constraint programming. In 14th
European Conference on Artificial Intelligence, pages 599–603, 2000.

5. C. Mears. Automatic Symmetry Detection and Dynamic Symmetry Breaking for
Constraint Programming. PhD thesis, Clayton School of Information Technology,
Monash University, 2010.

6. O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

7. A. Schutt, T. Feydy, P.J. Stuckey, and M. Wallace. Why cumulative decomposition
is not as bad as it sounds. In I. Gent, editor, Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, volume 5732 of
LNCS, pages 746–761. Springer-Verlag, 2009.


