Alastair F. Donaldson Peter Gregory
Karen E. Petrie (Eds.)

Symmetry and

Constraint Satisfaction
Problems

Sixth International Workshop
Cité des Congres, Nantes, France, 25th September 2006
Proceedings

Held in conjunction with the
Twelfth International Conference on
Principles and Practice of
Constraint Programming (CP 2006)

Preface

This volume contains a selection of papers on the topic of symmetry breaking for constraint programming, marking
the sixth in a successful series of workshops on the topic. SymCon’06 follows earlier workshops at CP ’01 in Paphos,
Cyprus, at CP ’02 in Ithaca, NY, USA, at CP 03 in Cork, Ireland, at CP ’04 in Toronto, Ontario, Canda, and at
CP ’05 in Barcelona, Spain.

Of the eight papers which make up these proceedings, the first six were invited for presentation at the workshop.
The contributions investigate a range of problems relating to symmetry breaking. Mears et al. present an approach to
implementing symmetry detection techniques proposed by Puget in a paper at last year’s CP conference. Benhamou
and Saidi extend techniques from a paper by Benhamou in the proceedings of SymCon 04 for exploiting symmetry
in not-equals binary constraint networks. The use of comutational group theoretic algorithms to generalise static
symmetry breaking is the topic of a contribution by Jefferson et al. There are two papers on breaking almost-
symmetries in CSPs, by Verroust and Prcovic, and Martin respectively. Martin’s work builds on his notion of weak
symmetry which appeared in the proceedings of SymCon ’'04. A symmetry breaking technique for subgraph pattern
matching is presented by Zampelli et al. Heller and Sellmann investigate the relationship between symmetry breaking
and random restarts. The final paper in the proceedings compares the symmetry breaking during search technique
with the dynamic lex constraints technique (to be presented at CP ’06).

We would like to thank all the authors who submitted papers, the members of the Programme Committee, and
the CP ’06 Workshop and Tutorial chair Barry O’Sullivan. We also thank Chris Jefferson for help in reviewing papers.

These proceedings can be found online at http://www.cis.strath.ac.uk/~pg/symcon06/. After the conference,
we hope to publish a selection of these papers in a volume dedicated to the CP ’06 workshops.

August 2004 Alastair F. Donaldson
Peter Gregory

Karen E. Petrie

(Programme Chairs)

Programme Committee

Rolf Backofen, University of Freiburg, Germany
Belaid Benhamou, Université de Provence (Aix-Marseille I), France
Alan Frisch, University of York, U.K.

Tan Gent, University of St Andrews, U.K.

Warwick Harvey, CrossCore Optimization, U.K.
Tom Kelsey, University of St Andrews, U.K.

Zeynep Kiziltan, Universita di Bologna, Italy

Steve Linton, University of St Andrews, U.K.

Derek Long, University of Strathclyde, U.K.

Igor Markov, University of Michigan, U.S.A.

Pedro Meseguer, ITIA-CSIC, Spain

Tan Miguel, University of York, U.K.

Michela Milano, Universita di Bologna, Italy

Alice Miller, University of Glasgow, U.K.

Steve Prestwich, University College Cork, Ireland
Jean-Francois Puget, ILOG, France

Colva Roney-Dougal, University of St Andrews, U.K.
Meinolf Sellmann, Brown University, U.S.A.

Pascal van Hentenrych, Brown University, U.S.A.
Toby Walsh, NICTA and UNSW, Australia

Workshop Schedule

08:55 - 09:00
09:00 - 09:30
09:30 - 10:00
10:00 - 10:30
10:30 - 11:00
11:00 - 11:30

11:30 - 12:00

12:00 - 12:30

Contents

Welcome

Reasoning by Dominance in Not-Equals Binary Constraint Networks
Belaid Benhamou and Mohamed Réda Saidi oo 9

On Implementing Symmetry Detection
Christopher Mears, Maria Garcia de la Banda and Mark Wallace 1

Solving Partially Symmetrical CSPs
Florent Verroust and Nicolas Prcovic oo e 24

Coffee break

GAPLex: Generalised Static Symmetry Breaking
Chris Jefferson, Tom Kelsey, Steve Linton and Karen Petriec.ooiiiiiiiiinia . 17

Symmetry Breaking in Subgraph Pattern Matching
Stéphane Zampelli, Yves Deville and Pierre Dupontc.oiiiiiiiiiiiiiiiiniean. 31

Dynamic Symmetry Breaking Restarted
Daniel S. Heller and Meinolf Sellmann e 39

Close and lunch

On Implementing Symmetry Detection
Christopher Mears, Maria Garcia de la Banda and Mark Wallace 1

Reasoning by Dominance in Not-Equals Binary Constraint Networks
Belaid Benhamou and Mohamed Reda SGidit e e 9

GAPLex: Generalised Static Symmetry Breaking
Chris Jefferson, Tom Kelsey, Steve Linton and Karenm Petrie 17

Solving Partially Symmetrical CSPs
Florent Verroust and NIcolas Prcovic 24

Symmetry Breaking in Subgraph Pattern Matching
Stéphane Zampelli, Yves Deville and Pierre DUpont e 31

Dynamic Symmetry Breaking Restarted
Daniel S. Heller and Meinolf Sellmann e 39

Speeding up Weak Symmetry Exploitation for Separable Objectives
Roland Martin 48

A Comparison of SBDS and Dynamic Lex Constraints
Jean-Francois PUGet 56

ii

On implementing symmetry detection

C. Mears and M. Garcia de la Banda and M. Wallace
Clayton School of IT, Monash University, 6800, Australia
{cmears,mbanda,wallace } @mail.csse.monash.edu.au

Abstract

Automatic symmetry detection has received a
significant amount of interest, which has re-
sulted in a large number of proposed methods.
This paper reports on our experiences while im-
plementing the approach of [9]. In particular,
it proposes a modification of the approach to
deal with general expressions, discusses the in-
sights gained, and gives the results of a prelim-
inary experimental evaluation of the accuracy
and efficiency of the approach.

1 Introduction

Automatic symmetry detection in constraint satisfaction
problems (CSP) is a significant issue. This is mainly due
to the fact that symmetries can be used to speed up the
search for solutions. Once a solution is found, symme-
tries can be applied to quickly derive its symmetric so-
lutions. Also, areas of the search space can be ignored if
they are symmetric to dead ends already explored.

A common classification of symmetries distinguishes
among wvariable symmetries, wvalue symmetries, and
variable-value symmetries, which refer to permutations
among the variables in the CSP, among the values of each
variable, and among variable-value pairs, which preserve
the set of solutions [8].

The importance of automatically detecting symme-
tries has generated a considerable amount of interest and
has resulted in many different methods that detect one or
more kinds of symmetries (e.g., [5, 6, 10, 9]). One of the
most promising techniques is to construct a graph and
use graph automorphism to detect symmetries. One such
method is presented in [10] to detect variable symmetries
by specifying constraints in a high-level format based on
unsigned integer variables and mathematical operators.
Symmetries are then detected using their parse graph
as input to the automorphism finder program Saucy [3]
which produces the generators for the symmetry group.

Our paper presents work in progress performed while
studying and implementing the method presented in [9],
which can be seen as an extension of [10]. The method
was selected because it can deal not only with vari-
able symmetries, but also with value symmetries and

variable-value symmetries other than those obtained by
the simple combination of the two.

During the implementation of the method, several is-
sues, such as how to deal with general expressions, had
to be resolved. This led not only to modifications to the
original method, but also to interesting insights into it.
In this paper we present the modifications performed,
discuss the insights gained, and give the results of a
(very) preliminary experimental evaluation of the accu-
racy and efficiency of the approach.

2 Background

This section introduces the terminology to be used in
the paper and provides a brief summary of the method
presented in [9] to automatically detect symmetries.

A CSP is a triple (X, D, C) where X represents a set
of variables, D a set of domains, C' a set of constraints,
each variable x; € X is associated with a finite domain
D; € D of potential values, and each constraint ¢ €
C over distinct variables z;, ..., z; specifies the allowed
subset of the Cartesian product D; x ... x D; (i.e., the
values consistent with the constraint).

A literal has the form x; = d where d € D;. An assign-
ment for constraint ¢ defined over variables x5, ..., x;, is
a tuple <dz, ceay dj> where dz € Di, ey dj S Dj.

A solution symmetry for a CSP is a bijection from lit-
erals to literals that preserves the set of solutions of the
problem. A constraint symmetry is an operation that
preserves its constraints. While any constraint sym-
metry is also a solution symmetry, a CSP may have
many solution symmetries that are not constraint sym-
metries [1]. A variable symmetry is a permutation of the
set X (i.e., a bijection from variables to variables) that
preserves the set of solutions. A walue symmetry is a
permutation within the sets in D (i.e., a bijection from
the values of a variable to values of that variable) that
preserves the set of solutions [8].

2.1 Puget’s approach

The method presented by Puget in [9], is based on two
steps. The first uses the CSP to construct a coloured
graph (V, E,c) where V is a set of nodes, F a set of
unweighted and undirected edges, and ¢ a map from V
to colours. The second step finds the automorphisms

C. Mears, M. Garcia de la Banda and M. Wallace

of the graph, i.e., a one to one mapping f : V — V
such that V(n;,n;) € E : (f(n;), f(n;)) € E and ¥n €
V,c(f(n)) = ¢(n). Colours are thus used to restrict the
automorphisms of the graph, since only nodes with the
same colour can be interchanged.

The graph associated with the CSP (X, D, C) is con-
structed as follows. For every variable z; € X and every
value d € D;, a literal node is created representing the
literal z; = d.

Example 2.1 Consider a variable z; with domain
D; ={1,2,...,10}. It is represented by ten literal nodes
corresponding to x; =1, z; =2, ..., z; = 10. O

For every constraint ¢ € C defined over distinct vari-
ables z;,...,x;, a constraint node c is created. Also,
for every assignment (d;,...,d;) € ¢, an assignment
node is created and connected to each literal node
z; = di,...,xr; = d; and to the constraint node c. If
the subset of the Cartesian product specified by ¢ (i.e.,
the set of consistent assignments) is much bigger than
(D; x ... x Dj)\ ¢ (ie., the set of inconsistent assign-
ments), then the latter can be used to construct an equiv-
alent but smaller graph.

Once the nodes and edges are determined, the last
step in the construction of the graph is the mapping
of nodes to colours. All literal nodes in the graph are
mapped to the same colour, which is different from any
non-literal node in the graph, i.e., if Vi, C V denotes
the set of literal nodes, Vn;,n; € Vi : ¢(n;) = c(n;j)
and Yn € (V \ V) : ¢(n) # c(n;). This allows the
detection of variable symmetries, value symmetries and
value-variable symmetries. Note that if the colour given
to the literal nodes of each variable was unique (i.e., if
Vng,n; € V representing literals z; = d; and x; = d; we
have that c(n;) = c¢(n;) <= x; = x;), then only value
symmetries would be detected. Similarly, if the colour
given to the literal nodes of each value was unique (i.e.,
if Vn;,n; € V representing literals x; = d; and x; = d;
we have that c¢(n;) = ¢(n;) <= d; = d;), then only
variable symmetries would be detected.

Regarding constraint and assignment nodes, all assign-
ment colours for a given constraint are given the same
colour which is different from those used for literal and
constraint nodes. Also, the constraint node of each con-
straint is mapped to yet another colour. Puget also in-
dicates that in order to enable constraint symmetries,
“all constraints of the same kind have the same colour.”
We interpret this from an intensional point of view, in
which constraints are of the form f(z;,...,z;), where f
is the constraint name and z;,...,z; are distinct vari-
ables. Then, constraints with the same f and number
of arguments are considered of the “same kind”. In or-
der to detect constraint symmetries, we must not only
merge the colour of their constraint nodes, but also that
of their assignment nodes.

Example 2.2 Consider a CSP with set of variables
{z,y, 2z}, where each variable has domain {1,2,3}, and
the set of constraints is (the extensional representation
of) {x = y,y = z}. This CSP results in the graph
shown in Figure 1(a). The graph has three literal nodes

Figure 1: Graphs before applying transitive closure.

per variable (one for each value in their domains), all
mapped to the same colour (black). It also has three
assignment nodes corresponding to each allowed assign-
ment (1,1),(2,2),(3,3) of x = y, and another three
for those of ¥y = z. Since both constraints have the
same functor/arity (=/2), all their assignment nodes are
mapped to the same colour (grey). Finally, the graph has
two constraint nodes, each connected to the associated
assignment nodes and both mapped to the same colour
(white). The graph associated with a similar CSP with
constraints {r < y,y < z} is shown in Figure 1(b). O

While the method described above is correct (any sym-
metry of the graph is a symmetry of the CSP), it is not
complete (some CSP symmetries might not appear in
the graph). This was demonstrated by Puget in [9] us-
ing the graph of Figure 1(a) which represents constraints
{z = y,y = z}. The graph does not contain any variable
symmetries involving y, even though they exist. Puget
thus suggested to take the transitive closure of equality
constraints, that of < constraints, and also to replace
constraints such as * <y and y <z by x = y.

Example 2.3 Applying this to the graph of Fig-
ure 1(a) leads to the addition of the constraint x = z,
and results in the graph shown in Figure 2. This graph
does contain the variable symmetries relating x and y,
and z and y. O

Note that the above discussion is based on constraints
whose arguments are distinct variables. Puget indi-
cates that any expression of the form z; op z;, where
x;,¢; € X are distinct variables, can be treated as the
extensional constraint associated to op(z;,x;,w), where
w is a new variable. However, he indicates this will lead
to very large graphs and thus proposes to handle only
expressions of the form f(x), where the variable x is only
allowed to occur once in the expression. No extra nodes
are used to represent these expressions; rather, the literal

Figure 2: Transitive closure on equality.

On Implementing Symmetry Detection

X o Y
1 ‘ @ !
)
2 .\‘i 2
3 @ o

Figure 3: z+ 1=y

node z = d representing the value d is used to compute
the value for the expression. Thus, the constraint is rep-
resented in extension.

Example 2.4 Figure 3 shows the graph associated to
a CSP with the single constraint + 1 = y. The literal
node z = 1 plays the role of x + 1 = 2, and x = 2 plays
the role of z 4+ 2 = 3.

3 Implementing Puget’s approach

We have implemented Puget’s method for ECLPS® pro-
grams which use the ic and ic_sets constraint libraries.
In order to do so, we wrote a new ECLPS® library that
mimics (part of) the interfaces of the ic and ic_sets
libraries. When the program is executed in ECL*PS¢,
the constraint predicates in the library are called (rather
than those defined by the associated solver).

These predicates output the intensional constraints
generated during the execution of the CSP into a file
in simple text format. This file is in turn processed by a
graph generator that converts the intensional constraints
in the file into their graph representation. The resulting
graph is finally input to a graph automorphism package
which returns the generating automorphisms.

While the graph generation could be performed di-
rectly by the new library interface, as we will see later,
there are advantages in producing the intermediate text
format, especially for a prototype which aims to explore
different alternatives for constructing the graph.

This section describes the problems encountered while
writing the new library and the resulting additions
and/or modifications devised to solve them. In doing so
it focuses on representing expressions other than f(z).

Note that the graphs built by our system do not con-
tain constraint nodes and, thus, none of the example
graphs in the following sections contain these nodes ei-
ther. The significance of this will become clear later on.

3.1 First attempt at expressions

Our first attempt at handling general expressions fol-
lowed the previously introduced idea of representing any
arbitrary operation x; op z; by creating a new variable
w and representing instead the new ternary constraint
op(2;, x5, w). Expressions with more than one operator
are broken into sub-expressions, each of which is repre-
sented by a new (temporary) variable ¢;. For example,
x +y — z is parsed as (x + y) — z and is represented by
two new variables: t; = z 4+ y and to = t; — 2. Con-
straints involving expressions as arguments are simply

treated by replacing each such argument by a new vari-
able representing the expression. Constant arguments
are represented by a new variable with a single literal
node whose value is that of the constant.

In this approach care must be taken with associative
operators [9, 10].

Example 3.1 The expression = + y + 2z, which is
parsed as (z +y) + z, would result in two new variables:
t1 = x4y and t3 = t; + 2. But if so, the only variable
symmetry in the associated graph is x < y, whereas in
reality all three variables are interchangeable. O

This problem is ameliorated by pre-processing the text
format output by our library to group associative oper-
ators as follows: any “dummy” variable ¢; that is used
in an expression (e.g. t1 + z) is replaced by its definition
(e.g. x + y) if the operators in the expression and defi-
nition are the same (both addition in this example) and
associative. Thus, the expression becomes to = x+y+ 2,
preserving the symmetries.

As recommended in [9], non-symmetric binary arith-
metic operands, such as x — y and x/y, are decomposed
using their unary inverse operators, resulting in x + (—y)
and z*(1/y). This allows further grouping of associative
operators while at the same time preventing the creation
of false symmetries.

Example 3.2 Consider the equation (a + b) * (¢ +
d) * (e — f), where all variable domains are 1..3. The
expression e — f is represented as e+ (— f) which ensures
that e and f are not symmetric. It also prevents (e — f)
from being interchangeable with (¢ + d). The following
symmetries remain: a < b, ¢ <> d, (a+0b) < (c+d), and
the variable-value symmetry (e =1« f=3,e=2 <
f=2,e=3<f=1).0

Intermediate variables can, however, prevent some
symmetries from being captured by the graph.

Example 3.3 Consider a CSP with variables {z, y, z}
where D, = D, = {1,2}, D, = {1} and the constraints
are ¢+ 2z # y Ay + z # x. This CSP has a variable
symmetry (z < y) and a value symmetry (values 1 and
2 are interchangeable). The expressions in the two con-
straints are represented by t1 = x + z and t3 = y + 2.
The associated graph is shown in Figure 4, with grey and
white nodes representing assignment nodes for equality
and disequality constraints, respectively. It can be seen
that the graph captures the variable symmetry, but not
the value symmetry. O

Example 3.4 The constraints in the above example
appear in some of the models for the n-queens problem
(with variable z replaced by constant 1). Figure 5 shows

Figure 4: z + 2z # y and y + z # =z, D, = D, = {1,2},
D. ={1}

C. Mears, M. Garcia de la Banda and M. Wallace

Figure 5: 3-queens using the first method

the graph for 3-queens where the parsed constraints are
QO 7é QlaQO 7£ Q2aQ1 7é Q27t0 7£ Qlatl 7£ Q07t2 7é
Q27t3 7& Q05t4 7& Q27t5 7é Ql where to = QO + 1a
1 =Q14+1,t=Q0+2,t3 =Q2+2, t4, = Q1+ 1,
ts = @2+ 1. Grey and white nodes represent equal-
ity and disequality assignments, respectively. For visual
clarity, the graph omits the constant summands and in-
dicates edges of equality constraints as solid, and of dis-
equality constraints as dashed. Again, only the variable
symmetry (Q0 < @2) is captured. O

Obviously, the f(z) representation can easily be used
to avoid the problem in n-queens, since this representa-
tion would avoid the creation of intermediate variables,
by absorbing the constant 1 into the value of z. How-
ever, the example is useful since it allows us to show the
problem in a very well known setting.

The fact that the constraint syntax bears so much in-
fluence on the resulting graph, highlights the importance
of normalisation. Since the same constraint can usually
be expressed in several equivalent ways, it would seem
advantageous to determine which normal form would
yield a graph that captures the greatest number of sym-
metries. It was at this point that we decided to abandon
the above method, which not only generated too many
intermediate variables (as already indicated by Puget),
but also could easily result in symmetries being missed
due to the use of a particular syntax.

3.2 Second attempt at expressions

Our solution was to go back to basics, i.e., to rethink
the issue in terms of the extensional representation of
the constraint, rather than their intensional representa-
tion (which relates too closely to the syntax). When
seen in this light, it becomes clear that we can avoid the
representation of temporary variables and constants by
absorbing expressions into the constraint in which they
appear. This approach also leads to huge graphs.

Example 3.5 The constraint u = 2+ x4+ (3% y* 7% 2)
does not need to be split up into different components
and can simply be represented by the original method by
considering its extensional meaning, i.e., the consistent
subset of D, x Dy x D, x D,,. O

This leads to a much simpler graph in which each con-

QO Ql Q2

Figure 6: 3-queens using the second method

straint directly appearing in the model is associated with
a number of assignment nodes (one per assignment al-
lowed by the constraint). Each assignment node is linked
to the set of variable nodes representing the value asso-
ciated by the assignment to each variable.

Example 3.6 Figure 6 shows the 3-queens obtained
using this method. Note that assignments for disequality
constraints are shown as white nodes. All the symme-
tries of the chessboard are now captured. O

The correctness of this method follows directly from
the correctness of Puget’s method, since it simply applies
the extensional meaning of constraints.

We find the simplicity of this method very pleasing
since it eliminates problems such as the representation
of constants (which is now avoided for any constant re-
gardless of whether appears as a constraint argument or
not), the normalisation required when multiple occur-
rences of a variable appeared in a constraint (such as
A*A=1), the problem of associative and non-symmetric
operands appearing in the same constraint, and in gen-
eral, any such normalisation issue.

The method can easily be applied to any finite domain.
Let us consider, for example, how it would be applied to
CSPs with set variables. If a set variable z; € X is a
subset of the set S, its domain D; is equal to the power-
set of S. As a consequence, a variable that is the subset
of S is represented by 2! literal nodes.

Example 3.7 Consider a CSP where x; is defined
as a subset of {1,2,3,4}. The graph will thus contain
16 variable nodes representing the literals z; = {}, x; =
{1}7 Tq = {2}7 ceey Tf = {27374}7 T; = {172a374}

Implemented set constraints include equality, dise-
quality, cardinality, and all_disjoint. Implemented ex-
pressions include union and intersection.

Example 3.8 Consider a cardinality constraint of the
form |z;| = x;, where z; is a set variable and z; is an
integer variable. Then, for every node n; € V corre-
sponding to value d; € D; for which there exists a node
n; corresponding to value d; € D; such that |d;| = d;, an
assignment node is created and linked to both n; and n;.
If the cardinality constraint is of the form |z;| = I,where
I is an integer constant, assignment nodes will only be
created for values d; € D; for which |d;| = I. Figure 7
shows an example of a cardinality constraint on expres-
sion (s1 Ns2) Uss. O

On Implementing Symmetry Detection

Figure 7: Graph for constraint |(s1 N s2) U sg| = 2

A different representation can be obtained by repre-
senting each set variable x; defined as a subset of set S,
with 2 % |S| literal nodes, half of them representing each
element in S as appearing in x;, and the other half as not
appearing in x;. Such representation would reduce the
number of nodes and increase the number of edges. The
decision to use one or other approach could then depend
on the particular constraints of the problem and on the
complexity behaviour of the automorphism algorithm.

4 Discussion

Once we decided the particular method to be used, we
focused on several issues including how to make it faster
and more complete. This section discusses some of them.

4.1 Relationship with CSP microstructure

During the initial evaluations of N-Queens we discovered
our program was not finding certain value-variable sym-
metries (corresponding to diagonal symmetries). The
reason was the lack of the disequality constraints implicit
among the values of every variable in every CSP. This
means that upon creation of the literal nodes associated
to a variable, assignment nodes and associated edges rep-
resenting such constraints must be created. This is, of
course, the case regardless of the representation method
chosen for expressions.

At this point the similarities between the resulting
graph and the microstructure and microstructure com-
plement described in [1] became apparent. A CSP’s mi-
crostructure is a hypergraph with a node for each value
in the domain of each variable, and a hyperedge corre-
sponds to every assignment allowed either by a specific
constraint, or by the lack of a constraint between the
variables involved. The microstructure complement is
the complement of this graph; i.e., the hyperedges rep-
resent assignments that are not allowed. The automor-
phisms of this graph contain all constraint symmetries
in the associated CSP [1].

Our graph has also a node for every possible value
of each variable, and contains information about consis-
tent and inconsistent assignments. However, hyperedge
(v1,...,vy,) would be represented in our graph by assign-
ment node a and the edges (a,v1),...,{a,vy).

We are currently studying how to use this relation-
ship to improve our system. For example, note that the
microstructure has no notion of coloured nodes. This

sl s2

.] e
n @——@ o
(2) 12}

{1,2} {1,2}

Figure 8: Pruning unnecessary values.

would seem to indicate we do not need them either. This
is actually the case if we used only consistent (or only
inconsistent) assignments. Otherwise, colours (but only
two) are needed.

4.2 Pruning inconsistent literal nodes

Even without temporary variables and constants, repre-
senting constraints extensionally leads to huge graphs.
Generally, the size of the graph increases exponentially
in the arity of the CSP’s constraints. Therefore, there
is a practical limit on the size of problem instance that
can be handled by the method. We propose to increase
this limit by “pruning” unnecessary components from
the graph, in particular, any literal node (and associated
edges) corresponding to a literal z; = d, if no allowed tu-
ple for ¢ assigns value d to variable x;. Since such a node
cannot be part of a solution, it can simply be removed
from the graph.

Example 4.1 Consider a CSP with two set vari-
ables, s1,$2 where s1,s2 C {1,2} (iie. Dg =
D,, = {{},{1}.{2},{1,2}}), and the single constraint
[s1 N s2] = 1. The graph of this CSP is shown in
Figure 8. As can be seen in the figure, none of the as-
signments that satisfy the constraint involves s; = {} or
s2 = {}. The literal nodes associated to these literals
can thus be removed from the graph. O

A literal node that is not used in any allowed tuple of
a constraint (as in the empty set values in Figure 8) may
yet be part of some allowed tuple in another constraint.
Pruning of such unviable nodes can then be propagated
as follows: when an unviable literal node n is removed,
any edges and assignment nodes from other constraints
that involve n can also be removed. This in turn may
cause other literal nodes to become unviable. This pro-
cess can continue iteratively until no more edges or nodes
can be removed.

Example 4.2 Consider a CSP similar to that of
Example 4.1 but with three set variables, s, 2,3
where s1, 82,83 C {1,2} (li.e. Ds = Ds, = Dy,
{{},{1},{2},{1,2}}), and two constraints, the previous
one |s1 N s2| = 1 and the constraint |sg N s3] = 0. The
graph of this CSP is shown in Figure 9. When the literal
node associated to literal so = {} is removed, the four
assignment nodes marked with crosses are also removed.
With those assignments gone, the literal nodes s3 = {1},
ss = {2} and s3 = {1,2} are no longer viable an can be
removed. O

C. Mears, M. Garcia de la Banda and M. Wallace

Edges Nodes Assign
golf222 464/2810 206,/1020 150/946
golf322 | 1290/7629 548/2681 423/2559
steinerb 333/5898 157/2080 102/1977
steiner6 | 6215/65830 | 2226,/22321 | 2035/21980

Table 1: Size of the graphs obtained for social golfers
and Steiner triplets with/without pruning.

Of course, care needs to be taken when inconsistent
assignments have been used to build the graph. Incon-
sistent values should only be considered for removal for
constraints which use consistent assignments, and vice
versa. Furthermore, while pruning might prevent some
symmetries from being detected, it might also lead to
the detection of symmetries that are in the CSP but not
captured in the initial graph. We are currently studying
the effects of different pruning strategies to this.

Preliminary results on the effect of pruning are promis-
ing. We have implemented pruning for the first method
on cardinality constraints. These constraints are present
in the social golfers and Steiner triplet models, and prun-
ing reduces their graphs dramatically (see Table 1).

While pruning can help reduce the graph, it cannot
overcome the size problem. This is however sufficient for
our long-term project, which is to be able to infer sym-
metries for a CSP problem (rather than for a particular
instance of the problem) from examining relatively small
instances of that problem.

4.3 Implied constraints

While the correctness of the method is clear, its com-
pleteness is a different matter. It is easy to prove that
given a CSP (X, D,(C), all symmetries contained in a
given constraint ¢ € C are present in the graph built
from an equivalent CSP containing only ¢. While this
alone is quite pleasing, it does not address the issue of
the conjunction of the constraints.

This is related to the problems addressed in, for exam-
ple, [9] by means of a transitive closure applied to equal-
ity and inequality constraints in the CSP. This method
can be generalised to the detection and addition of im-
plied (also referred to as entailed) constraints. Since, in
general, such detection can be complex, the question is
which implied constraints would help detect symmetries
that otherwise would have gone undetected.

We are currently considering the use of abstract inter-

sl s2 s3

{12} {12}

Figure 9: Pruning unnecessary values.

X y z
1 @@ 1
s ;/o/?
: @@ 2
Figure 10: Projection of a variable.

pretation techniques [2] to infer such information from
the CSP model. Note, however, that any automatic anal-
ysis of the constraints aimed at inferring implied con-
straints can be based on the original set of (intensional)
constraints represented in the program, or on the asso-
ciated graph. Indeed, some properties (such as variable
aliasing) might be easier to infer from one than from the
other. Since, however, the graph represents a particular
instance of the problem (i.e., the original model instan-
tiated for a given set of values), the properties inferred
from it might only be applicable to that instance, rather
than to the original model.

Finally, note that the issue of implied constraints is
also closely related to the issue of k-ary nogoods in [1],
where it is proved that if all are present in the graph
of a k-ary CSP, then the graph is known to capture all
solution symmetries in the CSP (rather than only the
constraint symmetries).

This relationship makes the following property clear:
if a constraint c among variables z;, . . ., 2; can be equiva-
lently expressed as the conjunction of a set of constraints,
each of them defined over a strict subset of z;,...,x;,
then it is advantageous to use the set of constraints
rather than c.

Example 4.3 Global constraint
alldifferent(xy,...,x;) should be expressed as
the set of constraints {x; # x;|1 <i < j < k}.

4.4 Projecting out variables

We would like to be able to easily eliminate variables
from the graph of a CSP, representing the operation of
projecting out such variables from the CSP. Such projec-
tion has many uses, including the partition of the prob-
lem into smaller components whenever variables have
different types, and the possibility of focusing on a much
smaller set of variables of interest.

One might think it is possible to project out variables
by removing all literal nodes associated to that variable
and their connecting edges, as long as all implied con-
straints are represented in the graph. However, this is
incorrect as it may introduce spurious symmetries in the
remaining subgraph.

Example 4.4 Consider a CSP with three variables,
x,y, z all with domain 1..2 and constraints = # y, z < y.
The graph is shown in Figure 10. While, the CSP has
no symmetries, if variable z is projected out the graph
does become symmetric.

We believe this is related to the concept of projection
independence defined in [4], which was developed to au-
tomatically parallelize CLP programs. We plan to study
its relationship in the future.

On Implementing Symmetry Detection

Instance [Graph Details | Order Running Time in Seconds |
[Edges | Nodes [Assign | Total [Text [GGen [GPrt | Run | HR |
bibd33110 639 335 234 72 0.4 0.37 0.01 0.01 0.01 0.00
bibd610532 247505 26274 25100 15676416000 71.69 0.33 16.43 36.83 0.94 1.12
bibd77331 41461 8129 7014 50803200 9.4 0.31 2.34 4.05 0.39 0.55
golf222 11702 2532 2482 192 0.61 0.28 0.14 0.10 0.06 0.02
golf232 598869 85742 85596 51840 43.25 0.28 8.85 9.17 22.09 1.41
golf322 30267 6509 6399 1152 1.47 0.28 0.48 0.35 0.25 0.05
golf332 1486917 213554 213228 933120 205.12 0.28 33.26 42.54 110.63 5.98
golomb4 3614 1827 1615 0 0.39 0.28 0.04 0.05 0.00 0.01
golomb5 24650 11745 11045 0 1.25 0.28 0.39 0.42 0.05 0.01
golomb6 147852 68328 66246 0 8.68 0.28 2.84 4.21 0.28 0.09
latin10 27000 14500 13500 286708355039232000000 4.55 0.31 1.86 0.98 0.31 0.81
latin1l 39930 21296 19965 381608820557217792000000 7.68 0.36 3.03 1.71 0.64 1.30
latinl?2 57024 30240 28512 659420041922872344576000000 13.58 0.43 5.06 3.47 0.99 2.35
latinl3 79092 41743 39546 1448745832104550541033472000000 22.09 1.23 8.48 5.07 1.64 3.73
latin14 107016 56252 53508 3975358563294886684595847168000000 60.21 25.8 13.03 9.41 2.46 5.93
queens8 5488 3256 2744 2 0.58 0.28 0.11 0.13 0.02 0.02
queens10 12840 7420 6420 2 1.24 0.31 0.28 0.43 0.03 0.05
queens20 184680 100340 92340 2 51.49 0.31 5.62 29.05 0.59 3.57
steiner4 2151 469 454 48 0.33 0.28 0.03 0.01 0.01 0.00
steinerb 29370 5086 5049 720 1.03 0.29 0.30 0.24 0.16 0.03
steiner6 436410 63051 62940 86400 23.29 1.42 5.81 6.13 8.18 1.08

Table 2: Results for the first method.

Ql Q2 Q3 Q4

Figure 11: Literal nodes of 4-queens.

5 Experimental Evaluation

As mentioned before, we have implemented the previ-
ous methods in ECL‘PS® for programs which use the
ic and ic_sets solvers by building a library that mim-
ics their interface and outputs the associated intensional
constraints into a text file. This file is processed by a
graph generator which builds their graph representation.

The resulting graph is input to the graph automor-
phism package Saucy [3] which returns the generating
automorphisms.! Saucy describes the automorphism
group generators in terms of the non-negative integers
that label each node. Our system prints the generating
symmetries in more intuitive form by inversing the map
that associates integer labels with variable-value labels.

Example 5.1 Consider the literal nodes of 4-queens,
shown in Figure 11. The mapping of the literal nodes is
shown by the white numbers. For this graph, the output
of Saucy (omitting the assignment nodes) is:

(1 4)(2 8)(3 12)(6 9 (7 13) (11 14)
(0 3)(1 2)(4 7)(5 6)(8 11)(9 10) (12 15) (13 14)

Each line is a symmetry and each pair of numbers is a
swap of nodes. The first line corresponds to the diagonal
variable-value symmetry: Q4 =2 - Q3 =1, Q4 =3 <
RQ2 =104 =4 Ql =1, Q3 =2 < Q2 = 3,
R3I=4-—Q2=1,and Q2 =4 < Q1 = 3. The second

'We would have liked to have used AUTOM [9)] for finding
automorphisms but it is not publicly available.

line corresponds to the value symmetry that swaps every
1 with a 4 and every 2 with a 3. These two generators
can be composed to form the group that represents the
eight symmetries of a square. O

Currently, these symmetries are not used to aid a
search, but we intend to implement this in the near fu-
ture using GAP-SBDS [7].

Tables 2 and 3 show our results. Each row in the ta-
bles corresponds to a different instance of a well known
benchmark problem for symmetries. In particular, row
bibdVBRKL shows the data for an instance of the Bal-
anced Incomplete Block Design problem called with V
varieties, B blocks, R size of each variety, K size of each
block, and L blocks in which each two varieties appear
together; row golf WGP shows the data for instances of
the Social Golfers called with W weeks, G groups, and
P players per group; row golombN shows the data for
instances of the Golomb Ruler problem called with N
integers; row latinN shows the data for instances of the
Latin Square problem called with a square of size N; row
mostperfectN shows the data for instances of the Most
Perfect Magic Square problem called with N columns
and rows; row queensN shows the data for instances of
the N-Queens problem; and row steinerN shows the data
for instances of the Steiner triplets problem called with
the elements of the triples taking any value from 1 to N.

The columns in both tables are as follows: Kdges,
number of edges in the graph; Nodes, total number
of nodes; Assign, number of those which are assign-
ment nodes; Order, size of the discovered automorphism
group; Total, total running time in seconds (numbers
in parenthesis for Table 3 indicate the time taken by the
first method, divided by that taken by the second); Text,
time spent producing the text file; GGen, graph gener-
ation time including the computation of the extensional
constraints; GPrt, time spent printing the graph to be
input to Saucy; SRun, Saucy running time; and HR,
time taken by reading Saucy’s output information and
printing our human readable form. Running times were

C. Mears, M. Garcia de la Banda and M. Wallace

Instance [Graph Details | Order [Running Time in Seconds

[Edges | Nodes [Assign | [Total | Text [GGen | GPrt [SRun | HR
bibd33110 207 113 75 72 0.3(0.75) 0.28 0.01 0.00 0.01 0.00
bibd610532 25290 3620 3197 15676416000 3.4(0.05) 0.33 1.14 1.26 0.08 0.13
bibd 714632 328790 25777 24990 2636271525888000 81.95 0.48 25.02 37.38 1.23 0.92
bibd77331 6615 1815 1421 50803200 1.38(0.15) 0.31 0.51 0.28 0.03 0.12
golf222 4022 972 946 192 0.38(0.62) 0.28 0.05 0.02 0.02 0.00
golf232 138069 24212 24156 51840 6.51(0.15) 0.31 1.73 1.72 2.18 0.40
golf322 11067 2609 2559 1152 0.6(0.41) 0.28 0.15 0.10 0.03 0.02
golf332 380997 65882 65772 933120 25.39(0.12) 0.28 6.19 6.38 10.22 1.31
golomb4 1190 585 511 2 0.41(1.05) 0.34 0.05 0.01 0.01 0.00
golombb 8250 3755 3525 5 | 0.55(0.44) | 0.28 0.12 | 0.10 0.02 | 0.01
golomb6 48732 21303 20646 2 2.35(0.27) 0.28 0.94 0.77 0.14 0.07
golomb7 263718 112462 110691 2 16.37 0.33 6.74 6.38 1.21 0.65
latinl0 27000 14500 13500 286708355039232000000 4.65(1.02) 0.32 1.85 0.99 0.32 0.86
latinll 39930 21296 19965 381608820557217792000000 7.9(1.03) 0.36 2.93 1.87 0.57 1.46
latinl2 57024 30240 28512 659420041922872344576000000 12.93(0.95) 0.45 5.11 2.93 1.01 2.40
latinl3 79092 41743 39546 1448745832104550541033472000000 22.2(1.00) 1.27 8.57 4.97 1.66 3.82
latinl4 107016 56252 53508 3975358563294886684595847168000000 59.74(0.99) 26.2 13.16 8.24 2.50 6.12

| mostperfect4 | 215744 | 56146 | 55888 | 32 | 13.4 | 0.32 | 7.69 | 3.54 | 1.02 | 0.29 |

queens8 1456 792 728 8 0.36(0.62) 0.28 0.05 0.02 0.00 0.01
queens10 2940 1570 1470 8 0.44(0.35) 0.28 0.10 0.04 0.01 0.01
queens20 25080 12940 12540 8 2.44(0.05) 0.36 1.41 0.46 0.07 0.07
queens30 86420 44110 43210 8 10.83 0.35 7.52 1.97 0.33 0.27
queens40 206960 105080 103480 8 36.49 0.45 25.36 6.78 0.94 1.05
steinerd 871 209 198 48 0.3(0.91) 0.28 0.01 0.01 0.00 0.00
steinerb 10170 1999 1977 720 0.52(0.50) 0.29 0.10 0.08 0.02 0.02
steiner6 129210 22031 21980 86400 5.34(0.23) 1.33 1.60 1.56 0.42 0.30
steiner7 1011416 153448 153356 25401600 48.18 0.36 17.79 18.93 4.77 3.89

Table 3: Results for the second method.

measured on a desktop with an Intel Pentium 4 3GHz
CPU and 2 GB RAM, running Linux kernel 2.4.22.
For each benchmark, the symmetries found were:

BIBD: all varieties are interchangeable; all blocks
are interchangeable,

Social golfers: all weeks are interchangeable; all
groups within a given week are interchangeable; all
golfers are interchangeable,

Golomb ruler: the ruler can be reversed (180° rota-
tion),

Latin square: all rows are interchangeable; all
columns are interchangeable,

Most perfect magic square: geometric symmetries
of a square; values can be inverted (e.g. for a 4*4
square, 1 < 16, 2 < 15, 3 < 14, etc.),

N-queens: geometric symmetries of a square,
Steiner triplets: all triplets are interchangeable; all
values are interchangeable.

The results show that the second method outperforms

the

first in running time and graph size (note that some

models could not be run using the first method due to
memory constraints). Even so, the results also show that
in both cases the graph size increases rapidly with the
size of the CSP, and thus both methods are impractical
for large CSP instances.

References

1]

2]

David Cohen, Peter Jeavons, Christopher Jerrerson,
Karen E. Petrie, and Barbara M. Smith. Symmetry
definitions for constraint satisfaction problems. In
Peter van Beek, editor, LNCS, volume 3709, pages
17-31, 2005.

Patrick Cousot and Radhia Cousot. Abstract inter-
pretation: A unified lattice model for static analy-

sis of programs by construction or approximation of
fixpoints. In POPL, pages 238-252, 1977.

Paul T. Darga, Mark H. Liffiton, Karem A.
Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Sharad Malik,
Limor Fix, and Andrew B. Kahng, editors, DAC,
pages 530-534. ACM, 2004.

Maria Garcia de la Banda, Manuel Hermenegildo,
and Kim Marriott. Independence in CLP languages.
ACM Trans. Program. Lang. Syst., 22(2):296-339,
2000.

Eugene C. Freuder. Eliminating interchangeable
values in constraint satisfaction problems. In Proc.
AAAI91, volume 1, pages 227-233, 1991.

Alan M. Frisch, Christopher Jefferson, and Ian.
Miguel. Constraints for breaking more row and col-
umn symmetries. In Francesca Rossi, editor, LNCS,
volume 2833, pages 318-332, 2003.

Tan P. Gent, Warwick Harvey, and Tom Kelsey.
Groups and constraints: Symmetry breaking dur-
ing search. In Pascal van Hentenryck, editor, LNCS,
volume 2470, pages 415-430, 2002.

Jean-Francois Puget. Symmetry breaking revisited.
In Pascal van Hentenryck, editor, LNCS, volume
2470, pages 446-461, 2002.

Jean-Francois Puget. Automatic detection of vari-
able and value symmetries. In Peter van Beek, edi-
tor, LNCS, volume 3709, pages 475-489, 2005.

Arathi Ramani and Igor L. Markov. Automati-
cally exploiting symmetries in constraint program-
ming. In Boi Faltings, Adrian Petcu, Francois
Fages, and Francesca Rossi, editors, CSCLP, vol-
ume 3419, pages 98-112, 2004.

Reasoning by dominance in Not-Equals binary constraint networks

Belaid Benhamou and Mohamed Réda Saidi
Laboratoire des Sciences de I'Information et des Systmes (LSIS)
Centre de Mathmatiques et d’Informatique
39, rue Joliot Curie - 13453 Marseille cedex 13, France
email:Belaid.Benhamou @ cmi.univ-mrs.fr, saidi @cmi.univ-mrs.fr

Abstract

Dynamic detection and elimination of symmetry
in constraints, is in general a hard task, but in
Not-Equals binary constraint networks, the sym-
metry conditions can be simplified. In this pa-
per, we extend the principle of symmetry to dom-
inance in Not-Equals Constraint Networks and
show how dominated values are detected and elim-
inated at each node of the search tree. A Lin-
ear time complexity algorithm which detects the
dominated values is proposed. Dominance is ex-
ploited in an enumerative method adapted to solve
Not-Equals CSPs. This enumerative method aug-
mented by Dominance is experimented on both ran-
domly generated instances of graph coloring and
Dimacs graph coloring benchmarks and its perfor-
mance is compared to the same method augmented
by symmetry and to the well known DSATUR
method. The obtained results show that reasoning
by dominance improves symmetry reasoning and
our method outperforms both previous methods in
solving graph coloring.

1 Introduction

As far as we know the principle of symmetry is first in-
troduced by [Krishnamurty, 1985] to improve resolution in
propositional logic. Symmetry for boolean constraints is
studied in [Benhamou and Sais, 1992] where the authors
showed that its exploitation is a real improvement for sev-
eral automated deduction algorithms’ efficiency. The no-
tion of interchangeability in CSP’s is introduced in [Freuder,
1991] and symmetry in CSPs is studied in [Puget, 1993;
Benhamou, 1994a]. Since that, many research works on sym-
metry appeared. For instance, the static approach used by
James Crawford et al. in [James Crawford et al., 1996] for
propositional logic theories consists in adding constraints ex-
pressing global symmetry of the problem. This technique has
been improved in [F.A. Aloul et al., 2003] and extended to
0-1 Integer logic Programming in [F.A. Aloul e al., 2004].
Since a great number of constraints could be added in
the static approach, some researchers proposed to add the
constraints during the search. In [I.P. Gent er al., 2002],
authors add some conditional constraints which remove the

symmetric of the partial interpretation in case of backtrack
(this technique is called SBDS). In [Fahle et al., 2001;
F. Focacci and M. Milano, 2001; Jean F. Puget, 2002] authors
proposed to use each subtree as a no-good to avoid explo-
ration of some symmetric interpretations (this technique is
called SBDD) and the GE-trees conceptual for symmetry
elimination is introduced in [Colva M. Roney-Dougal et al.,
2004]. More recently a method which breaks symmetries
between the variables of an Alldiff constraint is studied
in [Puget, 2005b], a method which eliminates all value
symmetries in surjection problems is given in [Puget, 2005al,
and a work gathering the different symmetry definitions is
done in [Cohen et al., 2005].

We investigate in this article the principle of dominance
in Not-Equals binary Constraint Networks (notation NEC-
SPs). Dominance is a weak symmetry principle which ex-
tend the Full substitutability notion [Freuder, 1991]. Dom-
inance is first introduced in [Benhamou, 1994b] for general
CSPs, but it is shown that its detection is harder than sym-
metry. Here, we show how dominance is adapted, detected,
and exploited efficiently in NECSPs. Of course, the NEC-
SPs is a limited framework, but in theory, this restriction re-
mains NP-complete. Indeed, Graph coloring fits in the NEC-
SPs framework and is NP-complete [M.R. Garey and D.S.
Johnson, 1979], thus solving Not-Equals CSPs is in general
a NP-complete problem. Besides, in practice, this framework
is quite expressive, it covers a broad range of problems in
artificial intelligence, such as Time-tabling and Scheduling,
Register Allocation in compilation, and Cartography [A. Ra-
mani et al., 2004].

Detecting symmetrical domain values of a CSP variable
during search is in general a hard task. A symmetry detection
method is proposed in [Benhamou, 1994al, but its complexity
is exponential in the worst case. In case of Not-Equals CSPs,
some symmetrical values are detected with a linear time com-
plexity [Benhamou, 2004].

We show in this article how symmetry is extended to dom-
inance in NECSPs, and how the symmetry condition given
in [Benhamou, 2004] is weakened in the case of failing
to instantiate a variable with a value of its domain during
the search. We give a weak symmetry/dominance condition
which leads to a dominance detection algorithm whose effi-
ciency is better and which detects both the dominance and

B. Benhamou and M.R. Saidi

more symmetries than the algorithm defined in [Benhamou,
20041.

The rest of this article is organized as follows: Section 2
gives a brief background on CSPs. In section 3 we discuss
the dominance notion and show how the symmetry condi-
tion given in [Benhamou, 2004] is weakened and extended to
dominance. We give in the subsection 3.4 an efficient domi-
nance detection algorithm in Not-Equal CSPs. We show in
section 4 how Dominance is exploited in a simplified for-
ward checking (SFC) method adapted to Not-Equals CSPs.
In section 5 we evaluate and compare the effectiveness of our
result by carrying experiments on both Dimacs graph color-
ing benchmarks and randomly graph coloring generated in-
stances. Section 6 discusses some related works and Section
7 concludes.

2 The CSP formalism

A CSP is a quadruple P = (X,D,C,R) where: X =
{X1,..., X, } isasetof n variables; D = {Dy, ..., D, } is the
set of finite discrete domains associated to the CSP variables,
D; includes the set of possible values of the CSP variable X;;
C = {Cy,...,Cy,} is a set of m constraints each involving
some subsets of the CSP variables. A binary constraint is a
constraint which involves two variables; R = {Rq, ..., R}
is a set of relations corresponding to the constrains of C.
R; represents the list of value tuples permitted by the con-
straint C;. A CSP P can be represented by a constraint graph
G(X, E) where the set of vertices X is the set of the CSP
variables and each edge of E' connects two variables involved
in the same constraint C; € C.

A binary constraint is called a Not-Equal constraint if it
forces the two variables X; and X to take different values
(it is denoted by X; # X;). A Not-Equal CSP (NECSP) is a
CSP whose all constraints are Not-Equal constraints.

An instantiation I = (a1, ag, ..., a,) is the variable assign-
ment {X; = a1, X3 = ag,..., X, = a,} where each vari-
able X; is assigned to a value a; of its domain D;. A con-
straint C; € C'is satisfied by [if the projection of I on the
variables involved in C; is a tuple of R;. The instantiation /
is consistent if it satisfies all the constraints of C, thus I is a
solution of the CSP. An instantiation of a subset of the CSP
variables is called a partial instantiation. An instantiation is
total if it is defined on all the CSP variables. Given a CSP, the
main question is to decide its consistency.

Example 2.1 Take the binary NECSP whose constraint
graph is shown in the figure 1. The CSP variables are the
vertices X1, ..., X5 and the domains are include in boxes.
Each edge of the constraint graph connecting two vertices X ;
and X, expresses a Not-Equal constraint between the corre-
sponding CSP variable X; and X ;.

3 Dominance in NECSPs

Symmetrical values of a CSP variable are values which have
the same semantical relevance to participate in the solutions
of the CSP. But, the values of domains in a CSP are not all
equally semantical relevant. Some of them can be more likely
to participate in solutions than other ones. The values in the

10

X4

Figure 1: Constraint graph of a NECSP

first group dominate the latter ones. It is important to de-
tect the dominant values in order to consider them prior in
assignments. This will reduce the search space. Freuder in
[Freuder, 1991] introduced the notion of Substitutability as
a weak Interchangeability. In the same spirit, Benhamou in
[Benhamou, 1994b] defined a weak symmetry called Dom-
inance which extends the Full substitutability notion. Here
we adapt the principle of dominance to NECSPs and give
some sufficient conditions which leads to a linear algorithm
for dominance detection.

3.1 The principle of Dominance

Definition 3.1 [Semantic Dominance] A value a; dominates
another value b; for a CSP variable v; € V (notation a; = b;)
iff [There exist a solution of the CSP which assigns the value
b; to the variable v; = there exist a solution of the CSP which
assigns the value a; to v;].

The value b; participates in a solution if the value a; does;
otherwise it does not. The value b; can be removed from D;
without affecting the CSP consistency.

Proposition 3.1 [fa; > b; and a; doesn’t participate in any
solution of P, then b; doesn’t participate in any solution of

P.
Proof 1 The proofis a direct consequence of Definition 3.1

Proposition 3.1 allows to remove all the values which are
dominated by the value a; € D, without affecting the CSP
consistency. Thus, Dominance complements the usual CSP
inconsistency methods, which attempt to remove values that
doesn’t participate in any solution. Dominance can be gener-
alized to values of different variables, but here we restrict the
study to values of a same domain.

Remark 3.1 e Symmetrical domain values are domain
values which mutually dominate each other. That is, two
values a; € D; and b; € D; are symmetrical iff a; > b;
and b; = a;. Thus, a; participates in a solution of the
CSP iff b; does.

e Dominance extends the Full Substitutability notion
given in [Freuder, 1991].

e Here, Dominance means “more likely to participate in
solutions” as it is defined in [Benhamou, 1994b], it

Reasoning by Dominance in Not-Equals Binary Constraint Networks

should not be confused with the Symmetry By Domi-
nance Detection notion (SBDD) [Fahle et al., 2001].

3.2 A sufficient condition for dominance

A symmetry detection algorithm in general discrete finite
CSPs is proposed in [Benhamou, 1994a]. Its complexity is
exponential in the worst case. It is shown in [Benhamou,
2004] how the symmetry conditions can be simplified in
NECSPs and how the symmetrical values can be detected ef-
ficiently with a simpler algorithm having a linear time com-
plexity w.r.t to the NECSP size. This result is based on the
following property:

Theorem 3.1 Let a; and b; be two values of the domain D; of
a Not-Equals CSP P. If a; and b; appear in the same domains
of the un-instantiated variables, then they are symmetrical.

Proof 2 See [Benhamou, 2004].

It is a very simple property, but very useful for detecting
and eliminating symmetrical values of the same domain. By
using this property, we can deduce that the values a and b of
the domain of the CSP variable X illustrated in Figure 1 are
symmetrical. Indeed, they both appear in the domains of X,
X3, X4 and do not appear in the domain of X5. By a similar
reasoning, we can also deduce that the values a and b of
the domains of the variables X5, X5 and X, are symmetrical.

We give in the following the sufficient conditions for dom-
inance which represent the main key of this work.

Theorem 3.2 Let a; and b; be two values of a domain D;
corresponding to a variable X; of a Not-Equals CSP P, 1
a partial instantiation of P, and Y the set of un-instantiated
variables of 'P. If the two following conditions:

1. a; € Dj = b; € Dy, forall X; € Y such that X
shares a constraint with X;.

2. a; € Dj & b; € Dj for each variable X; of Y which
does not share a constraint with X;

hold, then a; dominates b; in P.

Proof 3 We have to prove under the conditions (1) and (2)
that if b; participates in a solution, then a; participates in a
solution too. Let Ix,—p, be a solution of the CSP P where
the variable X; is instantiated to b;, we have to show the ex-
istence of a solution where the variable X; is instantiated to
a;. Let P’ be the CSP obtained from P by removing the value
b; from the domains of the variables having a constraint with
X; where the value a; does not appear. This operation does
not render the domains empty, since Ix,—p, is a solution of
the CSP P. That is, each reduced domain must contain at
least two values before removing the value b;. The CSP P’
is a sub-CSP of ‘P, it has the same set of variables, the same
set of constraints, but the reduced domains become sub-sets
of the original domains from which they derive.The CSP P’
is more constrained than P. That is, each solution of P’ is a
solution of 'P. According to the conditions (1) and (2) which
hold on P, the values a; and b; become symmetrical in the
CSP P'. The conditions of theorem 3.1 hold, then the value
a; participates in a solution of P’ iff the value b; does. On the
other hand, the CSP Px,—y, resulting from P by considering

11

the assignment X; = b; is identical to the CSP P’ x,_y, re-
sulting from P’ by considering the assignment X; = b;. We
deduce that Ix,—p, is a solution of P’', and then there exists
a solution I'y _, of P’ where X; is instantiated to a;, since
a; and b; are symmetrical in P’. As the CSP P’ is more con-
strained than the CSP P, then 1 S(l: a; IS a solution of P. We
proved the existence of a solution where a; is assigned to X,
thus a; dominates b; in P.

Example 3.1 Consider the domain of the variable X3 of Fig-
ure 1, the value a dominates the value c.

3.3 The weakened dominance sufficient conditions

Before introducing the weakened sufficient conditions, we
define the notion of assignment trees and failure trees cor-
responding to the enumerative search method used to prove
the consistency of the considered CSP.

Definition 3.2 We call an assignment tree of a CSP ‘P corre-
sponding to a given search method and a fixed variable or-
dering, a tree which gathers the history of all the variable as-
signments made during its consistency proof, where the nodes
represent the variables of the CSP and where the edges out
coming from a node X; are labeled by the different values
used to instantiate the corresponding CSP variable X ;.

The root of the tree is the first variable in the ordering.
In this work, the considered backtracking method is Forward
Checking [R. M. Haralik and G. L. Elliot, 1980].

In an assignment tree of a CSP, a path connecting the root
of the tree to a node defines a partial instantiation of the CSP.
The variables of the partial instantiation are the nodes of the
considered path. The last node of the path corresponds to
the last affected variable in the instantiation or to a variable
having an empty domain.

We associate to each inconsistent partial instantiation, cor-
responding to a given path in the assignment tree, a failure
tree defined as follows:

Definition 3.3 Let T be an assignment tree corresponding to
a consistency proof of a CSP P, I = (aq,aq, ...,a;) an in-
consistent partial instantiation of the variables X1, X, ..., X;
corresponding to the path {X1,Xs, ..., X;} in T. We call a
failure tree of the instantiation I, the sub-tree of T noted by
Tr—(ay1,a,...,a;) SUch that:
1. The root of the tree T and the root of the sub-tree
Tr=(a;,a0,...,a;) are joined by the path corresponding to
the instantiation I,

2. All the CSP variables corresponding to the leaf nodes of
Ti—(a,,as,...,a;) have empty domains.

Example 3.2 Take the CSP of Figure 1 and apply a for-
ward checking process on it w.rt the variable ordering
{X1, X9, X3, X4, X5}. Figure 2 illustrates the assignment
tree of the considered CSP. If we take the partial instantiation
I = (b,a) which assigns X1 to the value b and X5 to the
value a, then the failure tree T_, o) of the instantiation I is
shown in the figure 2 (the part in a box).

We can now give the weakened sufficient conditions of
dominance. The main idea is to weaken the dominance condi-
tions of theorem 3.2 when an inconsistent partial instantiation

B. Benhamou and M.R. Saidi

AN
RXZ ?Xz
a c a b
\QXR Q{X‘s

X

! [| | ’
[N b a b a

oXe 50X o

Figure 2: An assignment tree and the failure tree of I=(b,a)

is generated during the search. That is, the conditions of the-
orem 3.2 are restricted to only the variables involved in the
failure tree among the un-instantiated ones.

Theorem 3.3 Ler P(X,C,D,R) be a CSP, a; € D; and
b; € D; two values of the domain D; of the current CSP
variable X; under instantiation, Iy = (a1, ...,a;,_1) a par-
tial instantiation of the i — 1 variables instantiated before X ;
such that the extension I = Ip\J{a;} = (a1,...,a;-1,a;)
is inconsistent, Tr—(q, ... a;_1,a;) IS the failure tree of I and
Var(Ti=(a,,...,a;_1,a;)) the set of variables corresponding to
the nodes of Tr—(a,,....a;_1,a;)- 1If the two following condi-
tions:
1. b € Dj = a; S Dj, for all Xj S
Var(Ti=(a,,....ai_1,a;)) SUch that X shares a constraint
2. a; € D;j & b € D, for each other variable X; of
Var(Ti—(a,,....ai_1,a;)) Which do not share a constraint
with X;
hold, then the extension J = Iy |J{b;} = (a1, ..., a;—1,b;) is
inconsistent.

Proof 4 Let P'(V',C',D’,R’) be a sub-CSP of the CSP
P(V,C, D, R) such that V' = Var(Ti—(a,,...a;_1,a;)) U Xi
and C' CC, D' C D and R' C R are the restrictions of
C,D, and R to the variables of V'. By the hypothesis,
Tr—(ay,....ai_1,a;) 15 a failure tree of I in P. This implies
that the assignment of X; to the value a; leads to a failure
in P'. In other words, a; does not participate in any solu-
tion of P’. By the hypothesis, the values a; and b; verify the
condition of theorem 3.2 when restricted to the variables of
Var(Tr—(a,.....a;_1,a:))- This means that a; dominates b; in
the CSP P’. By application of proposition 3.1, we deduce
that the value b; does not participate in any solution of P’.
This implies that the partial instantiation J = Iy |J{b;} =
(a1, ...,a;—1,b;) is inconsistent in P. (QED)

.....

This previous property of dominance is a weakening of the
conditions of Theorem 3.2 when the current partial instantia-
tion leads to an inconsistency. The case of partial inconsistent
instantiation is important, because it allows to prune the con-
sistency proof tree of a CSP w.r.t Proposition 3.1.

Some dominances not captured by Theorem 3.2 can result
from these weakened conditions. Let us consider for instance
the CSP of Figure 1. If we take the inconsistent partial in-
stantiation I = (b, a) of the variables X; and X5, then the
two values a and c¢ of the domain of the current variable X5

12

dominate each other (symmetrical) by application of Theo-
rem 3.3, whereas the conditions of both theorems 3.1 and 3.2
are not verified. The branch corresponding to the assignment
of X5 to cis not explored in the consistency proof tree thanks
to Theorem 3.3. This defines a dominance cut which we use
in Section 4 to shorten the CSP search tree.

3.4 Dominance detection

Now we deal with the dominance detection problem. Dom-
inance detection is based on the conditions of theorem 3.3.
The algorithm sketched in Figure 3 computes the values dom-
inated by a value a; of a given domain D; w.r.t the conditions
of theorem 3.3. These values form the class of dominance of
a; which we denote by cl(a;)).

procedure weak_dominance(a; € D;,Var(Ti=(aq,
var cl(a;):class);
input: a value a; € D;, a set of variables Var(Tr=(q,....a;))
Output: the class cl(a;) of the dominated values by a;.
begin
cl(ai):={a:}
for each d; € D;-{a;} do
for each domain Dy, of variables
of VGT(T[:(al ,,,,, (L1))
if (c;x € C and (a; € Dy, = d; € Dy))
or
(cir € C and (a; € Dy, & d; € Dy))
then cl(a;):=cl(a;)U{d; }
end

Figure 3: The algorithm of dominance search in NECSPs

Complexity: Let n be the number of variables of the NECSP,
and d the size of the largest domain. It is easy to see that the
algorithm of Figure 3 can run at most d times the first loop
and at most n times the second one. It then computes the
class cl(d;) of dominated values with a complexity O(nd) in
the worst case. This algorithm has a linear complexity w.r.t
the NECSP size.

In theory, this algorithm has the same complexity as the
one of the algorithm described in [Benhamou, 2004] in the
worst case. But, this new algorithm detects dominance rather
than only symmetry and detect some symmetries which are
not detected by the algorithm in [Benhamou, 2004]. All the
symmetries detected in [Benhamou, 2004] are detected with
this new algorithm, since it works on a weakened dominance
condition. That is, the dominance condition is verified on a
reduced subset of the non-instantiated variables (the ones of
Var(Ti=(a,,...,a;))) rather on the hole set of un-instantiated
variable as it is done in [Benhamou, 2004].

4 Exploiting Dominance in NECSPs

Now, we show how the dominance property given in Theorem
3.3 is exploited to increase the efficiency of NECSP back-
tracking algorithms. This property can be exploited in all enu-
merative resolution methods. Here we implemented a Simpli-
fied Forward Checking method (denoted by SFC) adapted to
NECSPs which we want improve by adding the dominance

property.

Reasoning by Dominance in Not-Equals Binary Constraint Networks

The principle of the Forward Checking [R. M. Haralik and
G. L. Elliot, 1980] is based on filtering the domains of the
non-instantiated variables w.r.t the instantiated one.

In the case of NECSPs, the filtering is simplified. It con-
sists only in removing the value d; from the domains of the
future variables having a constraint with the current variable
v; under instantiation. This results in a Simplified Forward
Checking which we considered in our implementation. The
rest of the method is just the classic backtracking.

Procedure SFC-weak-dom(D, I, ¢, VFT : a list);
input: a set of domains D, I = (d1, ..., d;) a partial instantiation
of variables {v1, ..., v; }; ¢ the index of the current variable and V F'T’
the set of variables Var(7T7) of the failure tree 7’7 (at the beginning V F'T" is empty).
var empty:boolean;
var VFT_tmp: a list;
var VFT_ old: a list;
begin
if i = n then [d1,d2, ..
else
begin
empty:=false;
VFT_tmp:=VFT;
VFT_old:=VFT;
for each v; € V,suchas C;; € C,v; € future(v;) do
if not(empty) and d; € D; then
begin
D;j=D;-{d};
if D ;=0 then
begin
undo filtering effects;
add(v;, VFT);
empty:=true;
end
end
if not(empty) then
begin
V4 1=next-variable(v;)
repeat
take d; 1 € Djiq1
Dit1=Diy1 — dig1

., d;] is a solution, print(I), stop

I=[di,d2,...,di,dit1];
VFT_tmp:=VFTU VFT_tmp;
VFT:=VFT_old;

SFC-weak-dom(D, I,i+ 1, VFT);,
weak_dominance(d;+1 € D;y1,VFT,Cl(d;+1));
Dii1=Diy1 — Cl(diy1);

until D; 1 = 0

end

VFT:=VFT _tmp;

add(v;, VFT),
end

end
Figure 4: The SFC method augmented by dominance

Theorem 3.3 allows to prune k-1 branches in the search
tree if there are k dominated values by a dominant value
which is shown to not participating in any solution. If C(d;)
denote the class of values of the domain ID; which are dom-
inated by d;, then we consider only the value d;, since the
other values of C1(d;) are redundant.

Figure 4 sketches the SFC procedure augmented by the
dominance property of theorem 3.3 (notation SFC-weak-
dom)) which decides just the consistency of a NECSP.
This method can be easily modified to compute all
non-symmetrical solutions of a NECSPs. The structure
future(v;) encodes the set of non-instantiated variables re-
maining after the instantiation of v;, and next-variable a
function which encodes the (DomDeg) heuristic. It consists

13

in minimizing the ratio
__|IDj]
Degree(v;)

where Degree(v;) denotes the number of constraints of the
initial CSP in which the variable v; is involved to select the
next variable. In the sequel SFC will denote the SFC method
augmented by the (DomDeg) heuristic.

S Experiments

We will now evaluate the performances of our imple-
mentation. The tests are made on both randomly gen-
erated graph coloring instances and some graph col-
oring benchmarks of the 27¢ challenge of Dimacs
(http://dimacs.rutgers.edu/Challenges). Graph coloring is
trivially expressed as a NECSP. We will test and compare
the Simplified Forward Checking augmented by the symme-
try property defined in [Benhamou, 2004] (SFC-sym), the
Simplified Forward Checking augmented by the advantage
of the dominance property of theorem 3.3 (SFC-weak-dom)
and an improved version [Sewell, 1995] of the well known
method DSATUR [D. Brelaz, 1979]. This method is based on
a heuristic which consists in coloring the vertices of a graph
according to their saturation degree. The saturation degree
of a vertex is the the number of different colors to which it is
adjacent. The DSATUR heuristic repeatedly chooses a ver-
tex having a maximal saturation degree and colors it with the
lowest-numbered color possible. The complexity indicators
are the number of nodes and CPU time. The source code is
written in C and compiled on a P4 2.8 GHz - RAM 1 Go.

5.1 Random graph coloring problems

Random graph coloring problems are generated according to
the parameters:(1) n the number of vertices (the variables),
(2) Cls the number of colors (the domain values) and (3) d
the density which is the ratio expressing the number of con-
straints to the total number of possible constraints.

For each test corresponding to some fixed value of the param-
eters n, Cls and d, a sample of 100 instances are randomly
generated and the measures (CPU time, nodes) are taken in
average.

T T
SFC-weak—dom -G --
2e+07 SEC-sym ~~

1.5e+07 [~

NbNodes

1e+07 [~

5e+06 —

0@ & i d
30 32 34 36 38 40 42
NbColors

Figure 5: The curves representing the number of nodes

B. Benhamou and M.R. Saidi

100 -

60

Time(sec)

40 -

20 -

) £ L = &
30 32 34 36 38 40 42
NbColors

Figure 6: The curves representing the CPU times

Figures 5 and 6 give the performances of the methods
DSATUR, SFC-sym and SFC-weak-dom in number of nodes
of the search tree, respectively, in CPU time (in seconds)
on random graph coloring problems where the number of
variables is fixed to n = 100 and the density to d = 0.9.
SFC without symmetry was not able to solve these instances
in reasonable time. This is why we did not give its curve.
We can see that SFC-weak-dom, generates less nodes than
both DSATUR and SFC-sym, and spends less time than both
methods to solve the problems. This proves that SFC-weak-
dom detects and eliminates more symmetries than the other
methods and the detection is faster in SFC-weak-dom. The
symmetry behavior is now shown. DSATUR eliminates only
the global! symmetry between colors, then generate more
nodes than FC-sym. SFC-sym detects more symmetries than
DSATUR since it detects both the global symmetry and local
2 symmetry, but less than SFC-dom-weak which considers
dominance. Only SFC-weak-dom captures the dominance,
and the detection is faster than in SFC-sym, thanks to the
weakened condition. These remarks are confirmed by the fol-
lowing Dimacs benchmarks where the gain is important.

5.2 Dimacs graph coloring benchmarks

Table 1 shows the results of the methods on some graph col-
oring benchmarks of Dimacs. It gives the number of nodes of
the search tree and the CPU time for each method. We seek
for each of them the minimal number & of colors needed to
color the vertices of the corresponding graph (the chromatic
number). The search of the chromatic number consist in prov-
ing the consistency of the problem with k colors (existence of
a k-coloration of the graph); and in proving its inconsistency
when using k£ — 1 colors. The symbol ”-” means that the cor-
responding method does answer the question in one hour.
We can remark that only SFC-weak-dom is able to solve
the known hard problem “DSJR500.1c” which, as far as,
we know it has never been solved by an exact method. We
can see that SFC-dom-weak outperforms both DSATUR and
SFC-sym, and SFC-sym is better than DSATUR on these
problems. DSATUR is the less effective since it does not

'The trivial symmetry of the initial problem which consists in the
interchangeable colors.

*The existing symmetry between values at each node of the
search tree.

14

Pb k DSATUR SFC-SYM SFC-dom-weak
instances
(V- E) N T N T N T
queen8_8 9 1581661 4.3 1368441 6.1 1353680 6.1
(64-728)
queen8_12 12 162 0.0 460 0.0 460 0.0
(96-1368)
myciel5 6 378310 0.6 72966 0.2 21278 0.0
(47-236)
myciel6 7 83157279 556.0 29754513 190.2
(95-755)
1e450_5a 5 - - 1408 0.1 1395 0.1
(450-5714)
1e450_5b 5 19884 0.6 19763 0.5
(450-5734)
le450.25a 25 425 0.1 450 0.1 450 0.1
(450-8260)
1e450-25b 25 425 0.0 450 0.1 450 0.1
(450-8263)
1-Fulllns_3 4 37 0.0 51 0.0 50 0.0
(30-100)
1-Fulllns 4 5 - - 8885 0.0 1368 0.0
(93-593)
2-Fulllns_3 5 156663424 193.6 678 0.0 359 0.0
(52-201)
qg.order30 30 1680 0.2 1169 0.2 1162 0.2
(900-26100)
qg.order40 40 12089785 302.0 10814593 266.6
(1600-62400)
school.1 14 371 0.2 568 0.4 555 0.4
(385-19095)
school_nsh 14 338 0.2 352 0.4 352 0.4
(352-14612)
wap05a 50 855 1.3 905 1.4 905 1.4
(905-43081)
mug88.25 4 22643 0.0 1631 0.0
(88-146)
mugl00.25 4 99917 0.2 515 0.0
(100-166)
ash608GPIA 4 10242 0.5 1742 0.5 1707 0.5
(1216-7844)
ash958GPIA 4 10252 22 7167 1.6
(1916-12506)
R125.5 36 1357573 9.1 55952 0.4 1051 0.0
(125-3838)
DSJR500.1¢ 84 28044984 3096.0
(500-121275)

Table 1: Dimacs graph coloring benchmarks

succeed to solve 9 benchmarks among the 22 proposed. For
space reason, we report here the results on the most rele-
vant Dimacs problems to compare DSATUR and our method,
but it is important to inform the reader that all the others
DIMACS problems which are solved by DSATUR are also
solved by SFC-weak-dom with a comparable performance.

6 Some related works

e In [P. Van Hentenryck et al., 2003] authors studied three
classes of CSPs where symmetry is tractable. The value-
Interchangeable CSPs (ICSPs) class is in relation with
our work. That is, when all the variable domains of a
NECSP are the same (as in the graph coloring problem),
it becomes an ICSP. For this particular case, the value
symmetry elimination technique used in [P. Van Henten-
ryck et al., 2003] for the ICSP class seems to be equiv-
alent to the global symmetry elimination described in
[Benhamou, 2004]. But,in general NECSPs are not IC-
SPs and the dominance/symmetry detected by the proce-
dure of figure 3 are not considered in the ICSP symmetry
breaking.

e On other hand Gent introduced in [I. Gent, 2001] a sym-
metry constraint to eliminate what he calls indistinguish-
able values. His approach works by addition of symme-
try constraints rather than dynamic detection of symme-

Reasoning by Dominance in Not-Equals Binary Constraint Networks

try. This technique may be used to break some of the
trivial global symmetry such as the one of the graph col-
oring problem for example. However, it does not deal
with the local symmetry or the dominance which we de-
tect by using the dominance procedure of figure 3.

e In [A. Ramani et al., 2004], authors investigated a static
approach to break symmetry in exact graph coloring
problem reduced to a hybrid constraint representation
formed by: boolean constraints and pseudo boolean con-
straints resulting from a 0-1 ILP reduction of the prob-
lem. Two kinds of symmetry are exploited: the instance-
dependent symmetry and the instance-independent sym-
metry. Our approach is dynamic whereas theirs is static
and does not deal with dominance. These are two dif-
ferent approaches which can be combined. Our method
seems to be more efficient for solving graph coloring
problems.

e The GE-tree method [Colva M. Roney-Dougal et al.,
2004] breaks all value symmetries at each node of the
search tree of a CSP. This method can eventually be used
to break the symmetries we are dealing with in NECSPs
during search, but it will be time consuming, since its
complexity at each node of the search tree, is approxi-
mately O(n*d?) in the worst case. Our method detects
the needed class of symmetry of a value in O(nd) and
detects dominance which is not considered by the GE-
tree technique.

e Recently in [Puget, 2005b; 2004], Puget studied symme-
try between variables involved in a global AlIDiff con-
straint. This is a particular case of NECSP, since the
Alldiff constraint can be expressed as a NECSP whose
constraint graph is complete. The symmetry elimina-
tion technique is static, it consists in adding some ex-
tra constraints to the problem formulation to eliminate
the symmetries between variables. The most important
result here is the fact that only a linear number of ex-
tra constraints is needed to break all the variable global
symmetries. Our approach is dynamic, it focuses on lo-
cal dominance/symmetry between values. Our method
can be safely combined with Puget’s one. It will be in-
teresting to study the behavior of the resulting method
on complete NECSPs (Alldiff constraints).

7 Conclusion

In this work we extended the symmetry principle to domi-
nance and weakened the symmetry/dominance sufficient con-
ditions in Not-Equals constraint networks when an incon-
sistent partial instantiation is generated. We implemented
a more efficient dominance search algorithm which detects
both symmetry and which captures the dominance. We ex-
ploited the new dominance property in a Simplified Forward
Checking backtracking algorithm adapted to NECSPs. Ex-
periments are carried on both random generated graph color-
ing problems and Dimacs graph coloring benchmarks. The
obtained results show that reasoning by dominance is prof-
itable for solving NECSPs. Our method beats the well known
exact method for solving graph coloring.

15

Further investigation consists first in extending the dom-
inance property to values of different domains, then inves-
tigate dominance detection in more general CSPs. Another
point is to combine some CSP decomposition methods with
our method to improve Not-Equals constraint networks solv-

ing.

References

[A. Ramani ef al., 2004] A. Ramani, FA. Aloul, ILL.
Markov, and K.A. Sakallah. Breaking instance-
independent symmetries in exact graph coloring. In
DATE, pages 324-329, 2004.

[Benhamou and Sais, 1992] B. Benhamou and L. Sais. The-
oretical study of symmetries in propositional calculus and
application. CADE-11, Saratoga Springs,NY, USA, 1992.

[Benhamou, 1994a] B. Benhamou. Study of symmetry in
constraint satisfaction problems. In PPCP’94, 1994.

[Benhamou, 1994b] B. Benhamou. Theoretical study of
dominance in constraint satisfaction problems. 6th In-
ternational Conference on Artificial Intelligence: Method-
ology, Systems and Applications (AIMSA-94), Sofia, Bul-
garia, september, pages 91-97, 1994.

[Benhamou, 2004] B. Benhamou. Symmetry in not-equals
binary constraint networks. SymCon’04 : 4th Interna-
tional Workshop on Symmetry and Constraint Satisfaction
Problems, 2004.

[Cohen et al., 2005] D. Cohen, P. Jeavons, C. Jefferson, K.E.
Petrie, and B. Smith. Symmetry definitions for constraint
satisfaction problems. In proceedings of CP, pages 17-31,
2005.

[Colva M. Roney-Dougal et al., 2004] Colva M. Roney-
Dougal, Ian P. Gent, Tom Kelsey, and Steve A. Linton.
Tractable symmetry breaking using restricted search trees.
In proceedings of ECAI-04, 2004.

[D. Brelaz, 1979] D. Brelaz. New methods to color the ver-
tices of a graph. In the communications of the ACM 22,
pages 251-256, 1979.

[F. Focacci and M. Milano, 2001] F. Focacci and M. Milano.
Global cut framework for removing symmetries. In CP’01,
volume 2239 of LNCS, pages 77-82. Springer Verlag,
2001.

[FA. Aloul et al., 2003] FA. Aloul, A. Ramani, ILL.
Markov, and K.A. Sakallah. Solving difficult sat instances
in the presence of symmetry. In IEEE Transaction on
CAD, vol. 22(9), pages 1117-1137, 2003.

[FA. Aloul et al., 2004] FA. Aloul, A. Ramani, LL.
Markov, and K.A. Sakallah. Symmetry breaking for
pseudo-boolean satisfiabilty. In ASPDAC’04, pages
884-887, 2004.

[Fahle et al., 2001] T. Fahle, S. Schamberger, and M. Sell-
mann. Symmetry breaking. In International conference
on constraint programming, volume 2239 of LNCS, pages
93-108. Springer Verlag, 2001.

B. Benhamou and M.R. Saidi

[Freuder, 1991] E.C. Freuder. Eliminating interchangeable
values in constraints satisfaction problems. Proc AAAI-91,
pages 227-233, 1991.

[I. Gent, 2001] I. Gent. A symmetry breaking constraint for
indistinguishable values. In SymCon’01, 2001.

[L.P. Gent et al., 2002] 1.P. Gent, W. Harvey, and T. Kelsey.
Groups and constraints: Symmetry breaking during
search. In CP’02, volume 2470 of LNCS, pages 415-430.
Springer Verlag, 2002.

[James Crawford et al., 1996] James Crawford, Matthew L.
Ginsberg, Eugene Luck, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In KR’96, pages
148-159. Morgan Kaufmann, San Francisco, California,
1996.

[Jean F. Puget, 2002] Jean F. Puget. Symmetry breaking re-
visited. In CP’02, volume 2470 of LNCS, pages 446-461.
Springer Verlag, 2002.

[Krishnamurty, 1985] B. Krishnamurty. Short proofs for
tricky formulas. Acta informatica, (22):253-275, 1985.

[M.R. Garey and D.S. Johnson, 1979] M.R. Garey and D.S.
Johnson. Computers and intractability: A guide to the the-
ory of np-completeness, w.h. freeman. 1979.

[P. Van Hentenryck et al., 2003] P. Van Hentenryck, P.
Flener, J. Pearson, and M. Argen. Tractable symmetry
breaking for csps with interchangeable values. In IJCAI,
pages 277-282, 2003.

[Puget, 1993] Jean F. Puget. On the satisfiability of symmet-
rical constrained satisfaction problems. In ISMIS, 1993.

[Puget, 2004] Jean F. Puget. Breaking symmetries in all dif-
ferent problems. SymCon’04 : 4th International Workshop
on Symmetry and Constraint Satisfaction Problems, 2004.

[Puget, 2005a] Jean F. Puget. Breaking all value symmetries
in surjection problems. In proceedings of CP, pages 490—
504, 2005.

[Puget, 2005b] Jean F. Puget. Breaking symmetries in all dif-
ferent problems. In proceedings of IJCAI, pages 272-2717,
2005.

[R. M. Haralik and G. L. Elliot, 1980] R. M. Haralik and G.
L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence 14, pages
263-313, 1980.

[Sewell, 1995] Edward C. Sewell. An improved algorithm
for exact graph coloring. DIMACS series on Discrete
Mathematics and Theorical Computer Science, 1995.

16

GAPLex: Generalised Static Symmetry Breaking

Chris Jefferson, Tom Kelsey, Steve Linton and Karen Petrie
chris.jefferson@comlab.ox.ac.uk, {tom,sal kep }@dcs.st-and.ac.uk

Abstract

We describe a novel algorithm that statically
breaks symmetry in CSPs by using computa-
tional group theory during search. This algo-
rithm extends and generalises the commonly
used “double lex” method for breaking sym-
metry in matrices. We show that our new sym-
metry breaking method, GAPLex, is sound
(will neither lose solutions nor return incor-
rect solutions) and complete (will return ex-
actly one member from each class of symmet-
rically equivalent solutions). We demonstrate
that our implementation of GAPLex is com-
petitive with other methods, being effectively
applicable to CSPs with large domains and
less than full variable and/or value symme-
try. We also describe how GAPLex can be
combined with incomplete symmetry break-
ing methods — such as double-lex — to provide
fast and complete symmetry breaking. We be-
lieve this to be the first method that success-
fully combines the posting of symmetry break-
ing constraints before search, with symmetry
breaking by analysis of search states.

1 Introduction

Constraint satisfaction problems (CSPs) are often highly
symmetric. Given any solution, there are others with
are equivalent in terms of the underlying problem.
Symmetries may be inherent in the problem, or be
created in the process of representing the problem as
a CSP. Without symmetry breaking (henceforth SB),
many symmetrically equivalent solutions may be found
and, in some ways more importantly, many symmetric
equivalent parts of the search will be explored. A SB
method aims to avoid both these problem.

Most SB algorithms fall into one of two groups.
The first, known as static SB algorithms, decide be-
fore search which assignments will be permitted and
which will be forbidden and are therefore indepen-
dent of search ordering. The second group, known as
dynamic symmetry breaking methods instead choose
which assignment will be permitted during search.

Existing static symmetry breaking methods work by
adding extra constraints to the CSP, either before or dur-
ing search. This typically involves constraints that rule
out solutions by enforcing some lexicographic-ordering
on the variables of the problem [Crawford et al., 1996;
Frisch et al., 2002]. STAB [Puget, 2003] is a SB algorithm
for solving BIBDs which avoids adding an exponential
number of constraints at the start of search by adding
constraints during search on the row of the BIBD cur-
rently being assigned.

Dynamic symmetry breaking methods operate in a
number of ways, including posting constraints that rule
out search at states that are symmetrically equivalent
to the current assignment [Backofen and Will, 1999;
Gent and Smith, 2000], building the search tree such
that symmetric nodes are avoided [Roney-Dougal et
al., 2004] or backtracking from nodes that are sym-
metrically equivalent to root nodes of subtrees that
have previously been fully explored [Fahle et al., 2001;
Focacci and Milano, 2001; Puget, 2003]. These methods,
especially in the case that symmetries are represented
by permutation groups, are related to a class of algo-
rithms first described in [Brown et al., 1988].

The major weakness of static SB methods, compared
to dynamic methods, is that they can increase the num-
ber of search nodes visited [Gent et al., 2002], as the first
solution which would have been found is forbidden by
the symmetry breaking constraints. The major advan-
tage of static symmetry breaking methods is that ad-
hoc problem specific simplifications often perform very
well and powerful implied constraints can be derived
from these constraints [Frisch et al., 2004]. Moreover,
since static SB does not depend on previously encoun-
tered search nodes, it can be used when searching in
parallel on multiple machines.

Other methods of breaking symmetry do exist, for ex-
ample a CSP can be reformulation of the CSP so that
either the number of symmetries is reduced, or some
other approach can be applied more effectively [Kelsey
et al., 2004; Meseguer and Torras, 2001]. However, these
are currently problem specific and not discussed here.

Groups are the mathematical structures that best en-
capsulate symmetry. Many powerful algorithms for in-

C. Jefferson et al.

vestigating group-theoretic questions are known, and
have been efficiently implemented in systems such as
GAP [GAP, 2000] and MAGMA [Bosma and Cannon,
1993]. Previously, computational group theory (hence-
forth CGT) has been used with a high level of success
in dynamic symmetry breaking with both Symmetry
Breaking During Search (SBDS) [Gent et al., 2002] and
Symmetry Breaking via Dominance Detection (SBDD)
[Gent et al., 2003], allowing generic systems which can
handle over 10?° symmetries. Recent advances [Linton,
2004] have provided the CGT tools necessary to effi-
ciently implement static symmetry breaking.

In this paper we address the open research question:
can we implement lex-ordering with a CGT approach in
such a way that we retain the best features of static sym-
metry breaking while gaining the speed and flexibility
of a general group-theoretic framework? Our contribu-
tion is twofold. We first describe a novel SB method,
GAPLex, which involves both ordering constraints and
symmetry information regarding the current state of
search to break as many solution symmetries of a CSP
as are required. We also demonstrate that GAPLex can
be combined with previous fast but incomplete static
lex-orderings to provide fast and complete SB.

In the remainder of this introduction we give a de-
tailed backgound of SB by lex-ordering, a basic descrip-
tion of permutation groups acting on literals of CSPs,
and describe existing approaches to the use of CGT to
break symmetries dynamically. In Section 2 we moti-
vate and describe GAPLex, and provide empirical re-
sults for our implementation. Section 3 describes our
combination of GAPLex with static lex-orderings, again
with empirical results. We conclude with a summary of
our results and an outline of future research in this area.

1.1 Lex-ordering to break symmetries

Puget [Puget, 1993] proved that whenever a CSP has
symmetry, it is possible to find a ‘reduced form’, with
the symmetries eliminated, by adding constraints to
the original problem and showed such a form for three
CSPs. Following this, the key advance was to show
a method whereby such a set of constraints could be
generated. Crawford, Ginsberg, Luks and Roy showed
a general technique, called “lex-leader”, for generating
such constraints for any variable symmetry [Crawford
et al., 1996).

The idea behind lex-leader is essentially simple. For
each equivalence class of assignments under our sym-
metry group, we choose one to be canonical. We then
add constraints before search starts which are satisfied
by canonical assignments and not by any others. We
generate canonical assignments by choosing an order-
ing of the variables and representing assignments as tu-
ples under this variable ordering. Any permutation of
variables g maps tuples to tuples, and the lexicograph-
ically least of these is our canonical assignment. This
gives the set of constraints

Vg € G: leexvg

18

where V is the vector of the variables of the CSP, <o
is the standard lexicographic ordering relation, defined
by AD=BC iff either A < Bor A = Band D <
C, and V9 denotes the permutation of the variables by
application of the group element.

1.2 Group theory for CSPs

Definition 1 A CSP L is a set of constraints C acting on a
finite set of variables A := {Aq, As, ..., A, }, each of which
has finite domain of possible values D; := D(A;) C A. A
solution fo L is an instantiation of all of the variables in A
such that all of the constraints in C are satisfied.

Constraint logic programming systems typically model
CSPs using constraints over finite domains. The usual
search method is depth-first, with values assigned to
variables at choice points. After each assignment a par-
tial consistency test is applied: domain values that are
found to be inconsistent are deleted, so that a smaller
search tree is produced.

Statements of the form (Var = wval) are called literals,
so a partial assignment is a conjunction of literals. We
denote the set of all literals by x, and denote variables
by Roman capitals and values by lower case Greek let-
ters.

Definition 2 Given a CSP L, with a set of constraints C,
and a set of literals x, a symmetry of L is a bijection f : x —
X such that a full assignment A of L satisfies all constraints
in C if and only if f(A) does.

We denote the image of a literal (X = «) under a sym-
metry g by (X = «a)g. The set of all symmetries of a CSP
form a group: that is, they are a collection of bijections
from the set of all literals to itself that is closed under
composition of mappings and under inversion. We de-
note the symmetry group of a CSP by G.

Definition 3 Let G be a group of symmetries of a CSP. The
stabiliser of a literal (X = «) is the set of all symmetries in
G that map (X = «) to itself. This set is itself a group. The
orbit of a literal (X = «), denoted (X = «)%, is the set of
all literals that can be mapped to (X = «) by a symmetry in
G. The orbit of a node is defined similarly.

Given a collection S of literals, the pointwise stabiliser
of § is the subgroup of G which stabilises each element
of S individually. The setwise stabiliser of S is the sub-
group of G that consists of symmetries mapping the set
S to itself.

1.3 Using GAP to break CSP symmetries

There have been three successful implementations of SB
methods which use GAP to provide answers to sym-
metry related questions during search. All three com-
bined GAP with the constraint solver ECL'PS¢ [Wal-
lace et al., 1997]. GAP-SBDS [Gent et al., 2002] is an
implementation of symmetry breaking during search:
at each search node, constraints are posted which en-
sure that no symmetrically equivalent node will be vis-
ited later in search. Enough pruning of the search tree

GAPLex: Generalised Static Symmetry Breaking

is made, in general, to make GAP-SBDS more efficient
than straightforward search. The number of SB con-
straints is linear in the size of the group, making GAP-
SBgDS unattractive for groups of size greater than about
10°.

GAP-SBDD [Gent et al., 2003] uses GAP to check that
the next assignment is not equivalent to a state which
is the root of a previously explored sub-tree. Again, the
overhead of finding (or failing to find) these group el-
ements is usually more than offset by the reduction in
search due to early backtracking. Larger groups — up to
about 10%° — can be dealt with, simply because the an-
swer from GAP is a straight yes or no to the dominance
question; the overhead of passing constraint informa-
tion is not present. GAP also reports literals that can be
safely deleted because setting them would have lead to
dominance. Provided that the cost of computing these
safe deletions is low enough, the domain reductions are
a gain over not making them. We follow the same idea
in this paper; we search for literals that, if set, would
have lead to a non-lex-least assignment.

The third use of GAP is the building of search trees
that, by construction, have no symmetrically equivalent
nodes and contain a member from each solution equiv-
alence class: GE-trees [Kelsey et al., 2004].

In this paper we aim to build upon the strengths of
these existing frameworks by using lex-ordering as the
main SB technique, using GAP to decide if the current
partial assignment is lex-smallest of the orbit of the as-
signment under the symmetry group.

2 GAPLex

2.1 Motivation and rationale

Both lex-ordering and CGT-based SB methods are ef-
fective and attractive options for breaking symmetries
in CSPs. Our aim is to implement lexicographic static
symmetry breaking using the CGT methods used in
GAP-SBDS and GAP-SBDD, thus combining useful fea-
tures of both approaches.

We want to enforce a lex ordering on the literals of a
CSP so that only solutions that are minimal in the order-
ing are returned after complete backtrack search with
propagation. Moreover, we want this to work with any
symmetry structure induced by the formulation of the
CSP.

The key idea is that we can compute the minimum
image, under a symmetry group G, of those literals
that represent the ground variables in any branch of the
search tree. By minimum image, we mean the lex-least
ordered list of literals that can be obtained by apply-
ing group elements (symmetries) to our set of ground
literals. If the minimum image of our current partial as-
signment is lex-smaller than that assignment, then it is
safe to backtrack from the current search node: further
search will either fail to find a solution or return a solu-
tion that is not the lex-smallest in its equivalence class.

Recent advances in algorithms for finding minimal
images have lead to dramatic improvements in both

19

worst-case and apparent average-case time complexi-
ties [Linton, 2004]. We use these more efficient CGT
methods to obtain the minimal images and decide the
ordering predicate. As a useful extension to the main
technique, we can also use CGT to identify those literals
involving non-ground variables that, if taken as assign-
ments, would result in failure of the lex-smaller test.
The assignments of any such literals can be ruled out
immediately by deleting the values from their respec-
tive domains. These domain deletions, together with
the propagation of the domain deletion decisions, re-
duce the search required to find solutions (or confirm
that no solutions exist) for the CSP.

2.2 Motivating example
Suppose that we wish to solve

A N D N G 1
10B+C 10E+F 10H+1

where each variable takes a value from 1 to 9. There
are 3! permutations of the summands which preserve
solutions. Suppose now that during search for all solu-
tions we have made the partial assignment PA : A = 2,
B =3,C=8,D=2,FE = 1. One symmetry maps this
toG=2,H=3,I =8 A=2,B = 1;or,in sorted order,
A=2,B=1,G=2,H=31=8.

Under the variable ordering ABCDEFGH]I, this is
lexicographically smaller than PA (since B = 1 is
smaller than B = 3) so we would backtrack from this
position. Notice that although we map a state which
includes A = 2 into a smaller state we can’t do it by
mapping the literal A = 2 to itself.

Even if we can’t immediately backtrack, there are of-
ten safe domain deletions that can be made. For exam-
ple if we have only assigned A = 7, it is safe to remove
values 1 through 6 from the domains of D and G, since
making any of these assignments would lead to an im-
mediate backtrack.

2.3 The GAPLex algorithms

We have a CSP and a symmetry group, G, for the CSP.
G acts on the set of literals (variable-value pairs) of
the problem, written as an initial subset of the natural
numbers. The set of literals forms a variables x val-
ues array, so that the literals of the lex-least variable are
1,2,...,|dom(V1)|, etc. The GAPLex method, applied at
anode N in search, proceeds as follows :
Require: PA «— current partial assignment
Require: Var < next variable w.r.t. any fixed choice heuris-
tic

Require: val « next value w.r.t. lex-least value ordering
: set Var = val and propagate
add Var = val to PA
: T « literals involving unassigned variables
pass PA and T to the GAPLex CGT test
. if the test returns false then

backtrack
else

the test returns true and a list of literals, D

for (X =a) € Ddo

O RN @

C. Jefferson et al.

10: remove « from the domain of X and propagate
11: end for

12: continue search

13: end if

14: if Var = val does not lead to a solution then
15: set Var # val and propagate
16: if a solution is obtained then

17: check that the solution is not isomorphic to any pre-
vious solution

18: else

19: move to next search node

20: endif

21: end if

There are several points of interest. The list T’ passed
to the CGT test contains only those literals that involve
the current domains of non-ground variables, as op-
posed to the domains before search. In this sense T’
is the smallest list we can pass, making the CGT test
as efficient as possible. The method - if applied at ev-
ery node in search — is sound, since we only backtrack
away from solutions that are not lex-least, and we make
no domain deletions involving lex-least solutions. This
method is very much in the spirit of GAP-SBDD; the
aim is to replace dominance detection by the power and
simplicity of lex-ordering SB heuristics. Another way of
looking at the method is as a propagator for (unposted)
lex-ordering SB constraints. The method backtracks
and reduces domains in line with the constraints that
a static lex-ordering would have posted before search.

As in other CGT-based SB methods, we can only ex-
pect a win if the cost of the CGT test is less than the cost
of performing the search needed without early back-
tracking and early domain deletions provided by the
test. By using highly efficient implementations of pow-
erful permutation group algorithms, we can achieve
this goal. The GAPLex CGT test, written in GAP, is
specified as follows:

Require: G —a symmetry group for a CSP
Require: PA and T - as ordered lists of literals

1: if PA is not lex-least in its orbit under G then

2: result = false

3: else

4: D «t € T if added to PA would make PA not lex-
least

5. result = true and D

6: end if

The test proceeds by recursive search, similar to that
described in [Linton, 2004], terminating when either the
elements of PA have been exhausted, or the group at
the bottom of the stabiliser chain consists only of the
identity permutation. This stabiliser chain is the se-
quence stabiliser of the literals involving the decisions
made above the current node during search. More pre-
cisely, a recursive routine with the following specifica-
tion is applied:

Require: G —a permutation group
Require: SOURCE and EXTRA — as ordered lists of points
Require: TARGET - an ordered list of points

1: if 3g € G : g(SOURCE)=<1exTARGET then

2: result = false

20

3: else
4 D — {t € EXTRA : 3g € G : g(SOURCE U
{t)<xTARGET}

5. appropriate subset of D is added to a global list DL

6: result = true

7: end if
Calling this routine with the same G, and with
SOURCE and TARGET both equal to PA and
EXTRA equal to T clearly achieves the specification
above. The implementation of this routine is:

1: GAPLexSearch(G,SOURCE,TARGET,EXTRA)

2: if TARGET is empty then

3: return true
4: end if
5: ¢ — TARGETI1]
6: fory € SOURCE do
7: ifdg € G : g(y) < x then
8: return false
9: else
10: if 3g € G : g(y) = « then
11: G’ — the stabiliser of z in G
12: S" — SOURCE \ {y}
13: T' — TARGET \ {x}
14: res «— GAPLexSearch(G', S, T', EXTRA)
15: if res = false then
16: return false
17: end if
18: end if
19: endif
20: end for

21: fory € EXTRA do
22: ify¢ DLand 3g € G : g(y) < z then

23: addyto DL
24: end if
25: end for

26: return true

2.4 Empirical evaluation

Our implementation uses the GAP-ECLPS® system,
with CSP modelling and search performed in ECL'PS¢,
and with GAP providing black-box answers to sym-
metry questions. We have tested our implementation
on two classes of CSP. The first is Balanced Incomplete
Block Designs (BIBDs), problem class 28 in csplib. This
class was chosen to be a stern test of the effectiveness of
GAPLex, with a large number of symmetries and small
domains. We would therefore expect the search for
lex-inspired early backtracks to be expensive, with not
many useful domain deletions being returned. This ex-
pectation is realised in our results given in Table 1. The
better results for GAP-SBDD are in part because GAP-
SBDD has special support for problems with Boolean
variables. We tried posting the complete set of lexico-
graphic lex-leader constraints on each BIBD instance,
but the number of constraints was too great.

The second problem class is Graceful Graphs, a graph
labelling problem described in [Petrie and Smith, 2003].
The symmetries that arise are any symmetries of the
graph, combined with symmetries of the labels. In this
class the domains are larger, and, in general, there are
fewer symmetries.

GAPLex: Generalised Static Symmetry Breaking

Table 1: GAP-SBDD vs GAPLex. Problem class: BIBDs modelled as binary matrices.

GAP-SBDD | GAP-LEX | Double Lex | GAP-Lex no prop | Combined
V B R K A[d O & O & O & O & O
7 7 3 3 1|3 470 3 1150 | 3 20 |21 1389 3 1150
6 10 5 3 2| 4 869 |29 80100 | 5 30 |29 80100 4 50340
7 14 6 3 2|13 502625 | - - 30 110 | - - - -
9 12 4 3 1|12 451012 | - - 30 120 | - - - -
1 11 5 5 2|11 68910 | - - 20 140 | - - - -
8§ 14 7 4 3|14 219945 | - - 143 720 | - - - -

Table 2: Table comparing various symmetry breaking methods. Partial GAP-LEX is where GAP-LEX checks do not

-> 2 hours © Number of Backtracks () Total runtime in ms

commence until after the 1°¢ backtrack.

GAP-SBDS GAP-SBDD
Instance | < O A O <] AN O
K3 x Py 9 290 110 400 22 310 180 490
Kyx Py | 165 1140 3590 4730 496 3449 8670 12110
K5 x Py | 4390 35520 166149 201669 | 17977 174180 501580 675760

GAP-LEX Partial GAP-LEX
Instance [O O [O O
Ki3x Py | 10 160 100 260 12 150 130 280
Ky x Py | 184 1550 4020 5570 202 670 4980 5650
K5 x Py | 4722 47870 176200 224070 | 5024 18820 224310 243130

<& Number of Backtracks O Gap Time in ms A Eclipse time in ms () Total runtime in ms

The results for this class of problems (Table 2) are
more encouraging. We see that, in contrast to BIBDs,
GAPLex provides fewer backtracks but performs faster
than GAP-SBDD. GAPLex performs as well as GAP-
SBDS on these problems. We also tested the heuris-
tic observation that no GAPLex tests will fail (resulting
in a backtrack) until the first search-related backtrack
occurs, although propagation may occur. The test in-
volved simply turning GAPLex tests off until the first
(if any) backtrack occurring in normal search. Our re-
sults for this heuristic are inconclusive for this class of
problems.

3 Combining GAPLex with Incomplete
Static SB methods

3.1 Double-lex

Much research has concentrated on symmetry-breaking
constraints for matrix models — a constraint program that
contains one or more matrices of decision variables —
which occur frequently as CSPs. The prime example of
this body of work is “double lex”, which imposes that
both the rows and the columns are lexicographically or-
dered [Flener et al., 2002]. This does not break all the
compositions of the row and column symmetries.
Frisch et al introduced an optimal algorithm to estab-
lish generalised arc-consistency for the < constraint
[Frisch et al., 2002]. This gives an attractive point on the
tradeoff: a linear time to establish a high level of consis-
tency on constraints which often break a lot of the sym-
metry in matrix models. The algorithm can be used to

21

establish consistency in any use of <¢y, so in particular
is useful for any use of lex-leader constraints.

3.2 Combining GAPLex and double-lex

Our approach is straightforward. We add static double-
lex constraints before search. At each node in the search
tree we run GAPLex, without supplying the list of can-
didate domain deletions. This clearly means that the
test is computationally more efficient: the final for-
loop in the CGT algorithm isn’t performed. We justify
this with the hypothesis that any safe deletion found
would almost certainly be already ruled out by the
static double-lex constraints.

In Table 3 we see that GAPLex does not perform as
well as simply posting double-lex constraints before
search. However, GAPLex returns the correct num-
ber of solutions, whilst double-lex returns many sym-
metrically equivalent solutions. It seems that combin-
ing GAPLex with double-lex is a win over just using
GAPLex. These results are not unexpected, as GAPLex
was shown to behave poorly on this formulation of
BIBDs in Section 2.4. We feel that the proof of concept
is, however, interesting and useful.

3.3 Combining GAPLex with Puget’s
all-different constraints

Puget has recently presented a method of implementing
lex-leader constraints for variable symmetries in CSPs
with all-different constraints [Puget, 2005] in linear
time. In problems with both variable and value sym-
metries, these can be usefully combined with GAPLex.

C. Jefferson et al.

Table 3: Static symmetry breaking all-different constraints vs GAPLex with no search for safe deletions vs combined
GAPLex and static constraints. Problem class: all solutions of Graceful Graphs in the standard model.

Constraints GAP-Lex no Prop Combined
Instance <& O S O A O [O A O
Ks;x P, | 16 800 12 150 130 280 10 140 100 240
K, x Py | 369 4530 | 202 600 5140 5740 | 188 510 3300 3810
K5 x Py | 9887 297880 | 5024 19010 224740 243750 | 4787 14820 188820 203640

<& Number of Backtracks O Gap Time in ms
A Eclipse time in ms () Total runtime in ms

Our approach is the same as for double-lex: we post the
static all-different constraints before search, and run the
GAPLex test at each search node.

Our results, given in Table 3, show that GAPLex per-
forms slightly better than static constraints, and that
combining the two methods is better than using either
in isolation. These encouraging results are made bet-
ter by noting that, for this class of problems, using only
static constraints results in twice as many solutions be-
ing returned as necessary.

4 Conclusions and Future Work

We have used and extended recent advances in Compu-
tational Group Theory to add lex-ordering to the class
of symmetry breaking techniques that can be effectively
implemented by using a CGT system to provide black-
box answers to symmetry related questions. Our im-
plementation, GAPLex, is competitive with GAP-SBDS
and GAP-SBDD. The choice of which method to use
for which class of CSPs appears to be an interesting re-
search question. Answers to this question could pro-
vide insight into yet more symmetry breaking methods.
Also the CGT algorithms used are still new and based
on experience with GAP-SBDD may improve by orders
of magnitude with further investigation.

We have, moreover, demonstrated the first com-
bination of static and search-based symmetry break-
ing methods that is (for certain classes of CSP) more
efficient than using either the static or search-based
method in isolation. This result is important, since the
successful combination of symmetry breaking methods
is taxing and open area of CSP research, with great po-
tential benefits attached to positive answers.

More work is needed in two areas. Firstly, we must
address the questions relating to why a particular sym-
metry breaking approach works better for some CSPs
than others. Secondly, we need to investigate other po-
tentially successful combinations of symmetry breaking
techniques.

Acknowledgements

We are very grateful for their helpful comments and
other assistance to Ian P. Gent and Barbara Smith, and
all the attendees at the 2006 Symnet sandpit on Com-
bining Symmetry Breaking Techniques. This work is

22

supported by EPSRC grants GR/530580/01 (Symme-
try and Inference), EP/CS23229/1 (Critical Mass) and
GR/S86037/01 (Symnet Network).

References

[Backofen and Will, 1999] R. Backofen and S. Will. Excluding
symmetries in constraint-based search. In Proceedings, CP
99, pages 73-87. Springer, 1999.

[Bosma and Cannon, 1993] W. Bosma and J. Cannon. Hand-
book of MAGMA functions. Sydney University, 1993.

[Brown et al., 1988] C.A. Brown, L. Finkelstein, and PW. Pur-
dom, Jr. Backtrack searching in the presence of symmetry.
In T. Mora, editor, Proc. AAECC-6, pages 99-110. Springer-
Verlag, 1988.

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks, and
A. Roy. Symmetry-breaking predicates for search prob-
lems. In Proc. KR'96, pages 149-159, November 1996.

[Fahle et al., 2001] T. Fahle, S. Schamberger, and M. Sellmann.
Symmetry breaking. In Proc. CP 01, pages 93-107, 2001.

[Flener et al., 2002] P. Flener, A. M. Frisch, B. Hnich,
Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In Proc. CP
02, pages 462-476. Springer-Verlag, 2002.

[Focacci and Milano, 2001] F. Focacci and M. Milano. Global
cut framework for removing symmetries. In T. Walsh, edi-
tor, Proc. CP 01, pages 77-92, 2001.

[Frisch et al., 2002] AM. Frisch, B. Hnich, Z. Kiziltan,
I. Miguel, and T. Walsh. Global constraints for lexico-
graphic orderings. In Proc. CP 02, pages 93-108. Springer,
2002.

[Frisch et al., 2004] A. M. Frisch, C. Jefferson, and 1. Miguel.
Symmetry breaking as a prelude to implied constraints: A
constraint modelling pattern. In Proc. ECAI 04, pages 171-
175, 2004.

[GAP, 2000] The GAP Group. GAP - Groups, Al-
gorithms, and Programming, Version 4.2, 2000.
(http://www.gap—-system.orq).

[Gent and Smith, 2000] LP. Gent and B.M. Smith. Symmetry
breaking in constraint programming. In Proc. ECAI 2000,
pages 599-603, 2000.

[Gent et al., 2002] I.P. Gent, W. Harvey, and T. Kelsey. Groups
and constraints: Symmetry breaking during search. In Proc.
CP 02, pages 415-430, 2002.

[Gent et al., 2003] L P. Gent, W. Harvey, T. Kelsey, and S. Lin-
ton. Generic SBDD using computational group theory. In
Proc. CP 03, pages 333-347, 2003.

GAPLex: Generalised Static Symmetry Breaking

[Kelsey et al., 2004] T. Kelsey, S. Linton, and C. M. Roney-
Dougal. New developments in symmetry breaking in
search using computational group theory. In Proc. AISC
04, pages 199-210, 2004.

[Linton, 2004] S. Linton. Finding the smallest image of a set.
In Proc. ISSAC 04, pages 229-234. ACM Press, 2004.

[Meseguer and Torras, 2001] P. Meseguer and C. Torras. Ex-
ploiting Symmetries within Constraint Satisfcation Search.
Al, 129:133-163, 2001.

[Petrie and Smith, 2003] K. Petrie and B. Smith. Symmetry
breaking in graceful graphs. In Proc. CP 03, 2003.
[Puget, 1993] J-F. Puget. On the satisfiability of symmetrical

constraint satisfaction problems. In Proc. ISMIS 93, pages
350-361, 1993.

[Puget, 2003] J-F. Puget. Symmetry breaking using stabiliz-
ers. In Proc. CP 2003, pages 585-599, 2003.

[Puget, 2005] J-F. Puget. Breaking symmetries in all different
problems. In Proc. IJCAI 05, pages 272-277, 2005.

[Roney-Dougal et al., 2004] C. M. Roney-Dougal, 1. P. Gent,
T. Kelsey, and S. Linton. Tractable symmetry breaking us-
ing restricted search trees. In Proc. ECAI 04, pages 211-215,
2004.

[Wallace et al., 1997] M. G. Wallace, S. Novello, and
J. Schimpf. ECLiPSe : A platform for constraint logic
programming. ICL Systems Journal, 12(1):159-200, May
1997.

23

Solving Partially Symmetrical CSPs

F. Verroust and N. Prcovic - LSIS - Université Paul Cézanne - Aix-Marseille TI1

famatdlofT,

Abstract

Many CSPs contain a combination of symmetrical
and asymmetrical constraints. We present a global
approach that allows to apply any usual methods for
breaking symmetries on the symmetrical part of a
CSP and then to search for a global solution by in-
tegrating afterwards the asymmetrical constraints.
Then, we focus on optimization problems where
only the cost function is asymmetrical. We show
experimentally that in this case we can speed up
the search of some problems.

1 Introduction

Symmetry breaking for CSPs has been largely studied for the
last ten years. When a CSP contains many constraints, avoid-
ing to explore the large portions of the search space contain-
ing equivalent partial assignments greatly allows to save time.

The CSP formalism allows a constraint to be defined as any
relation between many variables, more precisely as any subset
of the cartesian product of their domains. Therefore, very few
constraints are likely a priori to exhibit symmetries. How-
ever, practical problems containing symmetries are far from
being insignificant, despite minority all the same. Actually it
turns out that many CSPs contain a combination of symmet-
rical constraints (e.g., equality, difference, sum of variables
equal to a constant) and asymmetrical constraints. These
CSPs are then globally asymmetrical and cannot directly take
profit from the usual symmetry breaking methods. The main
point of this paper is to propose a general scheme for handling
these partially symmetrical CSPs and thus extend the applica-
tion of the current symmetry breaking methods. This idea to
handle symmetrical constraints separately recently appeared
in [Martin, 2005] and [Harvey, 2005].

In section 2 we will show the interest of this approach
through the example of a simple CSP. In section 3, we will
remind several notions about symmetry groups, which will
allow us to formally present our global resolution scheme in
section 4. Then, we will study in section 5 the more specific
case of a certain type of optimization problems, where our
method is likely to be specially efficient. We will experiment
it out on two kind of problems in section 6.

nicespaviddsisacy

2 An example

We first give a general idea of our resolution scheme through
one very simple example. Consider a CSP P with 3 variables
x, y and z, each defined on the same domain {1, 2, 3}. The
problem P contains only two constraints: xyz = 6 and x +
2y 4+ 3z = 10. This problem has a single solution: z = 3,
y = 2 and z = 1. It has no symmetry. The size of the search
space is composed of 33 = 27 combinations of values.

Now consider the problem P’, which is the same problem
as P but only keeping the first constraint xyz = 6. P’ con-
tains all the possible variable symmetries: from any solution,
another can be obtained by permuting variables. Precisely,
the set of the six solutions of P’isz =1,y =2and z = 3
and any variable permutation (swapping x and y, swapping x
and z or any composition of the two swappings). A symme-
try breaking method can find a solution quickly. For instance,
techniques adding symmetry breaking constraints before the
search (e.g., [Puget, 2005b]) allows to post the constraints
x < yand y < z that break all the symmetries. The only re-
maining canonical solutionisthenx = 1,y = 2 and z = 3!

We know that the set of solutions of P is included into the
one of P’. To obtain a solution of P, it suffices to enumerate
the solutions of P” and to check whether they respect the con-
straint 4+ 2y 4+ 3z = 10 or not. Enumerating the solutions
of P’ is trying all the variable permutations of its canonical
solution. The expected saved time is based on the fact that
the search space of P is not anymore the set of all the com-
binations of the variable assignments (size: 3% = 27) but the
set of the (canonical and non canonical) solutions of P’ (size:
3! = 6), which is much smaller. Our resolution scheme can
only be efficient if the time spent computing the canonical so-
lutions of P’ and enumerating the symmetrical solutions of P’
is shorter than solving P in a usual way.

Before presenting our resolution scheme in a general
frame, we will recall some useful notions about symmetries
and computational group theory.

"Notice that thanks to the constraints breaking symmetries, a
simple application of arc consistency reduces the domains to one
value: x < y allows to eliminate 1 from the domain of y and 3 from
the domain of x, then y < z allows to eliminate 1 and 2 from the
domain of z, and so on.

Solving Partially Symmetrical CSPs

3 Preliminaries

We remind here usual definitions and notations on permu-
tation groups, which can be found in [Seress, 1999] for in-
stance. In a mathematical sense, a group is a set structured
by a binary associative, inversible operator o such that G is
closed (o that maps any pair of elements of G to an element
of G) and contains the neutral element e for o. H is a sub-
group of G, noted H < G iff H is a subset of G and H is a
group for o.

A permutation is a one-to-one mapping of a set to itself. A
permutation is described by a set of cycles of the form (w; wo
.. W), which means Vw;, w; maps to w;41 and wy maps to
wi (e.g., 2, 4,5, 1 and 3 are the images of 1, 2, 3, 4 and 5
by the permutation (1 2 4)(3 5)). A permutation can also be
applied to a set or a tuple (e.g., for the permutation (1 2 4)(3
5), the image of the pair (1,5) is (2,3), the image of (1,2,3,4,5)
is (2,4,5,1,3), and the image of the set {2, 3,4} is {1, 4, 5}).

Roughly, a permutation of the elements of {2 that preserves
the relations involving these elements (ie, relations that are
still true for their images) is a symmetry (or automorphism).
The set of symmetries of €2 is a group G for the binary oper-
ator o (of composition). We say that G acts on 2. To avoid
ambiguities, we call points the members of (2 and we keep
the word element for the members of G. If 0 € Gand w € €,
we denote w’ the image of the point w by the symmetry o. o
is the only operator applyable on symmetry, so we will write
o109 instead of o1 o 0.

Definition 1 CSP microstructure

A CSP microstructure (), A) is a (hyper)graph where each
vertex corresponds to a variable assignment and each (hy-
per)edge corresponds to a possible tuple of values for a con-
straint.

Definition 2 Symmetry of a CSP
Let (2, A) be a CSP microstructure. A symmetry of a CSP is
a permutation of) which, applied to A, leaves A unchanged.

We deal with the most general possible symmetries, not
only restricted to variable symmetries (the values of an as-
signment are preserved, not the variables) or value symme-
tries (the variables are preserved, not the values): applied on
a (partial or complete) assignment, all the variables and val-
ues can change. This corresponds to the syntactical symmetry
definition in [Benhamou, 1994] or the constraint symmetry
definition in [Cohen et al., 2005].

Figure 1 presents a 4 x 4 grid of 16 points. Each point
is a variable assignment. But we do not need to know them
to apply the method we are presenting. It can represent the
chessboard of the four-queen problem (the points 1, 2, 3, 4,
5, ... are the variable assignments x; = 1, 1 = 2, 1 = 3,
x1 =4, 29 =1, ...) or any CSP where the sum of the domain
sizes is equal to 16 (e.g., a CSP with two variables of domain
size 4 or a CSP with 8 boolean variables) and which has the
same symmetries.

Definition 3 Orbit

The orbit W< of the point w in Q on which the group G acts
is w¢ ={w : o € G}, i.e. all possible images of w by
a permutation of G. This notion can be extended to a set of
points A C Q: A = {{w?:w e A} :0€ G}

25

In the example in figure 1, 1¢ = {1, 4, 13, 16}, 2¢ = {2,
3,5,8,9,12, 14,15}, {1,2}¢ = {{1,2}, {1, 5}, {3, 4}, {4,
8}, {9, 13}, {13, 14}, {12, 16}, {15, 16} }.

In this paper, we deal with orbits of microstructure vertices
(variable assignment) or orbits of set of vertices (partial as-
signments, which implies several variables). If I={w1, wo, ...,
w; } is a partial or complete assignment then the set of sym-
metrical assignment 1< is {I° : ¢ € G}, i.e. { {w{, WS, ...,
w?} : o € G}. When I is a CSP solution, I¢ is a set of CSP
(symmetrical) solutions, whereas if I is not a solution, then
I contains no solution.

Definition 4 Generators of a group

A generating set of the group G is a subset H of G such that
each element of G can be written as a composition of ele-
ments of H. We write G=<H>. An element of H is called a
generator.

The eight symmetries of a grid (see figure 1) can be gen-
erated by two generators: the vertical reflection v, and the
diagonal reflection 2. All the symmetries can be expressed
as compositions of 1 and y2: €, 71, Y2, Y271, M1Y2, V27172
717271 and y1y27172-

71 12 71

1 4 13 16
11234
1 2 1
516718 b<m 7 <10 <11
1 1
9 11011112 , s Y2 LT
1311415/ 16 YZI iyz
1 1
s L g s s

Figure 1: A 4 x 4 grid and its orbit graph. Q = {1, 2, ...,
16}. G=<{71, 2 }> with 71 = {(14)(23)(58)(67)(9 12)(10
11)(1316)(14 15)} and o = {(2 5)(39)(4 13)(710)(8 14)(12
15)}.

An important property of a strong generating set is that
its cardinality is bounded by a pseudolinear function of ||,
whereas the order of G is bounded by |2|!. If we know a CSP
solution and each element of the permutation group G, we
can compute all the symmetrical solutions by applying once
each element of G. G can be too large for a computer mem-
ory whereas a strong generating set has a moderate size and
allows to compute all the symmetrical solutions, applying all
possible compositions of generators to the solution.

Definition 5 Pointwise stabilizer

A pointwise stabilizer G a) of A C QY is the subgroup G) =
{0 € G:VYw e Ajw? = w}, ie the set of symmetries of G
that fix each point of A.

In the example of figure 1, G = <{v1, 72}>, Gu) =
<{12}>. G2 ={e}-

A permutation group can be represented intentionnally by
a base B=((31, ..., Bk), which is a sequence of points of 2. B
is a base for G iff the only pointwise stabilizer of B in G is
the identity, i.e: G(g) = {e}. B defines a chain of pointwise

F. Verroust and N. Prcovic

stabilizers:

G=Gl > GPl > .. > G > glF+1] = (¢}
where GVl = G(g,....,3,_.)- This base allows to find elements

of G to generate successively G[UI,...,GI**1. The Schreier-
Sims algorithm [Seress, 1999] constructs a set of generators

{'y(j) 11 <5<k 1<i<t;}of G, called a strong generat-

iné set, such that:

G

In other words, the generators fy%j) s eees 'yt(j) fix the points 31,...
Br_1 but not 8;,. A tool such as Nauty [McKay, 1981] com-
putes a base and a strong generating set from a vertex-colored
graph. Thus we can obtain automatically a compact represen-
tation of a symmetry group from a CSP microstructure.

Definition 6 Orbit graph

An orbit graph is a directed graph were each vertex is a point
of Q. For any vertices i and j, an arc (i,7) exists, and is
labeled with ~, iff j = 1" and v is a generator of G.

Thanks to an orbit graph, some questions on permutation
groups are reducible to questions on graphs. For example,
vertices in the same connected component of an orbit graph
are in the same orbit (cf figure 1).

4 The general resolution scheme

Consider a CSP, called P, containing n variables, with finite
domains and contraints of any arity. We make a partition of
the constraint set C in two sets Cgy, and C,.cs;. Let us call
Psym the CSP that corresponds to the problem P where the
constraints of C,..s; are removed so as to keep only the ones
of Coym.

Our resolution scheme is interesting if Cgyy, is chosen
such that Py, contains symmetries. It is not always easy
to acheive it. However, in practice, most constraints have
their own semantics. So, it is easy to know which locally in-
duce symmetries. Furthermore, [Puget, 2005a] presents gen-
eral methods for agregating these symmetric constraints so as
to have a graph representation for them, from which global
symmetries can be derived. So there is actually many practi-
cal cases where this partition can be easy to perform, or even
automated.

Searching for a solution of P is performed, on the one hand,
searching for canonical solutions of P, and on the other
hand, exploring the orbit of each canonical solution of P,
in order to find one that also respects the constraints of C,.s;.

To solve P, any existing symmetry breaking techniques
may be used. We just have to modify slightly the algorithm:
as soon as a canonical solution I of P, is found, we explore
the orbit of I so as to find a symmetrical solution that respects
the constraints of C,.s;. If one is found, we stop because
it is a solution of P. If not, we let the search for other solu-
tions of P, continue. Notice that this resolution scheme
was recently proposed in [Harvey, 2005]. However, no con-
crete, efficient way of exploring the orbit was described in this
paper. The method described in [Martin, 2005] is roughly
equivalent. It uses additional variables that are constrained
in order to be assigned to a symmetrical solution of Pyyp,.

26

So, these variables represent a solution of the orbit of one
solution found for P;y,,,. No clue is given on how to build
the constraints linking the Ps,,, variables and the additional
variables. How to explore efficiently an orbit is thus left aside
in these two papers and this is the key problem we want to
tackle. We can consider a systematic or incomplete explo-
ration of the orbit of I.

4.1 Local search in an orbit

When the orbit of a canonical solution of Py, is large, we
can consider exploring only a part of it, using a local repair
method. Though, we can easily fit any metaheuristic method
(Min-conflicts, tabu search, simulated annealing,...), consid-
ering the neighbor of a complete assignment does not result
from changing the value of a single variable, but from the
application of a generator. Thus, the neighborhood of a com-
plete assignment Lis { I7 : v € H} if G=<H>. The complete
assignment is evaluated counting the number of conflicts in
Crest-

We can guide the search with a heuristic for selecting the
most promising generators. A first heuristic is to simply
choose the generator that decreased the greatest number of
conflicts. Another heuristic is to select the generator that
fixes the greatest number of points (and lowers the number of
conflicts). Such a heuristic improves a complete assignment
by modifying as few values as possible, like in a usual local
search. The first heuristic is likely to decrease quickly the
number of conflicts but to reach soon a local minimum. The
second heuristic is more cautious, trying smaller improve-
ments but a longer time.

4.2 Systematic search of an orbit

Now if we wish to enumerate all the symmetrical solutions of
the orbit of a canonical solution to P,,,,, we have to be able
to find all the symmetries of the group G of the microstructure
of Py, from its set of generators.

One possible method to enumerate all the permutations
of G is to make a tree search where each node of the tree
holds a permutation. We obtain all the children of a node
applying each generator to the permutation. We memorize
all the permutations as they are produced, checking each of
them to know if we had already found it. In this case, we
leave the branch (we backtrack if it is a depth-first search).
The main drawback of this method is the space complexity,
which is of the order (the number of elements) of the group,
at worst equal to |Q|!. This method requires to memorize all
the permutations for the following reason. We can represent
each permutation by a word which symbols are the names
of the generators (e.g., the U-turn of the grid of figure 1 can
be represented by the word y;v27v17y2). It is easy and low-
memory consuming to enumerate words. However, several
words can represent the same permutation (e.g., Y27y17Y2V1
also represents the U-turn). So, we if want to avoid redun-
dancy, we have to compute and memorize permutations in-
stead of words.

Actually, there exists a much efficient and classical algo-
rithm for computing orbits, presented for instance in [Seress,
1999]. However, our point is not to generate all the permuta-
tions of a canonical solution to Py, but only a permutation

Solving Partially Symmetrical CSPs

whose image is a solution to P (ie, respecting the constraints
of Cicst). A generate and test algorithm would be really in-
efficient. Now, we present an adaptation of the classical algo-
rithm for computing as few permutations as possible.

Permutation tree

Consider a permutation group G, a base (31, ..., Sx) of G and
his strong generators F={7i(3) 1 <<k 1<i<¢t},
where the group induced by {~%, ..., Wfi, Y ’ytkk} is
Gl = G(3,,....3,_,)- the stabilizer of (31, ..., B;—1). Any per-
mutation is going to move some points, and leave others fixed.
Due to the stacking of the stabilizers, determined both by the
base and the partition of his strong generators, we can still cut
a permutation into several permutations moving only a part of
the points. More precisely, any permutation can be expressed
as 010s...0%, where each o; is a permutation (composed of
several generators) moving (3; and possibly other points but
leaving fixed the points 3;, Vj < 7. The permutations o; are
those of the stabilizer G(g, .. 5,_,) (and are moving ;). Any
permutation o; can be expressed as a composition of genera-

tors of the set {7,(13) 14 < j <k 1<h <t;}. Enumerating
the orbit of a canonical solution applying to it all the permu-
tations of G will then consist of a depth-first search. We start
from the canonical solution applying it all the permutations
of the form o, (including the identity), then to each of them
we apply all the permutations of the form o2, and so on, up
to 0. The set of leaves of the search tree represents the or-
bit of the canonical solution. We now have to explain how to
determine all the permutations of the form ;.

Consider the orbit graph of G. Any path of this graph start-
ing with 3; is labeled by a sequence of generators forming a
word which, on the one hand, corresponds to a permutation
moving (3;, and on the other hand, starts with a generator be-

longing to {’y}(f) : 1 < h < t;}. These paths can be found
thanks to a depth-first search in the orbit graph starting at the
point 3;. The set of paths thus corresponds to the words rep-
resenting the permutations which are moving ;. If now we
remove from the orbit graph all the arcs whose label stands
on an arc whose end is part of the set {31, B2, ... Si—1}, the
set of paths left, starting with [3;, are corresponding to the per-
mutations leaving fixed the points of {31, B2, ... Bi—1}. They
represent the words of the form o; we were looking for.

Figure 2 shows the search tree of the orbit of the set of
points {1, 2, 14}.

Choice of the base

The interest to have a strong generating set built from a base
is we do not fix all the points each time we step off a level in
the search tree. Now, a point corresponds to a variable assign-
ment. Thus it is sure this variable is not going to have its value
changed in the subtree where its point was fixed. Notice that
at each level of the search tree, the fact of fixing a point often
leads to fixing other points. On the orbit graph of G(;) on fig-
ure 2, we can see that fixing point 1 has also fixed points 6, 11
and 16. Knowing the set of the variables whom we know are
not going to have their values changed allows us to check the
constraints of C)..s+ (or to apply mechanisms of domain filter-
ing) and to backtrack in case of inconsistency without having
to explore the subtree. Backtracking at depth i allows not

27

12 7
l+«> 4 <«>13<> 16

{1.2, 14}
12

1 1
6<—>Y 7<—>]l]<—>y 11

PP LT
*/Zi $y2
s g P s
¢ 1 21 Y12yl
1,2, 14 4,3,15 4,8,5 16,12,9
4 ﬁ»]} @ { } { } { } { }
720 m
2 38y 12 Ry e N 7 e 72
Yli vli {1,2, 141, 5,8)4, 3, 1513, 9, 12)4, 8, 5}{13, 14, 2}{16, 12, 9X16, 15, 3}
7
5 8 <> 14 15

Figure 2: On the right, the search tree producing the orbit of
{1, 2, 14}. On the left, two orbit graphs. The one on the top
is the orbit graph of G and allows to produce the 4 beginnings
of permutation of the form oy of the first level of the tree.
The one on the bottom is the orbit graph G(;) and allows to
produce the ends of permutations of the form o of the second
level. The leaf {4, 8, 5} allows to determine that applying the
permutation ya7y1e = 7y2y1 we can find again the root of the
tree {1, 2, 14}.

to search the subtree containing all the permutations of the
form o;41...0% that could complete the permutation o;...0;
we reached. The size of the base is equal to the maximum
depth of the tree, which is the number of steps where some
constraints can be checked before a permutation of the form
0103... be complete. Therefore, we have to choose the base
containing the more important number of points, as we have
more often the possibility to eliminate subtrees corresponding
to completions of permutations.

Filtering

In addition, to examine an orbit graph allows to know the set
of values each variable can be assigned to, which means its
domain of possible values. The union of the orbits of the
points of a solution represents the points which can appear
in the symmetrical solutions. Some points are part of no or-
bit and can be thus removed of the domains of the variables.
For instance, if the set of points {1, 2, 14} (see figure 2) is
a solution of a CSP, then the points 6, 7, 10 and 11 are not
reachable by a permutation and can be removed from the do-
mains. This domain filtering can be completed each time we
are moving in the depth of the search tree. Actually, the or-
bit graph looses arcs (as points are fixed) and new points are
becoming unreachable. For instance, in the node of depth 1
of the search tree in figure 2 containing the set of points {1,
2, 14}, we can again eliminate the points 4, 13, 3, 9, 12, 15
and 16 which have become unreachable through the points 1,
2 or 14. Of course, removing this way a value from a do-
main can allow to remove other values from the constraints
of Cest, applying usual methods of propagation (e.g., arc
consistency). Complementarily, removing a value by filter-
ing the constraints of C..s; can eliminate some points of the
orbit graph and thus fix other points. For instance, if we con-
sider the node of the last example, eliminating point 5 from
the orbit graph (of the second level) by constraint propagation
fixes point 2. No permutation can thus be applied to {1, 2,
14}: it becomes useless to search the subtree from this node.

F. Verroust and N. Prcovic

The interaction between these two types of domain filtering
is complex to grasp. Adapting the techniques for maintaining
forms of local consistency is a vast topic that will need to be
studied to make more efficient the search of the orbits of the
canonical solutions of Py, .

4.3 Complexity of the search in an orbit

The time expectedly gained is based on the fact the size of the
search space of P is higher or equal to the sum of the sizes of
all the orbits of the canonical solutions of Pgy,,. Actually, the
orbits contain the set of solutions (whether they are canonical
or not) of Pk,,,, which is potentially smaller than the search
space of P (which is the set of combinations of values of the
problem).

It is not possible to evaluate in a general case the size ratio
between the search space of P and the orbit size of a canoni-
cal solution of Pgy,,,. But it can be done in the case there are
only variable symmetries. In this case, the symmetrical solu-
tions of the orbit will contain the same values but differently
distributed among the variables.

A CSP P with n variables of domains of size d has a search
space of d’* combinations of values. Let us calculate now the
maximum size of the orbit of a canonical solution of Py, .
In the worst case about the size of the orbit, any permuta-
tion of variables is a symmetry of the group. There are m
different values in the solution, with m < d and m < n.
Call v; the number of occurrences of the i value in a solu-
tion. The size of the orbit is T(n, m) = ﬁ'mvﬂ (n! is the

number of permutations of n elements we have to divide by
each v;!, the number of permutations uselessly swapping the
same values). As we have the relation >, ., v; = n, we
minimize the product [, ,,, v:! when the v; have values as
close as possible. In the worst case, all the values v; equal to

+=. Thus T(n, m) < W Approximating the factorials

from the Stirling formula: n! = V27n"t2e (1 + €(n))
where €(n) tends to O when n is large, we get T(n, m)
< (V2m)t-m (\/‘%)m mn" (He(i)m,l). So we have T(n, m)

€ O(2). As it is not obvious to compare this com-
(2m)2n 2

plexity to d", we show in table 1 a comparison of the com-
plexities according to a few values of d, taking the less favor-
able case m = d.

To have a global comparison between a classical resolution
and our approach, we have to consider the resolution time of
Psym, which may still remains in ©(d"), and the fact Py,
can have a great number of canonical solutions and thus of
orbits to explore. Our approach can be efficient a priori only
if Py, is quickly solvable and contains few canonical solu-
tions.

Comparing the complexity of the search spaces is not accu-
rate enough. Another important condition of efficiency is that
Chest does not help much to filter when P is solved in a stan-
dard way. When solving Py, we have removed C)..s; and
added constraints to obtain canonical solutions only. Solv-
ing Py, can still be longer than solving P because filtering
thanks to the constraints of C..s; also prunes the search tree.

mn’+

28

|[d]d" | T(n,m =d) |
2 2» 0(%=)
3] 3" o)

n Vn_on
nin O((zﬂ)%n)

Table 1: Comparison between the size of the search space of
a CSP and the orbit size of a canonical solution in the case
of variable symmetries. For instance, the line d = 3 shows
that if the complexity of computing the canonical solutions
of Pgyp, is lower than O(%) and the number of these canon-
ical solutions is lower than n, then the overall complexity of
solving P is reduced.

5 A specific case of optimization

We show now a specific case of application of our method
where it can possibly be efficient. An optimization problem
can be described by a CSP with a cost function on the CSP
variables. The point is to find the solution of the problem
which minimizes the cost function. This type of problem can
be solved using the usual Branch & Bound method (B&B).
This method can be seen as performing the search of one so-
lution and posting a constraint forbiding the cost function to
exceed the cost of the solution. Then, this constraint is re-
actualized every time a new solution is found. If we deal
with a symmetrical CSP whose cost function is asymmetri-
cal, our method applies directly and simply: Cgy,,, contains
all the constraints and C,..,; contains the constraint that the
cost function must not exceed the cost of the current best so-
lution. In this case, the best solution is searched in the orbits
of the canonical solutions of Pg,,,. Our method is likely to
be efficient because the cost functions usually involve many
variables and does not help much to prune the search tree.

5.1 A complete version

In a complete version of our method, we must search each
orbit with the depth-first search we described in the section
4.2. During the exploration of the orbit, filtering can be per-
formed bounding the cost of the best symmetrical solution of
the orbit if the cost function has good properties, for instance,
monotony or linearity. The orbit graph shows the lowest and
greatest values each variable can be assigned to. Agregating
the variable bounds, we can check if the orbit cannot contain
any better solution than the canonical solution. This can also
be performed dynamically during the tree search. At each
node, the fixed part of the solution being permuted gives an
exact value of the corresponding part of the cost function. A
lower bound can also be given to the non fixed part. Notice
that the variable bounds are refined as we get deeper into the
search tree because points become unreachable as some oth-
ers are fixed, as we saw it in section 4.2.

5.2 A recompleted local version

If the order of the symmetry group is very large, we can con-
sider performing a local search in the orbits, as proposed in
section 4.1. A simple greedy algorithm where we apply iter-
atively the most promising generator (selected by any of the

Solving Partially Symmetrical CSPs

two heuristics we proposed) may already find a suboptimal,
but good enough, solution. However, there is an easy way to
make this method complete. It suffices to let the B&B algo-
rithm find all the solutions as usual (and not only the canon-
ical ones thanks to symmetry breaking techniques). In this
case, we explore partially the orbits in order to find a sym-
metrical solution that has a lower bound. We use this lower
bound to help pruning during the remaining tree search. In
other words, we have a standard B&B algorithm that always
tries to find an even better solution than the current best so-
lution it has just found, looking in its orbit before continuing
the B&B search.

6 Experiments

The first problem we experimented was the weighted magic
square problem, mentioned for instance in [Martin, 2005].
The goalis to fill a n x n grid with all the integers from 1 to n?
such that the sum of each row, column and the two diagonals
equal the same number. In addition, each field of the square
has a weight and we have to minimize the sum of the values
of the fields multiplied by their own weight (which makes the
cost function linear). The weight of each field is chosen at
random between 1 and 100n2. The order of the permutation
group of the grid is 8 (the same as the one of a n-queen prob-
lem). Our program is written using Ilog Solver. From the CSP
microstructure, we extract a base and a strong generating set
of its permutation group thanks to Nauty [McKay, 1981].

We compared three techniques, the usual B&B, the usual
B&B plus a greedy search in the orbits (called GreedySym)
and B&B with a complete tree search in the orbits (called
TreeSearchSym). For each size of problem, we ran 20 in-
stances with different random values for the cost function
and reported the average results (see figure 3 and 4). We can
see that TreeSearchSym has converged very quickly to a near
optimal solution for n = 5 and has found a better solution
whithin 3 minutes for n = 6.

Convergence speed

25

20
5: 15 —+— TreeSearchSym
-_2- —=— GreedySym
& 104 B&B
k
ik
5 -'-——L\‘
.,
. T
a 0.5 1 A 4
Timein s

Figure 3: Convergence speed to the best solution for the
weighted square problem of size 5. TreeSearchSym con-
verges more quickly at the beginning but the curves coincide
at last and the resolution time are equal.

The second problem of our experiments is a graph color-
ing problem. It contains the variables {1, ..., 2, }, n being a

29

Convergence speed

—+— TreeSearchSym
—=— GreedySym
o B&B

Errorin %
- Mo
o (=}

)
rr

Timein s

Figure 4: Convergence speed to the best solution for the
weighted square problem of size 6. TreeSearchSym reaches
faster a better solution than GreedySearch and B&B after 3
minutes. None completed their search after several hours.
(At last, CPLEX, a mathematical programming optimizer of
Ilog, was used to compute the value of the best solution and
allowed us to know how far from the best solutions were the
solutions we found.)

multiple of 5, for which values are in {0,1,2,3,4}. The con-
straint set is defined by:

o {z;,Tit1,Tit2, 13} have different values.

o {x;,Tit14,Tits, Tito have different values (except if
i=mn—>5).

See figure 5 for an illustration of this problem.

X2 X7 X12 Xn—3
X3 X8 X13
X X6 X1 Xn—4
X0 X5 X0 T v
X4 X9 X14 Xno

Figure 5: The graph to color

We chose this problem because, even if it is artificial, it
has the advantage that its number of variables can easily be
increased while keeping the same type of symmetries. In-
deed, for any n multiple of 5, there exists two types of vari-
able symmetry. The first one is local: for all i multiple of
5, the variables {x; 1, T;12, ¥;+3} are interchangeable. The
second type of symmetry is global. Consider the partition
of the set of variables into k parts of 5 variables defined by:
Vj € [1; k‘]{l‘j, Tjt1,Lj4+2, Tj+3, .I‘j+4}. These sets of vari-
ables are symmetrical by the reflection that exchange x; and
Tk—j, V] .

With this problem, the order of the permutation group
grows exponentially with n. The cost function is a linear
function of the n variables. Each coefficient associated to
a variable is an integer chosen randomly between 1 and n.

The results are shown in table 2 and figure 6.

F. Verroust and N. Prcovic

| # of variables || TreeSearchSym [GreedySym | B&B |

15 0.054 0.0035 0.0042
20 0.25 0.025 0.026
25 2.35 0.16 0.17
30 11.6 1.04 1.11
35 94.6 6.39 6.7
40 492 44.5 47.3

Table 2: Resolution times of the graph coloring problem.

Convergence speed

30

[
en

20

— TreSearchSym
15 — GreedySym
B&8

Value in %

0 s 4 &] 10

Timeins

Figure 6: Convergence speed to the best solution for the graph
coloring problem with n = 30. GreedySym converges faster
than B&B. TreeSearchSym converges very slowly. The same
behavior has been observed for the other values of n.

The resolution time of GreedySym is always a little faster
(<10%) than the one of B&B but GreedySym reaches an
optimal solution always much faster than B&B. TreeSearch-
Sym has very bad performances because it spends a long time
searching systematically the large orbits.

7 Conclusion and perspectives

Since CSPs often mix symmetrical and asymmetrical con-
straints in practice, giving methods for handling them sep-
arately has significantly broaden the application field of the
existing symmetry breaking methods. The key question to
address in the general resolution scheme was the search in
canonical solution orbits. In the incomplete search context,
we have seen that metaheuristic methods could apply easily.
However the systematic search of an orbit requires attention
and still a lot of work. Testing constraints of C,..; after gen-
erating a complete permutation would have been very ineffi-
cient. We have proposed a backtracking method that can re-
ject a partial permutation before generating its completions.
We have just mentioned a few ideas about filtering but gave
no concrete algorithm about how to do so. How to adapt ex-
isting CSP mechanisms for maintaining local consistencies to
the tree search of orbits needs to be investigated further.

We have also focused on the specific case of a symmetri-
cal CSP with an asymmetrical cost function because it was
a typical context where our solving methods could perform
well. The experiments we conducted showed that our lo-
cal or systematic methods could outperform the usual B&B

30

method. The gain remains moderate but promising since our
algorithms are still in a preliminary version and do not inte-
grate filtering techniques for searching orbits.

References

[Benhamou, 1994] B. Benhamou. Study of symmetry in
constraint satisfaction problems. In Second Workshop
on Principles and Practice of Constraint Programming
(PPCP’94),1994.

[Cohen et al., 2005] D. Cohen, P. Jevons, C. Jefferson, K. E.
Petrie, and B. Smith. Symmetry definitions for constraint
satisfaction problems. In Proceedings of CP’05, pages 17—
31, 2005.

[Harvey, 2005] W. Harvey. Symmetric relaxation techniques
for constraint programming. In SymNet Workshop on
Almost-Symmetry in Search, pages 20-59, 2005.

[Martin, 2005] R. Martin. Approaches to symmetry breaking
for weak symmetries. In SymNet Workshop on Almost-
Symmetry in Search, pages 37-49, 2005.

[McKay, 1981] Brendan D. McKay. Practical graph isomor-
phism. Congressus Numerantium, 30:45-87, 1981.

[Puget, 2005a] Jean Franois Puget. Automatic detection of
variable and value symmetries. In Proceedings of CP’05,
pages 475-489, 2005.

[Puget, 2005b] Jean Franois Puget. Breaking all value sym-
metries in surjection problems. In Proceedings of CP’05,
pages 490-504, 2005.

[Seress, 19991 Ako Seress. Permutation Group Algorithms.
Cambridge University Press, 1999.

Symmetry Breaking in Subgraph Pattern Matching

Stéphane Zampelli, Yves Deville, and Pierre Dupont

Université Catholique de Louvain,
Department of Computing Science and Engineering,
2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)
{sz,yde,pdupont} @info.ucl.ac.be

Abstract

Graph pattern matching, a central application in
many fields, can be modelled as a CSP. This CSP
approach can be competitive with dedicated algo-
rithms. In this paper, we develop symmetry break-
ing techniques for subgraph matching in order to
increase the number of tractable instances. Spe-
cific detection techniques are first developed for the
classical variables symmetries and value symme-
tries. It is also shown how these symmetries can be
broken when solving subgraph matching. We also
show how conditional value symmetries can be au-
tomatically detected and handled in the search pro-
cess. Then, the concept of local value symmetries is
introduced; it is shown how these symmetries can
be computed and exploited. Finally, experimental
results show that symmetry breaking is an effective
way to increase the number of tractable instances
of the subgraph matching problem.

1 Introduction

A symmetry in a Constraint Satisfaction Problem (CSP) is
a bijective function that preserves CSP structure and solu-
tions. Symmetries are important because they induce sym-
metric subtrees in the search tree. If the instance has no solu-
tion, failure has to be proved for equivalent subtrees regarding
symmetries. If the instance has solutions, many symmetric
solutions will have to be enumerated in symmetric subtrees.
The detection and breaking of symmetries can thus speed up
the solving of a CSP.

Symmetries arise naturally in graphs as automorphisms.
However, although a lot of graph problems have been tackled
[Beldiceanu et al., 2005] [Cambazard and Bourreau, 2004]
[Sellman, 2003] and a computation domain for graphs has
been defined [Dooms er al., 2005], and despite the fact that
symmetries and graphs are related, little has been done to in-
vestigate the use of symmetry breaking for graph problems in
constraint programming.

This paper aims at applying and extending symmetries
techniques for subgraph matching. Existing techniques usu-
ally handle only initial symmetries and are not able to detect
symmetries arising during search, so called conditional sym-

metries. We will show how to detect and handle those condi-
tional symmetries.

Related Works Handling symmetries to reduce search
space has been a subject of research in constraint program-
ming for many years. Crawford and al. [Crawford er al.,
1996] showed that computing the set of predicates breaking
the symmetries of an instance is NP-hard in general. Differ-
ent approaches exist for exploiting symmetries. Symmetries
can be broken during search either by posting additional con-
straints (SBDS) [Gent and Smith, 2001] [Gent er al., 2002]
or by pruning the tree below a state symmetrical to a pre-
vious one (SBDD) [Gent et al., 2003]. Symmetries can be
broken by taking into account the symmetries into the heuris-
tic [Meseguer and Torras, 2001]. Symmetries can be broken
by adding constraints to the initial problem at its root node
[Crawford et al., 1996] [Gent, 2001]. Symmetries can also be
broken by remodelling the problem [Smith, 2001].

Dynamic detection of value symmetries and a general
method for detecting them has been proposed in [Benhamou,
1994]. The general case for such a detection is difficult. How-
ever in not-equal binary CSPs some value symmetries can be
detected in linear time [Benhamou, 2004] and dominance de-
tection for value symmetries can be performed in linear time
[Benhamou and Saidi, 2006].

Lately research efforts has been triggered towards defining,
detecting and breaking symmetries. Cohen and al. [Cohen er
al., 2005] defined two types of symmetries, solution symme-
tries and constraint symmetries and proved that the group of
constraint symmetries is a subgroup of solution symmetries.
Gent and al. [Gent et al., 2005b] evaluated several techniques
to break conditional symmetries, that is symmetries arising
during search. However the detection of conditional symme-
tries remains a research topic. Symmetries were also shown
to produce stronger forms of consistency and more efficient
mechanisms for establishing them [Gent e al., 2005a]. Fi-
nally, Puget [Puget, 2005b] showed how to detect symmetries
automatically, and showed that all variable symmetries could
be broken with a linear number of constraints for injective
problems [Puget, 2005al.

Graph pattern matching is a central application in many
fields [Conte et al., 2004]. Many different types of algorithms
have been proposed, ranging from general methods to spe-
cific algorithms for particular types of graphs. In constraint
programming, several authors [Larrosa and Valiente, 2002;

S. Zampelli, Y. Deville and P. Dupont

Rudolf, 1998] have shown that subgraph matching can be
formulated as a CSP problem, and argued that constraint pro-
gramming could be a powerful tool to handle its combinato-
rial complexity. Within the CSP framework, a model for sub-
graph monomorphism has been proposed by Rudolf [Rudolf,
1998] and Valiente et al. [Larrosa and Valiente, 2002]. Our
modeling [Zampelli e al., 2005] is based on these works.
Sorlin [Sorlin and Solnon, 2004] proposed a filtering algo-
rithm based on paths for graph isomorphism and part of our
approach can be seen as a generalization of this filtering.
A declarative view of matching has also been proposed in
[Mamoulis and Stergiou, 2004]. In [Zampelli et al., 2005],
we showed that CSP approach is competitive with dedicated
algorithms over a graph database representing graphs with
various topologies.

Objectives This work aims at developing symmetry break-
ing techniques for subgraph matching modelled as a CSP in
order to increase the number of tractable instances of graph
matching. Our first goal is to develop specific detection tech-
niques for the classical variable symmetries and value sym-
metries, and to break such symmetries when solving subgraph
matching. Our second goal is to develop more advanced sym-
metries that can be easily detected for subgraph matching.

Results

e We show that variable symmetries and value symmetries
can be detected by computing the set of automorphisms
on the pattern graph and on the target graph.

e We show that conditional value symmetries can be de-
tected by computing the set of automorphisms on vari-
ous subgraphs of the target graph, called dynamic target
graphs. The GE-Tree method can be extended to handle
these conditional symmetries.

e We introduce the concept of local value symmetries, that
is symmetries on a subproblem. It is shown how such
symmetries can be computed and exploited using stan-
dard methods such as GE-Tree.

o Experimental results compare and analyze the enhance-
ment achieved by these symmetries and show that sym-
metry breaking is an effective way to increase the num-
ber of tractable instances of the subgraph matching prob-
lem.

Outline Sections 2 provides the necessary background in
subgraph matching and in symmetry breaking. Section 3 de-
scribes a CSP approach for subgraph matching. Sections 3
and 4 present variable symmetries and value symmetries in
subgraph matching. Conditional value symmetries are han-
dled in Section 6, and Section 7 introduces local value sym-
metries in subgraph matching. Finally, Section 8 describes
experimental results and Section 9 concludes this paper.

2 Background and Definitions

Basic definitions for subgraph matching and symmetries are
introduced.

A graph G = (N, E) consists of a node set N and an
edgeset £ C N x N, where an edge (u, v) is a pair of nodes.
The nodes u and v are the endpoints of the edge (u,v). We
consider directed and undirected graphs. A subgraph of a

32

Gp

Figure 1: Example solution for a monomorphism problem
instance.

graph G = (N, E) is a graph S = (N', E’) where N’ is a
subset of N and E’ is a subset of E.

A subgraph monomorphism (or subgraph matching) be-
tween G, and G is a total injective function f : N, — Ny
respecting the monomorphism constraint : (u,v) € E, =
(f(u), f(v)) € E,. Figure 1 shows an example of subgraph
monomorphism.

The CSP model of subgraph matching should represent
a total function f : N, — N This total function can
be modeled with X = zq,...,x, with x; a FD variable
corresponding to the i*" node of G, and D(z;) = Ni.
The injective condition is modeled with the global con-
straint al1diff(x,...z,). The monomorphism condition
is translated into the global constraint MC(xy,...,2,) =
N jer, (@i ;) € Eq. Implementation, comparison with
dedicated algorithms, and extension to subgraph isomor-
phism and to graph and function computation domains can
be found in [Zampelli et al., 2005; Deville et al., 2005].

A CSP instance is a triple < X, D,C > where X is the
set of variables, D is the universal domain specifying the
possible values for those variables, and C' is the set of con-
straints. In the rest of this document, n = |N,|, d = |D|,
and D(z;) is the domain of z;. A symmetry over a CSP
instance P is a bijection ¢ mapping solutions to solutions,
and hence non solutions to non solutions [Puget, 2005b].
Since a symmetry is a bijection where domain and target
sets are the same, a symmetry is a permutation. A variable
symmetry is a bijective function ¢ : X — X permuting a
(non) solution s = ((z1,d1),. .., (z,,dy,)) to a (non) solu-
tion s = ((o(z1),d1),...,(c(xn),dn)). A value symme-
try is a bijective function ¢ : D — D permuting a (non)
solution s = ((x1,d1),...,(zn,dyn)) to a (non) solution
s = ((x1,0(dr)), ..., (xn,0(dy)). A value and variable
symmetry is a bijective function 0 : X x D — X x D
permuting a (non) solution s = ((x1,d1),...,(Zn,dy)) to
a (non) solution s’ = (o(x1,d1),...,0(xn,dy)). A condi-
tional symmetry of a CSP P is a symmetry holding only in
a sub-problem P’ of P. The conditions of the symmetry are
the constraints necessary to generate P’ from P [Gent et al.,
2005b]. A group is a finite or infinite set of elements together
with a binary operation (called the group operation) that sat-
isfy the four fundamental properties of closure, associativity,
the identity property, and the inverse property. An automor-
phism of a graph is a graph isomorphism with itself. The sets
of automorphisms Aut(G) define a finite permutation group.

Symmetry Breaking in Subgraph Pattern Matching

alldiffos=. .

Figure 2: Example of symbolic graph for a square pattern.

3 Variable Symmetries
3.1 Detection

This section shows that, in subgraph matching, variable sym-
metries are the automorphisms of the pattern graph and do
not depend on the target graph.

It has been shown that the set of variable symmetries of the
CSP is the automorphism group of a symbolic graph [Puget,
2005b] . The pattern G), is transformed into a symbolic graph
S(Gp) where Aut(S(Gp)) is the set of variable symmetries
of the CSP.

Definition 1 A CSP P modeling a subgraph monomorphism
instance (G, Gy) can be transformed into the following sym-
bolic graph S(P) :

1. Each variable x; is a distinct node labelled i

2. Ifthere exists a constraint M C(z;,x;), then there exists
an arc between i and j in the symbolic graph

3. The constraint alldiff is transformed into a node typed
with label ’a’; an arc (a,x;) is added to the symbolic
graph.

If we do not consider the extra node and arcs introduced by
the alldiff constraint, then the symbolic graph S(P) and G,
are isomorphic by construction. Given the labeling of nodes
representing constraints, an automorphism in S(P) maps the
alldiff node to itself and the nodes corresponding to the vari-
ables to another node corresponding to the variables. Each
automorphism in Aut(G)) will thus be a restriction of an au-
tomorphism in Aut(S(P)), and an element in Aut(S(P))
will be an extension of an element in Aut(G)p). Hence the
two following theorems.

Theorem 1 Given a subgraph monomorphism instance
(Gp, Gt) and its associated CSP P :

e Vo Aut(G,) 3o € Aut(S(P)) :
VYneN,:an)=o (n)

e Vo € Aut(S(P)) 3o € Aut(G,) :
VneN,:on) =0 (n)

Theorem 2 Given a subgraph monomorphism instance
(Gp, Gy) and its associated CSP P, the set of variable sym-
metries of P is the set of bijective functions Aut(S(P)) re-
stricted to N, which is equal to Aut(G,).

Theorem 2 says that only Aut(G)) has to be computed in
order to get all variable symmetries.

Figure 2 shows a pattern transformed into its symbolic
graph.

33

1 2 1 2 5. 6
4 3 4 L
3 7
Pattern Target

Figure 3: Example of matching where the set of value sym-
metries is not empty and Aut(Gy) = 0.

3.2 Breaking

Two techniques were selected to break variable symmetries.
The first technique is an approximation and consists in break-
ing only the generators of symmetry group [Crawford erf al.,
1996]. Those generators are obtained by using a tool such as
NAUTY. For each generator o, an ordering constraint s < gs
is posted.

The second technique breaks all variable symmetries of an
injective problem by using a SchreierSims algorithm, pro-
vided that the generators of the variable symmetry group are
known [Puget, 2005b]. Puget showed the number of con-
straints to be posted is linear with the number of variables.
The Schreier-Sims algorithm computes a base and strong
generating set of a permutation group in O(n2log3|G| +
t.n.log|G|), where G is the group, t the number of generators
and n the size of the of group of all permutations containing
G.

4 Value Symmetries
4.1 Detection

In subgraph matching, value symmetries are automorphisms
of the target graph and do not depend on the pattern graph.

Theorem 3 Given a subgraph monomorphism instance
(Gp, Gt) and its associated CSP P, each 0 € Aut(Gy) is
a value symmetry of P.

Proof Suppose Sol = (v1,---,vy,) is a solution. Consider
the subgraph G = (N, E) of Gy, where N = {vy,--- ,v,}
and E = {(i,5) | (671(i),071(j)) € E,}. This means there
exists a monomorphic function f* matching G, tooG. Hence
((z1,0(v1)), -+, (xn,0(vy))) is a solution. W

All value symmetries of P are not in Aut(Gy).
Consider Figure 3. There exists two value sym-
metric solutions : {(z1,1), (22,2), (x3,3), (z4,4)} and
{(x1,2), (x2,1), (x3,4), (x4, 3)} although Aut(G;) = 0.

4.2 Breaking

Breaking initial value symmetries can be done by using GE-
Tree technique [C.M. et al., 2004]. The idea is to mod-
ify the distribution by avoiding symmetrical value assign-
ments. Suppose a state S is reached, where 1, --- , x} are
assigned to vy, - - - , v respectively, and xg 1, - - - , T, are not
assigned yet. The variable x4 1 should not be assigned to two
symmetrical values, since two symmetric subtrees would be
searched. For each value v; € D(vy1) that is symmetric to

S. Zampelli, Y. Deville and P. Dupont

Oneeee- °
Q--moee e
1 2 .
® ~ ®
4 3 Q---mnnn
Pattern :
O-nnnnne- O-eieees L

Target

Figure 4: Example of dynamic target subgraph.

a value v; € D(vky1), only one state S; should be gener-
ated with the new constraint zx1 = v;; no new state Sy with
x; = v; should be generated.

A convenient way to compute those symmetrical values
is to compute a base and a strong generating set using the
SchreierSims algorithm. Algorithm SchreierSims outputs the
subgroups of Aut(G;) G; (1 <1i < d)suchthatVo € G; :
o(j) = j ¥ j € [1,4] (called the pointwize stabilizators of
(). Moreover SchreierSims outputs the set of images of 4
that let 0, - - -, invariant : U; 1y = (i + 1)%+1. Those sets
U, are interesting because they give the set of symmetrical
values of ¢ given that the values 1, ..., ¢ are not subject to any
permutation (mapped to themselves). If values are assigned
in an increasing order, assigning symmetrical values can be
avoided.

5 Conditional Value Symmetries

In subgraph monomorphism, the relations between values are
explicitly represented in the target graph. This allows the de-
tection of conditional values symmetries.

5.1 Detection

During the search, the target graph looses a node a whenever
a ¢ Usen,D(x;). This is interesting because the relation
between the values are known dynamically.

The set of values U;e v, D(;) denotes the nodes of sub-
graph of G in which a solution is searched. For a given state
S, such a subgraph can be, for a given state S, computed ef-
ficiently. We first define this subgraph of G,.

Definition 2 Let S be a state in the search where x4, - - - , Xk
are assigned, and xy11,--- , T, are not assigned. The dy-
namic target graph G; = (N}, E}) is a subgraph of G
such that :

[] Nt* = UiE[l,“-,n]D(l‘i)

o Bf ={(a,b) € Ey|a € Nf ANbe N/}

Figure 4 shows an example of dynamic target graph. In
this figure, the circled nodes are assigned together. The blank
nodes are the nodes excluded from U;cpy,...) D(2;), and the
black nodes are the nodes included in U;¢y ... yn]D(mi). The

34

plain edges are the selected edges for the dynamic target sub-
graph.

Each automorphism of G} is a conditional value symmetry
for the state S.

Theorem 4 Given a subgraph monomorphism instance
(Gp, Gy), its associated CSP P, and a state S in the search,
each o € Aut(Gy) is a conditional value symmetry of P.
Moreover; the conditions of o are x1 = vy, -+ , Tk = V.

Proof Suppose Sol = (v1,- - ,vy) is a partial solution. Con-
sider the subgraph G}. The state S can be considered as a new
CSP P’ of an instance (G, G) with additional constraints
x1 =1, -+, 2 = vg. By Theorem 3, the thesis follows. H

The size of G} is an important issue, as we will dynam-
ically compute symmetry information with it. The follow-
ing theorem shows that, because of the MC constraints, the
longest path in G, has the same length than the longest path
in G; whenever at least a variable is assigned.

Definition 3 Ler G = (N, E) be a graph. Then maxd(G)
denotes the size of the longest simple path between two nodes
a,be N.

Theorem S Given a subgraph monomorphism instance
(Gp, Gy), its associated CSP P, and a state S in the search,
if 3i € N, | |D(z;)| = 1, then mazd(G,p) = mazd(Gy).

This is a nice result for complexity issues, when
maxd(G,) is small. In Figure 4, maxzd(G,)=2 and only
nodes at shortest distance 2 from node 1 in the target graph
are included in G7.

The dynamic target graph GG can be computed dynamically.
In [Deville ef al., 2005], we showed how subgraph matching
can be modelled and implemented in CP(Graph), an exten-
sion of CP with graph domain variables. In this setting, a
graph domain variable 7" is used for target graph, with ini-
tial domain [(}, - - - , G¢]. When a solution is found, T is in-
stantiated to the matched subgraph of GG;. Hence, during the
search, the dynamic target graph G; will be the upper bound
of variable T" and can be obtained in O(1).

5.2 Breaking

In this subsection, we show how to modify GE-Tree method
to handle conditional value symmetries. Before distribution,
the following actions are triggered :

1. Get G}.

2. The NAUTY and SchreierSims algorithms are called.
This returns the new U, sets.

3. The main problem is how to adapt the variable and value
selection such that conditional value symmetries are bro-
ken. In GE-Tree, from a given state .S, two branches are
created :

(a) a new state S; with a constraint x; = v
(b) a new state Sy with constraints :
1. T 75 Vk
il. xp # Uj Vje€Ug_.
To handle conditional value symmetries, we slightly

modify this schema. From a given state .S, two branches
are created :

Symmetry Breaking in Subgraph Pattern Matching

(a) anew state S with a constraint x = vy,
(b) a new state S5 with constraints :

i. Tk #Uk
.z #v; VjeUg UU;;_l

An issue is how to handle structure U. In Gecode system
(http://www.gecode.org), in which the actual implementation
is made, the states are copied and trailing is not needed. Thus
the structure U must not be updated because of backtracking.
A single global copy is kept during the whole search pro-
cess. In a state S where conditional values symmetries are
discovered, structure U is copied into a new structure U " and
merged with U’. This structure U shall be used for all states
s’ having S in its predecessors. Of course, some heuristics
should be added to choose the states where a new conditional
value symmetry should be computed.

6 Local Value Symmetries

In this section, we introduce the concept of local value sym-
metries, that is value symmetries on a subproblem. This con-
cept can be seen as a particular case of dynamic detection
of value symmetries such as studied in [Benhamou, 1994].
However local values symmetries exploits the fact that in sub-
graph monomorphism relations between values are explicitly
represented in the target graph.

6.1 Detection

We first introduce partial dynamic graphs. Those graphs are
associated to a state in the search and correspond to the un-
solved part of the problem. This can be viewed as a new local
problem to the current state.

Definition 4 Let S be a state in the search whose vari-
ables x1, - - - ,xy are assigned to vy, - - - , vy, respectively, and
Tht1," - , Ty are not assigned yet.

The partial dynamic pattern graph G,
subgraph of G, such that :

o Ny ={ic[k+1,n]}
e By ={(i,j)€Ey|i€ Ny NjEN,}

= (N, ,E,)isa

The partial dynamic target graph G; = (N[, E;") is a sub-
graph of G such that :

. N; = Uie[k+1,n]D(xi)
e B, ={(a,b)e E;|a€e N; Nbe N; }

When forward checking (FC) is used during the search, in
any state in the search tree, every constraint involving one
uninstantiated variable is arc consistent. In other words, every
value in the domain of an uninstantiated variable is consistent
with the partial solution. This FC property on a binary CSP
ensures that one can focus on the uninstantiated variables and
their associated constraints without losing or creating solu-
tions to the initial problem. Such a property also holds when
the search achieves stronger consistency in the search tree
(Partial Look Ahead, Maintaining Arc Consistency, ...).

Theorem 6 Ler (G, G:) be a subgraph monomorphism in-
stance, P its associated CSP, and S a state of P during

35

Pattern

Target

Figure 5: Example of conditional local value symmetry. The
dashed lines show the new subgraph monomorphism instance
for CSP P'.

the search, where the assigned variables are x1,--- ,xj
with values v1,--- ,v;. Let P’ be a new CSP of a sub-
graph monomorphism instance (G, ,G;) with additional

x, = D(zy,). Then:

. ’
constraints vy | = D(Tpq1), -, 2,

1. Eacho € Aut(Gy) is a value symmetry of P'.

2. Assuming we have the we have

((-T1,U1),"'
i ,
((@rg1,V641), -+ (T, v0)) € Sol(P).

The theorem states that value symmetries of the local CSP P’
can be obtained by computing Aut(G;) and that these sym-
metries can be exploited without losing or adding solutions to
the initial matching problem.

It is important to notice that the value symmetries of P’
are not conditional symmetries of P. It is not possible to
add constraints to P to generate P’. As the CSP P’ is a local
CSP associated to a state .S, these value symmetries are called
local value symmetries.

The computation of G, can be easily performed thanks to
graph variables. If 7' is the target graph variable over ini-
tial domain [(}, - - - , G¢], then during the computation G; is
lub(T) \ glb(T).

Consider the subgraph monomorphism instance (G, G;)
in Figure 5. Nodes of the pattern graph are the vari-
ables of the corresponding CSP, i.e. node i of G, cor-
responds to variable x;. Suppose that x; has been as-
signed to value 1. Because of MC(z1,x3), D(x3) =

FC property,
s (T, vn)) € Sol(S)

{4,6,7}. Moreover, because of alldiff(xy,--- ,xz,), value
1 is deleted from all domains D(z;) (i # 1). The new
CSP P’ consists of the subgraph of G, ({2,3,4,5},

{2:3). (3.2). (3.5). (5.3), (4,5). (5.1, 2,4). (L.2)})
and G; = ({2,3,4,5,6.7).{(2.3), (3,2). (3,5). (5.3),
(4,5), (5,4), (2,4), (4,2) (7,6), (6,)}) The domains

of the variables of P’ are : D(x3) = {4,6,7}, D(x3) =
[2,5,6,7h, D(xs) = {2,5,6,7}, D(w:) — [3,4,6,7}.
For the state S, Sol(S) = {(1,5,4,3,2),(1,2,4,3,5)}

and BSol(S) = {(1,2,4,3 5)} For the subproblem
P', Sol(P") = {(5,4,3,2),(2,4,3,5)} and BSol(P") =
{(2,4,3,5)}. The partial assignment (x;,1) in state .S to-
gether with the solutions of P’ equals Sol(S).

S. Zampelli, Y. Deville and P. Dupont

6.2 Breaking

Breaking local value symmetries is equivalent to breaking
value symmetries on the subproblem P’. Puget’s method and
the dynamic GE-Tree method can thus be applied to the local
CSP P'.

7 Experimental results

The CSP model for subgraph monomorphism has been imple-
mented in Gecode (http://www.gecode.org), using CP(Graph)
and CP(Map) [Dooms et al., 2005] [Deville et al., 2005] .
CP(Graph) provides graph domain variables and CP(Map)
provides function domain variables. All the software was im-
plemented in C++. The standard implementation of NAUTY
algorithm was used. We also implemented SchreierSims al-
gorithm. The computation of the constraints for breaking in-
jective problems was implemented, and GE-Tree method was
also incorporated.

We have evaluated variable symmetry detection and break-
ing, value symmetry detection and breaking, and variable and
value symmetry breaking.

The data graphs used to generate instances are from the
GraphBase database containing different topologies and has
been used in [Larrosa and Valiente, 2002]. There is a di-
rected and an undirected set of graphs. We took the first 30
graphs and the first 50 graphs from GraphBase. The directed
set contains graphs ranging from 10 nodes to 462 nodes.
The undirected set contains graphs ranging from 10 nodes
to 138 nodes. Using those graphs, there are 405 instances
for directed graphs and 1225 instances for undirected graphs.
All runs were performed on a dual Intel(R) Xeon(TM) CPU
2.66GHz with 2 Go of RAM.

A main concern is how much time it takes to preprocess the
graphs. NAUTY processed each undirected graph in less than
0.02 second. For directed graphs, each graph was processed
in less than 0.01 second except one of them which terminate
in 0.8 second and 4 of them which did not terminate in five
minutes. Note that we did not tune NAUTY. For the Schreier-
Sims algorithm, each directed graph was processed in less
than one second except for 3 of them which terminate in 0.5
second, 1 of them in 1.5 seconds, and 1 of them in 3.1 sec-
onds. All undirected graphs were processed in less than one
second, except two of them, with 4 seconds and 8 seconds.

In our tests, we look for all solutions. A run is solved if it
finishes under 5 minutes, unsolved otherwise. We applied the
basic CSP model, the model where breaking variable sym-
metries with generators (Gen.) are posted, and finally the full
variable symmetry (FVS) that breaks all variable symmetries.
Results are shown in Table 1 and 2. In those runs, the prepro-
cessing time has not been considered. The total time column
shows the total time needed for the solved instances. The
mean time column shows the mean time for the solved in-
stances.

Thanks to variable symmetry breaking constraints more in-
stances are solved, either for the directed graphs or for the
undirected graphs. Moreover, the time for solved instances
was increased because of the variable symmetry breaking
constraints. Regarding the mean time, the full variable sym-
metry breaking constraint has a clear advantage. This mean

36

Table 1: Comparison over GraphBase undirected graphs.

All solutions 5 min.
solved unsol total time mean time
CSp 58% 42% 70 min. 5.95 sec.
Gen. 60,5% 39,5% 172 min. 13.95 sec.
FVS | 61.8% | 38.2% 101 min. 8 sec.

Table 2: Comparison over GraphBase directed graphs.

All solutions 5 min.
solved | unsol | total time mean time
CSP 67% 33% 21 min. 4.31 sec.
Gen. 74% 26% 47 min. 8.87 sec.
FVS 74% 26% 40 min. 7.64 sec.

time increase is an astonishing behavior that should be inves-
tigated.

Value symmetry breaking was evaluated on the set of di-
rected graphs. Table 3 shows that only one percent was
gained. This may be due to the fact that there are less symme-
tries in directed graph than in undirected graphs. For variable
and value symmetries, a total of 233 undirected random in-
stances were treated. We evaluated variable and values sym-
metries separately and then together in Table 4. This table
shows that, as expected, value symmetries and variable sym-
metries each increase the number of solved instances. No-
tice here that value symmetry breaking with GE-Tree leads to
new solved instances and better performance, reducing mean
time on solved instances. Full variable symmetry technique
makes new instances solved, but does not significantly reduce
mean time on solved instances. Moreover, the combination of
value symmetry breaking and variable symmetry breaking do
not combine the power of the two techniques. In fact the GE-
Tree upper bound of the number of the solved solutions is not
increased by using full variable symmetry technique, and its
mean time is even increased.

From these experiments, we conclude that although vari-
able and value symmetry gives better performances and make
new instances solved, they are not sufficient to make a signif-
icant higher percentage of instances solved. This calls for
conditional and local symmetry detection and breaking.

8 Conclusion

In this paper, we presented techniques for symmetry break-
ing in subgraph matching. Specific detection techniques were
first developed for the classical variables symmetries and
value symmetries. We show that variable symmetries and
value symmetries can be detected by computing the set of au-
tomorphisms on the pattern graph and on the target graph.
We also showed that conditional value symmetries can be
detected by computing the set of automorphisms on various
subgraphs of the target graph, called dynamic target graphs.

Table 3: Comparison over GraphBase directed graphs for
value symmetries.

All solutions 5 min.
[solved [unsol [total ime [mean time
GE-Tree | 68% [32% | 21min. | 4.39sec.

Symmetry Breaking in Subgraph Pattern Matching

Table 4: Comparison over GraphBase undirected graphs for
variable and value symmetries.

All solutions 5 min.
solved unsol total time mean time
CSP 53,6% 46,3 % 31 min. 20.1 sec.
GE-Tree 55,3% 447 % 6 min. 3.21 sec.
FVS 54,9 % 45,1% 31 min. 19 sec.
GE-Tree and FVS 55,3 % 44.7% 26 min. 8.68 sec.

The GE-Tree method has been extended to handle these con-
ditional symmetries. We introduced the concept of local
value symmetries, that is symmetries on a subproblem. It
was shown how such symmetries can be computed and ex-
ploited using standard methods such as GE-Tree. Experimen-
tal results analyzed the enhancement achieved by variables
symmetries and value symmetries. It showed that symme-
try breaking is an effective way to increase the number of
tractable instances of the graph matching problem.

Future work includes more experiments on conditional
symmetries and local value symmetries, and the development
of heuristics for the integration of these symmetries on suit-
able search states. An interesting research direction is the
automatic detection of symmetries in graph domain variable.
Finally, an open issue is the ability to handle local variable
symmetries.

References

[Beldiceanu et al., 2005] N. Beldiceanu, P. Flener, and
X. Lorca. The tree constraint. In Proceedings of CP-Al-
OR’05, volume LNCS 3524. Springer-Verlag, 2005.

[Benhamou and Saidi, 2006] Belaid Benhamou and Mo-
hamed Réda Saidi. Reasoning by dominance in not-equals
binary constraint networks. In LNCS Springer, editor, Pro-
ceedings of the Twelfth International Conference on Prin-
ciples and Practice of Constraint Programming (CP-2006
), Cité des Congres - Nantes, France, septembre 2006. to
appear.

[Benhamou, 1994] Belaid Benhamou. Study of symmetry in
constraint satifaction. In PCP’94, 1994.

[Benhamou, 2004] Belaid Benhamou. Symmetry in not-
equals binary constraint networks. In Proceedings of the
satelite workshop of CP 2004, Symmetry in Constraints
(SymCon’04), pages 2—-8, september 2004.

[Cambazard and Bourreau, 2004] H. Cambazard and
E. Bourreau. Conception d’une constrainte globale de
chemin. In /0e Journ. nat. sur la résolution de problemes
NP-complets (JNPC’04), pages 107-121, 2004.

[C.M. et al., 2004] Ronay-Dougal C.M., L.P. Gent, Kelsey T.,
and Linton S. Tractable symmetry breaking in using re-
stricted search trees. ECAI’04,2004.

[Cohen et al., 2005] David Cohen, Peter Jeavons, Christo-
pher Jefferson, Karen E.Petrie, and Barbara M. Smith.
Symmetry definitions for constraint satisfaction problems.
In van Beek [2005], pages 17-31.

[Conte et al., 2004] Donatello Conte, Pasquale Foggia,
Carlo Sansone, and Mario Vento. Thirty years of graph

37

matching in pattern recognition. IJPRAI, 18(3):265-298,
2004.

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks,
and A. Roy. Symmetry breaking predicates for search
problem. In Proceedings of KR’96, 1996.

[Deville er al., 2005] Yves Deville, Grégoire Dooms,
Stéphane Zampelli, and Pierre Dupont. Cp(graph+map)
for approximate graph matching. Ist International Work-
shop on Constraint Programming Beyond Finite Integer
Domains, CP2005, 2005.

[Dooms et al., 2005] Grégoire Dooms, Yves Deville, and
Pierre Dupont. Cp(graph): Introducing a graph compu-
tation domain in constraint programming. Principles and
Pratice of Constraint Programming, 2005.

[Gent and Smith, 2001] I.P. Gent and B.M. Smith. Symme-
try breaking during search in constraint programming. In
Proceedings of CP’01, pages 599-603, 2001.

[Gent e al., 2002] LP. Gent, W. Harvey, and T. Kelsey.
Groups and constraints : symmetry breaking during
search. In Proceedings of CP’02, pages 415-430, 2002.

[Gent e al., 2003] LP. Gent, W. Harvey, and T. Kelsey.
Generic sbdd using computational group theory. In Pro-
ceedings of CP’03, pages 333-346, 2003.

[Gent et al., 2005a] Ian .P. Gent, Tom Kelsey, Steve Linton,
and Colva Roney-Dougal. Symmetry and consistency. In
van Beek [2005], pages 271-285.

[Gent et al., 2005b] Ian .P. Gent, Tom Kelsey, Steve A. Lin-
ton, [ain McDonald, Ian Miguel, and Barbara M. Smith.
Conditional symmetry breaking. In van Beek [2005],
pages 256-270.

[Gent, 2001] I.P. Gent. A symmetry breaking constraint for
indistinguishable values. In Proceedings of CP’01, Sym-
Con’01 Workshop, 2001.

[Larrosa and Valiente, 2002] Javier Larrosa and Gabriel Va-
liente. Constraint satisfaction algorithms for graph pat-
tern matching. Mathematical. Structures in Comp. Sci.,
12(4):403-422, 2002.

[Mamoulis and Stergiou, 2004] Nikos Mamoulis and Kostas
Stergiou. Constraint satisfaction in semi-structured data
graphs. In Mark Wallace, editor, CP2004, volume 3258
of Lecture Notes in Computer Science, pages 393—-407.
Springer, 2004.

[Meseguer and Torras, 2001] P. Meseguer and C. Torras.
Exploiting symmetries within the constraint satisfaction
search. Artificial intelligence, 129(1-2):133-163,2001.

[Puget, 2005a] Jean-Francois Puget. Elimination des
symétries dans les problemes injectifs. In Proceedings des
Journées Francophones de la Programmation par Con-
traintes, 2005.

[Puget, 2005b] Jean-Francois Puget. Automatic detection of
variable and value symmetries. In van Beek [2005], pages
477-489.

[Rudolf, 1998] Michael Rudolf. Utilizing constraint satis-
faction techniques for efficient graph pattern matching. In

S. Zampelli, Y. Deville and P. Dupont

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and
Grzegorz Rozenberg, editors, TAGT, volume 1764 of Lec-
ture Notes in Computer Science, pages 238-251. Springer,
1998.

[Sellman, 2003] M. Sellman. Cost-based filtering for shorter
path constraints. In Proc. of the 9th International Con-
ference on Principles and Pratice of Constraint Pro-
gramming (CP)., volume LNCS 2833, pages 694-708.
Springer-Verlag, 2003.

[Smith, 2001] B. Smith. Reducing symmetry in a combina-
torial design problem. Proc. CP-AI-OR’01, 3rd Int. Work-
shop on Integration of Al and OR Techniques in CP, 2001.

[Sorlin and Solnon, 2004] Sébastien Sorlin and Christine
Solnon. A global constraint for graph isomorphism prob-
lems. In Jean-Charles Régin and Michel Rueher, editors,
CPAIOR, volume 3011 of Lecture Notes in Computer Sci-
ence, pages 287-302. Springer, 2004.

[van Beek, 2005] Peter van Beek, editor. Principles and
Practice of Constraint Programming - CP 2005, 11th In-
ternational Conference, CP 2005, Sitges, Spain, Augustus
1-5, 2005, Proceedings, volume 3709 of Lecture Notes in
Computer Science. Springer, 2005.

[Zampelli ef al., 2005] Stéphane Zampelli, Yves Deville,
and Pierre Dupont. Approximate constrained subgraph
matching. Principles and Pratice of Constraint Program-
ming, 2005.

38

Dynamic Symmetry Breaking Restarted

Daniel S. Heller and Meinolf Sellmann
Brown University, Department of Computer Science
P.O. Box 1910, Providence, R1 02912, U.S.A.
dheller,sello@cs.brown.edu

Abstract

Recently, structural symmetry breaking (SSB), a
new technique for breaking all piecewise variable
and value symmetry in constraint satisfaction prob-
lems (CSPs), was introduced. As of today, it is
unclear whether the heavy symmetry filtering that
SSB performs is at all worthwhile. This paper has
two aims: First, we assess the feasibility of SSB.
To this end, we introduce the first random bench-
mark generator that produces CSP instances with
piecewise symmetric variables and values of con-
strainedness. It allows us to evaluate SSB on dif-
ferent regions of constrainedness. Secondly, we
study how symmetry breaking and restarts interact.
We propose practical enhancements of SSB that al-
low us to re-use symmetry no-goods in subsequent
restarts efficiently. With those enhancements, we
find that symmetry breaking can actually benefit
from restarts. However, the improvements to be
gained by restarting are far smaller than those that
can be obtained for methods that break only some
symmetries or none at all. Surprisingly, we find
that a combination of restarts and breaking value
symmetry only can be competitive with, or even be
superior to, complete symmetry breaking.

Keywords: structural symmetry breaking, dy-
namic symmetry breaking, piecewise symmetry

1 Introduction

Symmetry breaking has received considerable and increasing
interest in past years. It is widely accepted now that sym-
metries can cause significant problems to systematic solvers
that unnecessarily explore redundant parts of the search tree.
Methods to avoid this undesirable behavior range from adapt-
ing ordering heuristics [2], adding static constraints to the
problem [4; 6], adding constraints during search [9], and fil-
tering values based on a symmetric dominance analysis when
comparing the current search node with those that were pre-
viously expanded [5; 7; 1; 13].

Especially the latter technique, known as symmetry break-
ing by dominance detection (SBDD), has proven to excel
on problems that contain large symmetry groups. The core
task of SBDD is the dominance detection algorithm. The
first automated dominance detection algorithms were based

on group theory [8], while the first provably polynomial-
time dominance checkers for specific types of value symme-
try were devised in [16]. This work was later extended to
tackle any kind of value symmetry in polynomial time [14].
Based on these results, for specific “piecewise” symmetric
problems, [15] showed that breaking variable and value sym-
metry can be broken simultaneously in polynomial time. The
method was named structural symmetry breaking (SSB) and
is based on the structural abstraction of a given partial assign-
ment of values to variables.

Compared with other symmetry breaking techniques, the
big advantage of dynamic symmetry breaking is that it can ac-
commodate dynamic variable and value orderings. Dynamic
orderings have shown to be vastly superior to static orderings
in many different types of constraint satisfaction problems.
Howeyver, robust heuristics for the selection of variables and
values are hard to come by. For the task of variable selection,
a bias towards variables with smaller domains often works
comparably well, but there always remains a fair probability
that we hit instances on which a solver gets trapped in ex-
tremely long runs. Particularly, heavy-tailed runtime distri-
butions have been reported [10]. One way to circumvent this
problematic situation is to randomize the solver and to restart
the search when a run takes too long [11]. While dynamic
symmetry breaking and restarts are orthogonal techniques in
that they can be applied independently from one another, their
interplay has not been studied yet.

In this contribution, we wish to investigate questions re-
garding dynamic symmetry breaking in general and SSB in
particular. While the existing theoretical worst-case anal-
ysis of SSB shows that we can guarantee symmetry-free
search trees in polynomial time, it remains unclear so far
whether we can also implement the method so that it per-
forms well in practice. We introduce practical enhancements
of SSB such as delayed ancestor-based filtering and incre-
mental data structures for sibling-based filtering. We then ap-
ply the method in combination with one-shot and restarted
solvers. To conduct this study, we introduce the first random-
ized test suite for symmetry breaking experiments. It allows
us to evaluate the method over an entire region of constrained-
ness rather than on isolated benchmark instances of unknown
level of constrainedness only.

The paper is organized as follows: In the following section,
we briefly review structural symmetry breaking. We discuss
how symmetry breaking by dominance detection can be ex-

D.S. Heller and M. Sellmann

ploited as a no-good store between restarts in Section 3. Then,
in Sections 4 and 5 we devise efficient mechanisms to speed-
up structural symmetry breaking in practice by introducing
delayed ancestor-based filtering and by devising an incremen-
tal data structure for sibling-based filtering. The technical
core of the paper concludes in Section 6 where we present
extensive numerical results on the effect of our enhancements
as well as the interplay of symmetry breaking and restarts.

2 Background

Recently, a new technique was developed that, for the first
time, allows us to simultaneously break value and variable
symmetry in CSPs [15]. This technique, named structural
symmetry breaking (SSB), is based on the quantitative ab-
straction of a constraint program that contains sets of pairwise
symmetric variables and values. Before we study implemen-
tation issues later, we now give a high-level description of
SSB.

Definition 1

e A Constraint Satisfaction Problem (CSP) is a tuple
(Z,V,D,C) where Z = {Xy,...,X,} is a finite set
of variables, V. = {v1,...,un} is a set of values,
D ={Ds,...,D,} isasetof finite domains where each
D, € D is the set of possible instantiations to variable
X;, and C = {c1,...,cp} is a finite set of constraints
where each ¢; € C' is defined on a subset of the vari-
ables in Z and specifying their valid combinations. We
say that the CSP has scalar variables iff for all D; € D
it holds that D; C V. Throughout this paper, we will
consider scalar CSPs.

e Given a CSP with scalar variables, an assignment A is a
set of pairs (X, v) € ZxV suchthat (X, v), (X,w) € A
implies v = w. An assignment of cardinality n is called
complete, otherwise it is called partial. A complete as-
signment satisfying all constraints is called a solution.

Definition 2
e Given a set S and a set of sets P = {P1,..., P.} such
that| J, P; = S and the P; are pairwise non-overlapping,
we say that P is a partition of S, and we write S =
2 bie
e Given a set S and a partition S =), P;, a bijection
7w : S — S such that 7(P;) = P, (where w(P;) =
{m(s) | s € P;}) is called a piecewise permutation over
S=>,PF.
The type of symmetry that the method can tackle efficiently
is defined as follows:

Definition 3
e Given a CSP (Z,V,D,C), and partitions Z =
Yoper Pes Vo= >, Q1. we say that the CSP has
piecewise variable and value symmetry iff all variables
within each Py, and all values within each Q; are consid-
ered as interchangeable [3].

e Given two assignments A and B on a piecewise sym-
metric CSP, we say that A dominates B iff there exist
piecewise permutations m over Z = Y , . P and «

40

overV =3, Q such that for all (X,v) € A it holds
that (7(X), a(v)) € B.

e Given two arbitrary assignments A and B for a piece-
wise symmetric CSP, we call the problem of determin-
ing whether A dominates B the Dominance Detection
Problem.

2.1 SSB for Dominance Checking

The core idea to devising an efficient dominance checker for
piecewise symmetric CSPs lies in the definition of signatures
of values under an assignment.

Definition 4
e Given a partial assignment A, for all values v, we define

signa(v) = ({Xi € Py | (Xi,v) € A})h<r,

where k indexes the different variable partitions
> w<r Pr. That is, the signature of v under A is the tu-
ple that counts, for each variable partition, by how many
variables in the partition the value is taken in A.

o We say that a value v in an assignment A dominates a
value w in assignment B iff v and w belong to the same
value-symmetry class and sign a(v) < signpg(w).!

e We say that a value v in an assignment A is struc-
turally equivalent to a value w in assignment B iff v
and w belong to the same value-symmetry class and

signa(v) = signp(w).

The following result, from [15], connects dominance rela-
tions and partial assignments.

Lemma 1

An assignment A dominates another assignment B in a piece-
wise symmetric CSP iff there exists a piecewise permutation
aover) ;.. @ such that v in A dominates a(v) in B for all

veV.

This lemma allows us to check dominance between assign-
ments A and B: We set up a bipartite graph where, for each
value v, there is one node on the left and one on the right. An
edge connects two nodes with associated values v and w from
the same value partition iff sign 4 (v) < signp(w). Then, A
dominates B iff the bipartite graph contains a perfect match-
ing.

2.2 SSB for Filtering

Based on the dominance checking algorithm, we can now fil-
ter values from domains iff setting the respective variable to
some value would lead to a symmetric choice point. Since
symmetry-based filtering anticipates when variable assign-
ments will result in symmetric configurations, within SSB we
have to distinguish two different types of filtering: ancestor-
based filtering where we compare extensions to the cur-
rent partial assignment with previously fully expanded search
nodes, and sibling-based filtering where we compare exten-
sions to the current partial assignments with other such exten-
sions.

"Where the <-relation on vectors is defined as the usual
component-wise comparison, i.e.: x < yiff x; < y; V1.

Dynamic Symmetry Breaking Restarted

The latter is very easy to handle as sibling-symmetry can
only be caused by value symmetry in the problem.? Conse-
quently, we can break all sibling symmetry simply by choos-
ing only one arbitrary value out of each group of values
within the same value partition that have the same signature.
Ancestor-based filtering on the other hand can be performed
by considering almost successful dominance checks: When
the bipartite graph that we set-up contains an almost perfect
matching where just one more edge is missing to complete it,
we can quickly identify such critical edges and check whether
one more variable assignment would cause the critical edge
to be added to the graph. In this case, we have found a criz-
ical variable assignment that can and should be avoided by
removing the respective value from the variable’s domain.

This concludes our brief review of SSB. For a more de-
tailed description of the method and a worst-case asymptotic
runtime analysis, we refer the reader to [15].

3 Symmetry No-goods and Restarts

Branching decisions are critical to the efficiency of system-
atic search, and truly robust heuristics for choosing branch-
ing variables are not known. Empirical analysis of runtime
distributions with randomized choices of branching variables
has revealed that there is a substantial chance of very long
runs [10]. At the same time, there is also a good probability
that a random selection of variables will result in a short run.
Consequently, it has been suggested to simply restart back-
tracking solvers when a run takes too long. This method of
restarted randomized searches has been one key element of
the latest generations of outstandingly powerful DPLL-based
SAT-solvers.

Restarts work already quite well when everything is forgot-
ten between two runs. In SAT, however, no-good learning al-
gorithms augment the SAT-formula during search so as to im-
prove the performance of unit propagation within DPLL. The
no-goods learned implicitly store information on which parts
of the search space have already been investigated. More-
over, they also contain information on which parts have not
been investigated yet but cannot contain solutions as search
would fail for the same reasons as it did earlier. Within one
run of a backtracking solver, the first information is obviously
obsolete as the systematic search already guarantees that the
same part of the search space will not be investigated twice.
However, the information becomes interesting when restarts
are being used.

With respect to symmetry breaking, SSB (as a special form
of SBDD) stores the most general previously fully expanded
search nodes as a list of no-goods. In contrast to ordinary
no-goods, an SBDD no-good implicitly represents an equiv-
alence class of no-goods (namely the set of all its symmet-
ric variants), and it is the algorithmic task of the dominance
checker to see whether this set contains a no-good that is rel-
evant with respect to the current search node. In this view,
SBDD resembles the task of performing inference in predi-
cate logic where we also need the help of a unification algo-
rithm to find an applicable rule or fact as represented implic-
itly by all-quantified rules and facts in the formula.

“This assumes that all siblings are generated by branching on the
same variable.

41

What is interesting to note is that SBDD no-goods also
keep a record of those parts of the search space that have al-
ready been searched through. In that regard, it is of interest
to store them (or at least the most powerful ones) between
restarts. There is a trade-off, however: No-goods will only be
beneficial if the method that prevents us from exploring the
same part of the search space more than once does not im-
pose a greater computational cost than what the exploration
would cost anyway. One simple thing that we can do is to
remove those no-goods from the list that have very little im-
pact anyway because they only represent a small part of the
search space. This is an idea that is commonly used in SAT.
However, for symmetry-nogoods we can do more.

4 Delayed Ancestor-based Filtering

We introduce delayed symmetry filtering. The core idea here
is to apply an inexpensive inference mechanism that quickly
identifies which no-goods cannot cause effective symmetry-
based filtering at a given search node. The aim here is to
save many of the expensive calls to SSB-based domain filter-
ing as described in the previous section. Note that no-goods
are only used for ancestor-based filtering, which is why this
idea will only be applied for this type of symmetry filtering.
We discuss special methods to improve the performance of
sibling-based filtering in Section 5.

4.1 A Simple Pretest

To cut down on full-fledged ancestor-based filtering calls, we
introduce a simple pretest. What we need to identify are sim-
ple conditions under which a previously expanded node « (as
usual, « is identified with the partial assignment that leads to
the node) cannot “almost dominate” the current search node
(. Precisely, o ”almost dominates” (3 if one more assignment
to 8 could result in a successful dominance relation with a.
This is a necessary condition for SSB filtering to have any
effect

First, we observe that 5 must contain exactly one less vari-
able assignments as «. This is a trivial condition which is
always true in a one-shot tree search as all no-goods stored
by SBDD were taken from search nodes at the same or lower
depth as that of the current node. However, for no-goods
stored in earlier restarts, this test can quickly reveal that
ancestor-based filtering will not be effective.

Only if the above condition holds, we perform one more
test before applying the full-fledged filtering call: we look
more closely at the two assignments « and 3 and see whether
« is close to dominating §. Before looking at each value
individually, determining all their signatures and which ones
dominates which, we can do the same on the level of value
classes: For each value partition, we determine how many
variables in each value partition are taking a value in it under
assignment -, thus computing a signature for each partition
of mutually symmetric values:

signy(Q1) == ({X € Pr [y(v) € Qi}esr V1I<I<s.

Now, from the description of SSB dominance checking in
Section 2.1, we can infer:

Lemma 2

Given assignments « and 3 such that o dominates 3, we have
that, forall 1 <[<'s, sign(Q:) < signg(Q;) (whereby <
denotes the component-wise comparison of the two tuples).

D.S. Heller and M. Sellmann

Proof: Let! € {1,...,s}. Since o dominates (3, we have
that, for all v € Qy, signa(v) < signg(w) for some value
w €) that is the unique matching partner of v. Conse-
quently,

signa(Q1) = Z signa(v) < Z signg(w) = signg(Qq).
vEQR) weQ
n

Thus, SSB filtering can only be effective if the inequality
holds for all but at most one value partition [/, and if for that
partition we have that sign,(Q;) < signg(Q:) + e, where
ey is the unit vector with a 1 in position 1 < k < r. Only if
this condition holds, we finally apply ancestor-based filtering.

Note that our simple pretest can be conducted much
faster than a full-fledged filtering call: it runs in time lin-
ear in the size of the given assignments (which is in O(n))
whereas ancestor-based filtering wrt each ancestor requires
time O(m?® + mn) for a CSP with n variables and m val-
ues.

4.2 Deterministic Lower Bounds

Assume that a call to the ancestor-based filtering procedure
reveals that we are at least p edges short of finding a perfect
matching in the value dominance graph that was set-up for
assignments o and 3.3 Clearly, as was already noted in [15],
this means that at least another p — 1 variable assignments
need to be added to 3 before filtering can become effective.
By adding this information to no-good «, and by keeping
track of the depth of the current search node 3, we can avoid
many useless filtering calls. What is interesting is that we
cannot only propagate this information when diving deeper
into the tree, but also upon backtracking.

Consider the following example: For no-good «, the check
against the current search node in depth d results in a maxi-
mum matching with 4 edges missing to be perfect. Then, at
depthd + 4 — 1 = d + 3, we call for ancestor filtering wrt
« again and find that there are still 4 edges missing. Clearly,
this means that none of the last 3 branching decisions has
brought us any closer to a successful dominance relation with
«, and this information can be used even when backtracking
up from the current position as illustrated in Figure 1 (A): At
depth d + 2, for example, we know, even without conduct-
ing the filtering call, that the maximum matching must have 4
edges missing. Which implies that, when diving deeper into
the tree from depth d + 2, ancestor-based filtering cannot be
effective until we reach depthd +2+4 —1=d + 5.

More generally, if at depth d + p — 1 we find a maximum
matching with ¢ < p edges missing to perfection, when back-
tracking up to depth d + r — 1 for some r < p, we are sure
that there are at least max{r + ¢, p} — 1 more variable assign-
ments necessary before filtering wrt ancestor « can be effec-
tive. Consequently, we will not call for ancestor-based filter-
ing wrt « until we reach depth max{d+r+q¢—1,d+p—1}
in the search tree (see Figure 1 (B)).

Note that the above procedure also works if we never get
to perform the full filtering procedure at depth d + p — 1 be-
cause our pretest fails: If the first condition fails, instead of
using the number of missing perfect matching edges, we can

The method by which SBDD unifies no-goods ensures that p >
1 is only possible for no-goods generated in earlier runs.

42

(A) (B)

Figure 1: The figures show part of the search tree. The root
node is considered to have depth d. At this node, we find that
at least 4 (A) or 5 (B) more assignments are necessary before
the respective ancestor could dominate the current partial as-
signment. We dive deeper into the tree without conducting
filtering (hollow nodes) wrt the given ancestor until we reach
depth d + 3 (A) or d + 4 (B) where filtering could be effec-
tive. In both cases, the call to the filtering algorithm reveals
that at least 4 more variable assignments are necessary before
dominance can occur. Consequently, the same holds for all
ancestors of the respective nodes. By propagating this infor-
mation up in the tree (see B), filtering is delayed further when
branching off from intermediary nodes.

simply count the number of variable assignments still needed
before at least as many variables are assigned in the current
search node as are in «. And in the second case, we can count
how many more assignments are necessary before each value
class signature in o can have become lower or equal to the
signatures in the current partial assignment.

S Incremental Sibling-based Filtering

Sibling-based filtering requires that we compute the sets of
mutually symmetric values that have the same signature un-
der the current partial assignment. Rather than recomputing
the signatures of all values and regrouping the values after
a branching step has added another variable assignment, we
use an incremental data structure for this purpose so as to con-
duct this type of symmetry related inference as efficiently as
possible.

First, let us describe the idea of sparse signatures that
are needed to guarantee the worst-case complexity as given
in [15]: Instead of writing down entire signatures, for each
value we maintain a sparse list that only contains the non-
zero entries of a signature, together with the information to
which variable partition an entry in the sparse list belongs.
To set up this sparse representation from a new partial as-
signment, we first order the variable instantiations in a given
partial assignment according to the partition that the corre-
sponding variable belongs to. This can be done in time linear
in the number of variable partitions. In this order, we then
scan through the partial assignment and set up the sparse sig-
natures simply by adding one to the last entry if the current
variable belongs to the same partition as the last, and by in-
troducing a new non-zero entry if the variable belongs to a
new partition.

For the current search node, we group values in the same
value partition and with the same signature in the following

Dynamic Symmetry Breaking Restarted

(1] — 0,00 — (1.0

(A) !

W -— D -

21— ©.n

4

(1] 0.0) (1,0) 1D

f |

®) 1 3 2

21— (©,1)
4

Figure 2: An efficient data structure supporting sibling-based
filtering incrementally. The leftmost column depicts value
partitions [1] = {1,2,3} and [2] = {4}. For both parti-
tions, horizontally it follows a sorted list of signatures that
are each associated with all the values underneath them in
the current partial assignment. Even though signatures are
actually stored in sparse format, we show them explicitly to
improve the readability.

data structure. It consists of an array of lists, one for each
value partition. Each such list contains, in lexicographic or-
der, the different signatures within the respective value par-
tition. Associated with each signature is yet another list
of values in the partition that have the signature, whereby
each value holds a pointer to the signature. Note that this
data structure allows us to perform sibling based-filtering ex-
tremely efficiently. Given a variable, the different values that
we need to consider when branching are only the first values
in each list of each signature in each value partition.

Now, when branching by assigning a value to some vari-
able, we update the data structure incrementally. Note that
the value assigned is the first in its list of values with the same
signature. Moreover, the value holds a pointer to its signature.
Therefore, we can compute its new signature incrementally,
and since the signatures within the value partition are ordered
lexicographically, we can also find out quickly to which sig-
nature the value needs to be added, whereby we create a new
list of values if the value’s new signature is not yet in our list.
Finally, we remove the value from the list of values for its old
signature and add it to the list of values for its new signature,
while updating the value’s pointer to its own signature.

We illustrate the data structure in Figure 2 on the following
example. Assume we are given four variables X, ..., Xy,
whereby the first two and the last two are symmetric. As-
sume further that the variables can take four values 1, ..., 4,
whereby the first three are symmetric. Figure 2 (A) shows
our incremental data structure for the partial assignment
{(X1,2),(X2,3),(X3,4)}. We see that we can easily pick
non-symmetric values simply by choosing the first represen-
tative for each signature. In our example, those are the val-
ues 1,2, and 4. Figure 2 (B) shows the data structure after
another variable has been instantiated by adding (X4, 2) to

43

UNBIASED BIASED
15 15 30

VPC || AlIDiff| GCC | AlIDiff| GCC |AlDiff| GCC
2 100 100 100 | 100 100 |98-100
3 100 100 100 | 100 100 [52-100
4 100 [98-100| 100 92 84-96 | 14-80
5 100 100 88 66 52-82 | 0-54
6 100 [98-100| 68 [18-32 | 26-76 | 0-50
7 94 196-100] 26 | 4-18 | 6-40 | 0-50
8 90 | 88-94 18 0-6 0-16 | 0-34
9 84 92 0 0-2 0 0-32
10 48 58 0 0 0 0-22
11 16 14 0 0 0 0-22
12 4 0 0 0 0 0

Table 1: Percentages of feasible solutions in the different
benchmark sets for different numbers of values per constraint
(VPC). We give ranges where even the best algorithm hit the
time limit of 600 seconds.

our assignment. We see that the data structure can easily be
adapted by updating the signature of value 2.

6 Experimental Results

With all the practical enhancements that we introduced in the
previous section, we now wish to test structural symmetry
breaking in practice. To this end, we need an appropriate
benchmark set. Surprisingly enough, despite the large body
of work on symmetry breaking, so far we are still lacking a
benchmark set which allows us to experiment with symme-
try breaking techniques over different regions of constrained-
ness. Standard benchmarks in the literature are graceful
graphs, n-queens, balanced incomplete block designs, or the
infamous social golfers, none of which give us a reasonable
insight regarding the constrainedness of problem instances.
Consequently, until today we lack a comparison of different
symmetry breaking techniques over the entire region of con-
strainedness.

6.1 The Benchmark

We introduce a very simple benchmark generator that pro-
duces surprisingly hard instances of piecewise symmetric
CSPs: Given a number of variables n and values m, as well
as the number of variables n. and the number of values m,
per constraint, we generate a given number of global cardi-
nality constraints (GCC) over a set of n. randomly chosen
variables and m. randomly chosen constraints, whereby we
enforce that all variables in the constraint together take each
chosen value exactly once. We vary the basic concept in the
following ways:

e We add one more GCC over all variables and values that
enforces that each value be chosen at most 2 times. Al-
ternatively, we add an AllDifferent constraint over all
variables and values.

e We draw variables and values uniformly or with a bias
such that components with higher indices are more
likely to be chosen than those with lower indices.

Tables 1 summarize the properties of our benchmark sets.
We consider problems with 15 variables and values and 30

D.S. Heller and M. Sellmann

Algo |FO| SO | NO |FR | SR | NR
Sym-Level || Full | Sibl. | None |Full |Sibl. | None
Restarted || no | no | no |yes | yes | yes

Table 2: Overview of the different algorithm variants: Full
refers to the variant where we call for ancestor and sibling-
based filtering at every search node. Sibling refers to breaking
value symmetry only by performing just sibling-based filter-
ing. As a convention, when pretests or delayed filtering are
switched off, we add ’-P’ or ’-D’ to the name of the algorithm.

variables and values. The number of variables per constraint
is fixed at 12 while the number of values per constraint runs
from 2 to 12, thus giving us a range of differently constrained
instances. Table 1 shows the percentage of feasible instances
out of 50 randomly generated ones. In addition, we vary the
constraint over all variables and values (GCC or AllDiffer-
ent), and we select variables either uniformly or in a biased
fashion, while values are always selected uniformly.

6.2 The Contestants

We implemented structural symmetry breaking as explained
in the previous sections, whereby we can choose to

o run full SSB filtering for each search node,
e run sibling-based filtering only, or
e perform no symmetry breaking at all.

Additionally, when running full SSB, we can switch both
the use of lower bounds and the simple pretest for delayed
ancestor-based filtering on or off. The branching variable is
determined dynamically by a min-domain heuristic. We can
also choose to run the solver with a restart heuristic whereby
we choose a linear increase in the fail limits starting with as
little as 100. In case of the restarted method, the branching
variable is chosen according to a min-domain heuristic over a
random subset of 20% of the variables. Table 2 summarizes
the settings and names the different contestants that we let
compete against one another.

All experiments in this paper were conducted on a 2 GHz
AMD Athlon 64 Processor 3000+ CPU with 512 MByte main
memory running Linux 2.6.10. Our code was written in C++
and complied by the Gnu g++ compiler version 3.3.5 with
optimization flag -O6. As our constraint solver, we used Ilog
Concert 2.2 on top of Ilog Solver 6.2.

6.3 The Influence of Pretests and Delayed Filtering

First, we evaluated the effects of the practical improvements
that we introduced in this paper. Figure 3 shows the impact of
pretesting and delayed filtering on two benchmark sets with
very different characteristics. We interrupted method FR af-
ter 600 CPU seconds and compare its runtime against FR-PD
when the latter executes the same search tree. While all in-
stances in the 15 variable benchmark were solved to comple-
tion within the time limit, only about 40% could be solved in
the 30 variable benchmark which explains the ruggedness of
the curve.

As was to be expected, in both cases we see a beneficiary
impact of our techniques to reduce the filtering efforts in-
curred by SSB: On the 15 variable benchmark, we see that

44

140

FR-PD ——
120 FR
100
Q
£ 80
=
g 60 :
£
40 ‘
20t /.
O O N N N L
2 4 6 8 10 12

Number of Values Per Constraint

350

.......

300 FR
250
200
150

mean time

100

sot/

2 4 6 8 10 12
Number of Values Per Constraint

Figure 3: The impact of pretesting and delayed filtering on
50 instances with 15 variables and values, biased variable se-
lection, and global GCC (top) and 30 variables and values,
biased variable selection, and global AlIDiff (bottom). We
compare runtimes (on identical instances) by algorithms FR
and FR-PD.

both pretest and delayed filtering save us up to 9000 full sym-
metry checks, which results in a speed-up of 3 for the over-
all method. On the 30 variable benchmark, we see an even
greater impact: For 4 values per constraint we save more than
175,000 full symmetry checks which results in a speedup
of more than 10. As we will see in Section 6.5, these im-
provements are key to making use of symmetry no-goods in
restarted search methods.

6.4 The Impact of Symmetry Breaking

The main objective of this investigation is to study the prac-
ticability of SSB. Clearly, symmetry breaking only ever pays
off when the work that we have to put in to detect symmetry
does not exceed the work that we save in this way. Figure 4
shows three algorithms running three different levels of sym-
metry breaking in a one-shot deterministic run on instances
with 15 variables and values and biased variable selection.
Experiments were interrupted after 600 CPU seconds.

We see clearly that SSB (FO) leads to remarkable improve-
ments over a standard CP approach that is unaware of sym-
metry alltogether (NO). This holds particularly in the criti-
cally and over-constrained regions, whereby ignoring sym-
metry breaking in part or alltogether can be the better option
in the very under-constrained region, as we see in the experi-
ment with uniform value selection and global GCC.

Especially the benchmark with biased variable selection
and global AllDifferent constraint shows that SSB, despite it’s
huge computational costs, is very worthwhile and can lead to
speed-ups of orders of magnitude. To investigate the effect of

Dynamic Symmetry Breaking Restarted

70
60 FSO +x-ee
50
40
30
20

Mean Time (s)

2 4 6 8 10 12
Number of Values Per Constraint

450
400
350
300
250
200
150
100

50

Mean Time (s)

2 4 6 8
Number of Values Per Constraint

160
NO
140 } SO ---oxeee-
_ 120 [FO T
Py
£
=
g
Q
=
2 4 6 8 10 12
Number of Values Per Constraint
600
500
2 400
o
g
= 300
g
= 200
100
0 3
2 4 6 8 10 12

Number of Values Per Constraint

Figure 4: The figures give mean times in seconds of non-restarted algorithms on 50 instances with 15 variables and values, 12
variables per constraint, unbiased (top) or biased (bottom) variable selection, and AllDifferent (left) or GCC (right) as constraint

over all variables and values.

symmetry breaking further, in Table 3 we show the number of
fails and the time spent per choice point for FO, SO, and NO
on two very different benchmark sets with 15 variables and
values and 12 uniformly chosen variables per constraint, as
well as 30 variables and values and 12 non-uniformly chosen
variables per constraint (both have the AllDifferent as global
constraint). The table reveils the dramatic change in the char-
acteristic of our algorithm that is introduced by symmetry
breaking: NO and SO investigate hundredthousands and mil-
lions of search nodes while spending a miniscule amount of
time per search node. FO on the other hand spends far more
time in every choice point but therefore greatly reduces the
number of nodes visited.

6.5 The Impact of Restarts

After seeing that symmetry breaking is beneficial even at the
tremendous costs that SSB filtering incurs, we are curious to
see how restarts affect the landscape. We show the perfor-
mance of the restarted algorithms in Figure 5 on the bench-
mark sets with 15 variables and in Table 4 on the benchmark
sets with 30 variables.

The comparison of Figure 5 with Figure 4 shows that the
algorithm that is unaware of symmetries can benefit greatl
from restarts. In the biased/AllDifferent case, for example,
NR is more than 10 times faster than NO. The erratic curves
for method NR depict an increase in the variance of the run-
ning time. Note that this variance is actually not introduced
by the restarts but inherent to a method that can get very
unlucky by getting stuck exploring symmetric parts of the
search space over and over and over again. The fact that this
was not visible in Figure 4 is due to the time limit (that we
needed to impose to conduct our experiments within reason-

45

able time) which artificially decreases the variance of the slow
algorithm NO. Table 4 also shows very clearly that NR per-
forms far better than NO.

We get a similar picture when comparing the performance
of SO and SR. In the set with 15 variables and values, 12 non-
uniformly chosen variables per constraint, and one global
AllDifferent constraint, for example, SR is about 25 times
faster than SO. What is interesting to note is that restarts can
actually be counter-productive in the over-constrained region.
We suspect that this has to do with the linear increase of fail-
limits that we chose for our experiments. Clearly, the shortest
proof-tree showing that no solution exists can be quite large
for a method that does not eliminate symmetry, and so it nat-
urally takes a lot of restarts to get to that point.

When we perform full SSB filtering, we see that restarts
do not help on the benchmark with 15 variables and values.
Only as we tackle large and very hard problems, FR starts to
outperform FO as can be seen in Table 4 when we consider
instances with a global GCC.

This leads to a suprising conclusion: Just breaking value
symmetry in combination with restarts is in many cases com-
petitive with full SSB! Compare FR and SR on global AlID-
ifferent instances in Figure 5, or on global GCC instances in
Table 4, for example. Of course, SSB is still the clear winner
in the critical region on our large benchmark set with 30 vari-
ables, but the good performance of restarted sibling-filtering
is still astonishing. It is reasonable to conjecture that restarts
can actually help reducing the adversary effects of variable
symmetry, thus making light-weight value filtering a serious
competitor. We believe that this could explain the common
assessment that symmetry breaking does not pay off in local
search methods [12]: Local search methods naturally explore

D.S. Heller and M. Sellmann

30
FR =——— .
NR oenwene &
25 SR
Z 20
£ !
£ 15
=
<
§ 10
5
0 S H P ‘
2 4 6 8 10 12
Number of Values Per Constraint
40

Mean Time (s)
[}
S

2 4 6 8 10 12
Number of Values Per Constraint

Y
E
=
=}
g
=
2 4 6 8 10 12
700
600
2 500
£ 400
B
5 300
Q
= 200
100
0 . L
2 4 6 8 0 12

Number of Values Per Constraint

Figure 5: The figures give mean times in seconds of restarted algorithms on 50 instances with 15 variables and values, 12
variables per constraint, unbiased (top) or biased (bottom) variable selection, and AllDifferent (left) or GCC (right) as constraint

over all variables and values.

wider parts of the search region. Moreover, the choice how
solutions are represented often removes value symmetry di-
rectly. When we also take into account that local search is
usually applied on underconstrained problems only, then the
assessment that symmetry breaking is not worthwhile in local
search is not so surprising anymore.

7 Conclusions

We provided practical enhancements of structural symmetry
breaking and tested them on the first randomized benchmark
set for symmetry breaking experiments. We showed that our
practical enhancements lead to substantial speedups that are
crucial to make restarts for SSB worthwhile. However, even
with these enhancements, restarted methods that break only
value symmetry are often almost as competitive as full sym-
metry breaking.

References

[1] N. Barnier and P. Brisset. Solving the Kirkman’s schoolgirl
problem in a few seconds. Proceedings of CP’02, 477-491,
2002.

[2] C.Brown, L. Finkelstein, P. Purdom Jr. Backtrack searching in
the presence of symmetry. Proceedings of AAECC-6, 99-110,
1988.

[3] D.A. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie, B.M. Smith.
Symmetry Definitions for Constraint Satisfaction Problems.
Constraints, 11(2-3): 115-137, 2006.

[4] J. Crawford, M. Ginsberg, E. Luks, A. Roy.
breaking predicates for search problems.
KR’96, 149-159, 1996.

Symmetry-
Proceedings of

46

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Fahle, S. Schamberger, M. Sellmann. Symmetry Breaking.
Proceedings of CP’01, 93-107, 2001.

P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pear-
son, T. Walsh. Breaking row and column symmetries in matrix
models. Proceedings of CP’02, 462476, 2002.

F. Focacci and M. Milano. Global cut framework for removing
symmetries. Proceedings of CP’01, 77-92, 2001.

I. Gent, W. Harvey, T. Kelsey, S. Linton. Generic SBDD using
computational group theory. Proceedings of CP’03, 333-347,
2003.

I. Gent and B. Smith. Symmetry breaking in constraint pro-
gramming. Proceedings of ECAI’00, 599-603, 2000.

C.P. Gomes, B. Selman, N. Crato. Heavy-Tailed Distributions
in Combinatorial Search. Proceedings of CP’97, 121-135,
1997.

Dynamic Restart Policies. H. Kautz, E. Horvitz, Y. Ruan,
C. Gomes, B. Selman. Proceedings of AAAI’02, 674-682,
2002.

S. Prestwich and A. Roli. Symmetry Breaking and Local
Search Spaces. Proceedings of CPAIOR’05, 273-287, 2005.

J.-F. Puget. Symmetry breaking revisited. Proceedings of
CP’02, 446461, 2002.

C. Roney-Dougal, I. Gent, T. Kelsey, S. Linton. Tractable sym-
metry breaking using restricted search trees. Proceedings of
ECAI’04,211-215, 2004.

M. Sellmann and P. Van Hentenryck. Structural Symmetry
Breaking. Proceedings of IJCAI’05, 298-303, 2005.

P. Van Hentenryck, P. Flener, J. Pearson, M. Agren. Tractable
symmetry breaking for CSPs with interchangeable values.
Proceedings of IJCAI’03,277-282, 2003.

Dynamic Symmetry Breaking Restarted

FO

| SO

15, unbiased, AllDifferent

NO

30, biased, AllDifferent

FO

SO |

NO

1.1IK - 14
24K -17
24K - 19
3.6K - 38
5.1K-32
6.6K - 140
9.4K - 720
7.6K - 329
6.4K - 319
34K -43
X-0

120- 15
87-23
83-41
39-716
43 - 368
44 - 35K
48 - 233K
52-37K
61 - 7600
76 - 132
X-0

67-15
113-16
53-19
24 - 892
30-2708
30-401K
33-2.08M
36 - 766K
40 - 239K
46 - 12.5K
X-0

17K - 151
11K - 1.7K
35K - 49K
37K - 79K
32K - 11K
29K - 11K
28K - 6.9K
25K - 2.9K
16K - 402
4.5K - 42
X-0

42 - 547
46 - 17K
51-435K
57-4.3M
65 - 7.6M
74 - 6.5SM
84 - 2.6M
104 - 215K
131-5.6K
112-90
X-0

17-723K
19-3.7M
21-6.9M
26 - 14M
31-19M
38 - 15M
49 - 13M
63 - 9.6M
78 -5.TM
90 - 349K
X-0

Table 3: Times per choice point in micro seconds and number of search nodes (averages over 50 instances per data point).

AllDifferent
One-Shot Restarted
FO|SO|NO|FR | SR |[NR
100{100| 98 [100]100|100
100{100| 90 {100|100|100
76 92 (100
40 56 | 88
4 18 | 51
2 20 9
0 5210
0 76 | 0
36 100| O
96 100|100
100 100|100

GCC

One-Shot
FO | SO |NO
46 | 62 | 86
36 |36 | 78
41 |1 40 | 55
30 (30| 24
14110 | 2
141 4| 2
010
210
10| 0O
50 | 48
100|100

Restarted
FR | SR |[NR
78 [100]100
46 100|100
41 | 88 | 47
28 | 54 | 24
12| 8 | 10
1012 6
141010
31010
76 | 2 | 82
70 {1001|100
100|100 {100

O 00 1O\ N A~ W

10
11
12

Table 4: Histogramm for the benchmark sets with 30 variables and values, 12 variables per constraint, and biased variable
selection. The first column gives the number of values per constraint, the numbers in the table the percentage of instances
solved within 600 seconds (50 instances per data point).

47

Speeding up Weak Symmetry Exploitation for Separable Objectives

Roland Martin
Darmstadt University of Technology
Algorithmics Group
64289 Darmstadt, Germany,
martin @algo.informatik.tu-darmstadt.de

Abstract

We consider an algorithm that enables us to re-
duce the number of solutions to consider for weakly
symmetric problems. The idea is to store partial
permutations during the solving process and re-use
them for future solutions thereby reducing the num-
ber of weakly symmetric solutions to consider for
these solutions. The idea can be applied to prob-
lems where the weak symmetry is introduced by a
separable objective function. We present the theo-
retical soundness of the idea and a prototype algo-
rithm that could be in-cooperated as a global con-
straint to the constraint solver.

1 Introduction

Weak symmetries act only on a subset of the variables and the
weakly symmetric solutions satisfy only a subset of the con-
straints of the problem. Therefore, weak symmetric solutions
preserve the state of feasibility only with respect to the sub-
set of variables the weak symmetry acts on and only for the
constraints these variables satisfy. If two solutions s; and so
are weakly symmetric there is in general no symmetry func-
tion that maps s; to s, or vice versa. The solutions s; and
so are only symmetric with respect to the variables the weak
symmetry acts on. Using a modelling approach introduced in
[1] we are able to break the weak symmetry without losing
solutions. Nonetheless all weak symmetric solutions have to
be considered for the problem. That means that the whole
equivalence class for each weak symmetric solution has to be
considered in order not to lose solutions. Weak symmetries
occur in many fields of applications and have already been
discovered and identified in planning, scheduling and model
checking (see [2] - [6]). In particular real world optimisa-
tion problems contain weak symmetries. Often the objective
function makes a symmetry weak.

In many cases also the objective function is separable in
the columns/rows of a variable matrix. That means that for
each column/row a partial objective value can be computed
that is independent from all other variable instantiations of
the matrix. The objective value then is an aggregation (for
example the sum) of these partial values.

If a separable objective function induces a weak symmetry
on a problem then our approach can be used to save time in

investigating the equivalence class for weak symmetric solu-
tions. The idea is to store partial results from investigating the
equivalence class of certain solutions and re-use them for the
investigation of so-called neighbouring solutions. Thereby
reducing the number of solutions to check explicitly.

Section 2 introduces the concepts of weak symmetry and
weak symmetry breaking while Section 3 introduces in sep-
arable objectives. In Section 4 the approach for exploiting
weak symmetries and separable objectives is explained and
theoretical soundness is given. Section 5 shows an example
where the approach could be applied and Section 6 reasons
about the usability and limitations of the approach. The pa-
per concludes and gives an outlook to future work in Section
7.

2 Weak Symmetry

Weak symmetries are rather new and not widespread in the
constraint programming scene by now. To make the paper
self-contained we take over the key definitions and facts of
weak symmetries from [1]. For further investigation and a
running example see also [1].

2.1 Weak Symmetry Definition
Weak symmetries act on problems with special properties. To
characterize weak symmetries we first define weakly decom-
posable problems. In a weak decomposition of a problem all
variables and constraints that are respected by the weak sym-
metry are gathered in one subproblem.

Definition 1 (Weakly Decomposable Problem)
A problem P = (X, D,C) is weakly decomposable if it
decomposes into two subproblems P, = (X1, D1,C1) and
Py, = (X2, Do, Co) with the following properties:

XinXy # 0 (D
Xi1UXy, = X 2)
ctudy, = C 3)
CinCy, = 0 4
Co # 0 5)
D, = pri(D) (6)
Dy = pra(D) @)

where pr; denotes the projection to the subspace defined by
the subset X; of the variables in P.

Speeding up Weak Symmetry Exploitation for Separable Objectives

The first condition states that PP, and P, contain a subset of
shared variables (namely X; N X5). These variables have
to assume the same values in both subproblems to deliver a
feasible solution to P. Therefore they link both problems.
Without that restriction the problem would be properly de-
composable. The second and third condition states that none
of the variables and constraints of the original problem P are
lost. Furthermore the third and fourth condition state that Cy
and C is a partition of C. Basically this is not necessary for
feasibility. A constraint could be in both subsets (if defined
on X7 N X5 only) but would be redundant for one of the prob-
lems because the solution to the other subproblem would al-
ready satisfy this constraint. Therefore, this is just a question
of efficiency. The fifth condition states that P is not allowed
to be unconstrained. However, note that this restriction does
not hold for P;. This is since we want to group the symmet-
ric data in P; and a problem without constraints is perfectly
symmetric. Every CSP is weakly decomposable, and usually
there will be multiple weak decompositions. However, we
concentrate on weak decompositions where the weak sym-
metry acts as a proper symmetry on P .

Definition 2 (Weak Symmetry)
Consider a weakly decomposable problem P with a decom-
position (Py, Py).

A symmetry [: X1 — X on Py is called a weak sym-
metry on P with respect to the decomposition (Py,P) if it
cannot be extended from X1 to a symmetry on X.

The intention of the decomposition of the problem is that
X contains all symmetric variables (and only those) and X5
contains the rest of the variables. The gain is that we get
a subproblem where the weak symmetry affects all variables
and all constraints (P;) and therefore acts as a proper symme-
try on it and one subproblem that is not affected by the weak
symmetry (P5).

2.2 Breaking Weak Symmetries

The challenge in weak symmetry breaking is actually not the
symmetry breaking part but not to lose solutions by breaking
the weak symmetry. As mentioned earlier the weak symmetry
is a proper symmetry on P, and any method of symmetry
breaking can be used. However, by breaking the symmetry on
P, any solution sp, of P; will represent its equivalence class
of solutions. All these solutions have to be considered when
determining a solution to P. Even if sp, does not satisfy P
a different solution 7(sp,) in the same equivalence class may
satisfy P, where 7(sp,) is a permutation of sp, .

Therefore we need a way to represent all these solutions in
the search process. We introduce a new variable that identifies
which element of the equivalence class is represented in the
further search process. This variable is the SymVar.

Definition 3 (Symmetry Variable)
Consider a CSP P = (X, D, C) with a weak decomposition
(P1, P2) and a weak symmetry f on P.

A symmetry variable (SymVar) © € S[X1] represents
the group of symmetric solutions of f in Py. Its domain is the
symmetric group on X1, denoted by S[X1].

49

If the SymVar is the identity then the solution passed to
P; is the one found in P;. In any other case the permuted
solution of P, (which is equivalent with respect to the weak
symmetry) is passed to P,. The solution of P; together with
the assignment of the SymVar represents a partial variable
assignment to P, and P. It is checked whether it also sat-
isfies the constraints of P and if so all variables in X5\ X3
are assigned for finding a solution to P5. If the partial assign-
ment does not satisfy P, a different element of the equiva-
lence class is considered by a different value for the SymVar.
If none of the elements satisfy P, a new solution to P; is
sought. This way the whole problem is investigated and no
solution is lost. Note that only for solutions of P; the Sym-
Var is instantiated.

Theorem 1 (Solution Preservation)

The solution space of P is totally reflected by the decompo-
sition (Py, P2) and a SymVar m such that every solution of P
can be uniquely represented by a solution to P, an assign-
ment to the SymVar and a solution to P.

See [1] for a proof.

In practice this concept of a single SymVar as a represen-
tative is not supported in constraint programming solvers on
the level of modelling. Therefore instead of one variable we
use a set of variables. A feasible variable assignment to these
variables then represents a specific element of the equivalence
class.

Definition 4 (P,,,,)

Consider a CSP P = (X, D, C) with a weak decomposition
(Py, P2) and a weak symmetry f on P.

Psy'm = (Xsy'rnstyqusym) is a subpmblem Of P that
models the weak symmetry f. Xgym is the set of SymVars
representing the variables of Pi. Dy, is the domain for all
SymVars and Cyp, is the set of constraints that model the
symmetric group induced by f. A solution of Pgyy, represents
an element of the symmetric group induced by f.

If the weak symmetry is a permutation of n elements there
are n SymVars with a domain of {1,...,n} and an alldif-
ferent constraint ensuring that every feasible assignment to
Xsym 18 a permutation.

To solve P we consider the partial solution sp,,, . When a
solution is found, the search backtracks and reconsiders val-
ues for the SymVars to determine a new solution. All these
solutions are symmetric equivalents to the solution sp,. Only
when the search backtracks and variables in X; are reconsid-
ered, a solution for a different equivalence class can be found.

By using SymVars we can break the symmetry in P; but
do not lose any symmetric solution in an equivalence class.

3 Separable Objectives

3.1 Prerequisites

For the rest of the paper we consider the following problem
structure: The CSP P = (X, D, C) is an optimisation prob-
lem, i.e. there exists an objective function f that assigns each
solution S of P an objective value f(S) = v which leads to a

R. Martin

ranking of all solutions. P weakly decomposes to P; and P»
whereby the weak symmetry in P; is a column permutation
of a search variable matrix x™*™ C X. P, just consists of
the objective function as a constraint on x: P» = (x, Dy, f).
A solution S to P consists of the permutation s, of the so-
lution s to P; and the objective value v associated to s, via
the function f. The column permutation symmetry in P; is
broken by a symmetry breaking method. P, consists of
investigating the symmetric equivalents using n SymVars sv;
representing the columns of x. An assignment to all SymVars
sv; therefore models s, which is a solution to Pi,,,,. For our
purpose we do not care which symmetry breaking method is
chosen in P;. Symmetry and Weak Symmetry Breaking do
not conflict with each other [1] so we can choose the most
effective method for our purpose. In [1] we used a modelling
approach to break the symmetry. Based on this method we
describe our approach.

Convention: Small capital variables s are solutions to the
subproblem P; while large capital variables S are solutions
to the whole problem P.

We also define a partial permutation in the following. For
our purpose a partial permutation is a permutation of just
some consecutive variables while the rest of the variables
is not assigned yet. This represents a search state for Py,
where some SymVars are assigned already and others are still
unassigned.

Definition 5 (Partial Permutation)

Consider a permutation 7 of n variables. A partial permuta-
tion Tt; is an assignment of the fir sti variables on the domain
1,...,n.

A partial permutation 7; implies that ¢ values have been
assigned to the first ¢ variables (in our case the SymVars) and
n — ¢ values have not been assigned.

3.2 Separable Objectives

Separable objectives have the special feature that the objec-
tive function f itself can be broken down to independent sub-
functions f; ..., f,, each defined over a variable set x; C x.
The variable sets of the subfunction form a partition of x.

For our purpose we regard only functions where the subsets
x: form a structure like the columns or the rows of .

Definition 6 (Separable Objective)
An objective function stated over a search variable matrix x
is separable in the columns (rows) if

e the contribution of an assigned column (row) to the ob-
Jjective value is independent from the assignments of all
other columns (rows)

e the objective value can be computed from the separate
contributions of all columns (rows)

Note that especially in real-world optimisation the are a lot
of problems that introduce weak symmetries are are separa-
ble in the desired way since the optimisation function itself
introduces the weak symmetry.

50

3.3 Separable Objectives and Weak Symmetries

If the variable matrix x comprises for example a column per-
mutation symmetry on P; but not on P the symmetry is weak
on P. For the sake of simplicity we consider the weak sym-
metry to be a column permutation from now on. If the objec-
tive function is also separable in the columns we can store the
partial permutations and the achieved partial objective value.
These partial permutations of a solution s can be re-used for
a solution s’ if s and s’ are neighbouring solutions.

Definition 7 (neighbouring Solutions)
Given two solutions s and s’ to a problem P. Each solution
consists of a search variable matrix x™*".
s and s’ are neighbouring solutions if the following holds:
Jie{l,...,n}Vj € {1,...i} : s; =), where s; is the
j-th column of the solution s and analogously for s'.

Definition 8 (Neighbourhood Degree)
Given two neighbouring solutions s and s' to a problem P.
Each solution consists of a search variable matrix x™*™.
The highest index i for which s and s’ are neighbouring is
called the neighbourhood degree of s and s':
nbhDeg(s,s') = max;eq1,.. o) VJ € {1,.. .3} 155 =5

/.
J

Note that we define neighbourhood as a successional fea-
ture. If two solutions are neighbouring for a certain index ¢
than they are also neighbouring for all j < ¢. The reason for
that is to achieve a trade off between the efficiency and the
space complexity of the proposed method in this paper. It is
without loss of generality possible to define the neighbour-
hood relation just for single and not for successional indices.
But this would result in a super-exponential space consump-
tion such that the method would not be applicable in practice.

In our scenario s and s’ are solutions to P, and they are
subject to column permutation to determine the solution for
the CSP P. That means that the whole equivalence class for
all solutions to P; have to be checked explicitly. In fact for
each solution n! permutations have to be considered.

Consider now that s and s’ are neighbouring with the de-
gree k. In this case the permutation of the first ¢ columns is
part of both solutions s and s’. Without loss of generality s is
found before s’ in the search. The idea is to re-use the results
of the partial permutations of the first £ columns from s for
the computation of the permutations to s’. By doing so the
number of permutations that have to be checked explicitly for
s’ reduces from n! to Z—,‘ (See Section 4).

Therefore we store the partial permutations as well as the
achieved objective value when checking all permutations 7 of
s. In fact, we do not need to store all partial permutations but
only dominating partial permutations.

Definition 9 (Dominating Permutation)
A permutation w dominates an other permutation ©' with re-
spect to s if

f(sx) > f(sar), where f() is the objective function.

If ™ dominates all other permutations with respect to s,
is a dominating permutation.

Speeding up Weak Symmetry Exploitation for Separable Objectives

Definition 10 (Dominating Partial Permutation)
Consider 7; and 7| to be partial permutations.
m; dominates | with respect to s if

® sq, and sy/ have assigned the same set of values (but to
different variables)

o f(sx,) = f(sx:), where f() is the objective function

If w; dominates all other partial permutations 7; that have
assigned the same set of values, m; is a dominating partial
permutation with respect to s.

In fact we store for each subset of the set of columns one
dominating partial permutation. We can do this because we
are only interested in the partial permutation that achieves the
best objective value for each subset of the columns. The num-
ber of dominating partial permutations is considerably lesser
than that of all partial permutations.

Storing the partial permutations can be done during the
search process of Pk,,,. After each instantiation of a Sym-
Var it is checked whether this partial permutation dominates
a previous found partial permutation on the set of assigned
columns. If so the new partial permutation is stored.

If all permutations 7 have been considered for s, search
backtracks to find a new solution s’ to P;. The neighbour-
hood degree k of s and s’ is determined and the permutation
of &' is started. Since nbhDeg(s,s’) = k the first k columns
of s and s’ are identic. Due to the separable objective function
f that means that a partial permutation of the first £ columns
achieves the same partial objective value for s and s’. Since
we already performed these partial permutations on s we do
not want to perform them again but use the stored dominated
partial permutations.

Therefore we instantiate only the last n — & SymVars, in-
stead of all » SymVars. When all these SymVars are assigned
there are k remaining values that were not assigned. For these
values we recall the stored dominating partial permutation
which is applied to the remaining & unassigned SymVars. To-
gether this forms a permutation of all columns. When the
objective value is determined the search backtracks and per-
forms search on the last n— k SymVars. For each permutation
of the last n — k SymVars the dominating partial permutation
for the not assigned columns are recalled and the permutation
problem is reduced to Z—,’ permutations to check.

The gain in the method is not only the reduction for one
other solution. But it holds for each solution 5 that is neigh-
bouring with s. Therefore the stored partial solutions can be
used for each 5. Depending on nbhDeg(s,s’) more or less
permutations can be omitted for 3.

All solutions with a neighbourhood degree of 0 to
any previous solution are called cardinal solutions. 1If
nbhDeg(s, §) = 0 that means that the first the first column in
both solutions is different: s; # §1.

Definition 11 (Cardinal Solution) A solution s that has a
neighbourhood degree of 0 with all previous found solutions
is called a cardinal solution.

Only for cardinal solutions partial permutations are stored
whereby memory is erased with each new cardinal solution.

51

4 Approach

As outlined before the idea of the approach is to store and
re-use partial information from solutions investigated before.
We will describe the approach in this section more detailed.
It consists of two phases. The first is storing partial solutions
during solving P, for cardinal solutions. The second is
calling these stored data for solving non-cardinal solutions.
We introduce a variable ordering on P; and FP;,,,,. This has
to be done in order to find the solutions in the desired order.

4.1 Variable Ordering for the Approach

Ordering on P,

For our approach we consider a fixed variable ordering for the
variables in x. The matrix is assigned columnwise beginning
with the smallest index 1 up to n.

The reason for that is that we want the backtracking in a
way such that

e as many columns as possible keep fully instantiated

e if a value in a column is backtracked then in the column
with the highest index that still has variables assigned

By doing so we achieve the following:

1. all solutions neighbouring to a cardinal solution s are
found consecutively

2. the neighbourhood degree between s and any new solu-
tion is decreasing (which means that the highest neigh-
bourhood degree is found first)

3. once a solution § is found that is not neighbouring with
s (i.e. the neighbourhood degree between s and § is 0)
no further solution is neighbouring with s.

This way the assignment of the columns change from
“right to left” during the search which produces the desired
feature of decreasing neighbourhood degree.

Theorem 2 (Neighbourhood Decrease)

Consider the variable ordering in Py for x to be performed
columnwise increasingly. Than the solutions are found in a
way such that the neighbourhood degree of a cardinal so-
lution s and any solution s' found before the next cardinal
solution § will never increase.

Proof. 1f the variables are assigned in the proposed order
than the assignments in the columns will change from right-
to-left changing first columns with higher indices. Consider
for the cardinal solution s and a solution s’ that the neigh-
bourhood degree is k. Any solution s found after s’ has at
least one of the columns with an index lesser than or equal
k changed in comparison to s. Therefore the neighbourhood
degree cannot increase for the solutions between two cardinal
solutions.

As soon as the first column is reconsidered the neighbour-
hood degree to all previous found solutions is 0. This trivially
holds for the first solution as well.

R. Martin

Ordering on Py,

We consider here fixed but different variable orderings de-
pending on the kind of a solution (cardinal or non-cardinal).
For cardinal solutions s we assign the SymVars increas-
ingly from sv; to sv,. For a non-cardinal solution s’ with
nbhDeg(s,s’) = k we assign the SymVars decreasingly
from sv,, to svg41.

Note that the variable ordering for cardinal solutions is no
limitation. All permutations of s have to be considered any-
way in order not to lose solutions. We save i-elementary sub-
sets of the set of columns with the property that the first ¢
SymVars are instantiated during the search. This is done to
save storing capacity. By doing so foreach2 < ¢ < n —1
we store all i-elementary subsets of the set of columns. The
i-elementary subsets stored represent all partial solutions of a
permutation of the first ¢ SymVars on the set of columns.

When Py, is exhaustively investigated for each such a
subset a dominating partial permutation is stored.

Theorem 3 (Dominating Permutation)

After all permutations are performed for a cardinal solution
s a dominating partial permutation is stored for each subset
of the columns.

Proof. For a partial permutation 7.(s) the set of assigned
columns cis determined. For this subset it is checked whether
7.(s) achieves a better objective value than the best found
partial permutation 7’.(s). If so, .(s) is stored since it dom-
inates 7’.(s). When all permutations are performed for each
subset of the columns a partial permutation is stored. Since
only dominating permutations are stored and the search is ex-
haustively the last stored permutation in each subset is domi-
nating.

For non-cardinal solutions we assign only SymVars with
a index higher then £ and complete the partial solution by
calling the relevant stored partial permutation for the first k&
SymVars.

4.2 Storing Partial Permutation

Partial permutations are just stored for cardinal solutions.
This is in particular the first solution s found for P;. The
next cardinal solution § is the first found that is not neigh-
bouring with s (i.e. nbhDeg(s,s) = 0). The next cardinal
solution § is the first found that is not neighbouring with §
and so on. All solutions found between two cardinal solu-
tions are neighbouring with the first found of these two. For a
cardinal solution s all permutations of s have to be considered
in order not to lose solutions. For all other solutions only par-
tial permutations have to be considered since the rest of the
permutation is taken from the cardinal solution. The num-
ber of partial permutations to consider for a solution depends
on the neighbourhood degree of this solution and its cardinal
solution.

Process of Storing

Consider a cardinal solution — without loss of generality the
first found solution — s to P;. To find a solution to P, s has to
be permuted. Therefore the symmetry variables are assigned.

52

The assignment is done such that the columns of the matrix x,
represented by the SymVars, are assigned increasingly. After
each instantiation of a SymVar the partial permutation rep-
resented by this partial assignment is stored if it dominates
all previously found solutions on the set of assigned values.
More specifically the objective value and the concrete assign-
ment of the SymVars is stored. Since the objective is separa-
ble the objective value can be obtained.

Example: Consider the following partial SymVar assign-
ment: sv; = 3,sv2 = 1,svs = 4. This means the first col-
umn of x is permuted to the third column and so on. Consider
that the objective value for this partial assignment is 34. Then
the data < (3,1,4), 34 > is stored for the partial permutation.
If the partial assignment is extended by svs = 6 achieving a
objective value 42, then < (3,1,4,6),42 > is stored for the
partial permutation.

If a different partial permutation achieves a higher objec-
tive value than the old one it is overwritten by the better one.

Consider the example above and a new partial SymVar as-
signment: sv; = 4,sv; = 3,sv3 = 1,svy = 6 achiev-
ing an objective value of 50. The old partial assignment
< (3,1,4,6),42 > is overwritten by < (4,3,1,6),50 >.

Although there are n! permutations the number of domi-
nating partial permutations to store is lesser.

Theorem 4 (Highest neighbourhood degree k)
For a cardinal solution s with n columns it is sufficient to
regard only a neighbourhood degree of 2 < k <n — 1.

Proof. A neighbourhood degree of 1 does not have to be re-
garded since in this case there is only one search variable left
and there exists only one value for this variable due to the per-
mutation. That means that a solver does automatically assign
the value and compute the objective value. Therefore there is
no use in storing one-elementary subsets. A neighbourhood
degree of n is not possible because this would mean that both
solutions s and s’ have only identic columns which means
that s = s’. This is impossible since a constraint solver can’t
find the identic solution again.

That implies that only dominating partial permutations for
all 2 to n — 1-elementary subsets are to be stored. For each
subset one dominating partial permutation is stored.

Theorem 5 (Storing Capacity)
The size to store all dominating partial permutations is 2" —
n— 2.

Proof. For each subset of the columns one dominating per-

mutation has to be stored. There are (';) subsets of the size .

We do not need the subsets of size 0, 1 and n due to Theorem

;;L Theref%re there are 2295"71 (:’) subsets which equals
—-n—2.

Since in the applications we are investigating n is bound to
be 20 at most the storing capacity is a practical amount and
the approach is not only theoretically but can be applied.

Speeding up Weak Symmetry Exploitation for Separable Objectives

4.3 Applying Stored Partial Permutations

The stored partial permutations for a cardinal solution s can
be used for each solution s’ with nbhDeg(s, s’) > 0. When
s’ is found and nbhDeg(s, s’) = k the first k columns do not
have to be permuted anew.

First a permutation of the last k£ 4+ 1,...,n SymVars is
sought. Then it is determined which values of the columns
are not assigned to these SymVars. For these values a domi-
nating partial permutation of the first k¥ SymVars is re-called
from the stored data. Since the stored partial permutation for
these values is dominating it represents an optimal solution
for this subproblem.

Therefore the problem P, for non-cardinal solutions re-

duces to investigate only Z—,‘ permutations instead of n!.

Theorem 6 (Reduction for Non-cardinal Solutions)
Given a cardinal solution s and a solution s with
nbhDeg(s, s') = k.

The number of permutations that have to be explicitly in-
vestigated for s' reduces from n! to Z—,’

Proof. Due to nbhDeg(s, s") = k the first k columns of both
solutions are identic. Therefore only the last n — k& columns
of s’ have to be permuted on the n columns of the matrix.
For the remaining k free columns the stored dominating per-
mutation can be taken. Therefore the number of explicitly
investigated solutions is %‘

4.4 Related Work

We use a domination criterion to reduce the size of solu-
tions to store. The domination criterion can be used since the
objective function is separable. There are other approaches
that use dominance to speed up the search in different ways.
SBDD (Symmetry breaking by dominance detection) [8] for
example checks whether a current search state is dominated
by a previously found search state. Focacci and Shaw [10]
prune search branches that are dominated by other using local
search. Smith [9] uses no-good recording to detect whether
current search states lead to the same remaining subproblem
as previously investigated search states. So far we do not use
domination to reduce the number of permutations to consider.
But the ideas in [9] could be incooperated to reduce the num-
ber of permutations to consider for cardinal solutions. This
would mean to alter the search strategy and although a smaller
search space is to be investigated for the cardinal solutions it
is likely that the first solution is found later which may be
a problem in online-optimisation. But it is definitely worth
investigating.

5 Example for a Problem with Separable
Objectives

We use a problem from the field of automated manufactur-

ing to demonstrate our ideas. The problem is more detailed

described in [1; 7]. For our purpose we consider a relaxed
subproblem for the sake of simplicity.

53

5.1 Problem Description

In the problem certain components must be mounted on PC
boards by a mounting machine consisting of several mounting
devices. The task is to maximise the workload of the whole
machine. We concentrate only on a subproblem of the whole
solving process. That is to find a setup of component types
for the individual mounting devices to maximise the potential
workload.!

The machine consists of several mounting devices. Each
mounting device has access to a set of component types
(called setup) that are to be mounted on the PC boards. In ad-
dition each mounting machine has only access to a part of the
PC board layout and can therefore only mount components
inside this visibility area. The PC board layout is specified
by a list of mounting tasks. A mounting task is specified by
a component type and a position where to mount this compo-
nent type.

The problem is modelled as follows: The machine is rep-
resented by an m x n variable matrix x"**™ where m is the
number of different component types that can be assigned to
a mounting device and n is the number of mounting devices
on the machine. The domain of variables a;; € x is the set
of component types. An assignment z;; = k means that a
component of type k is placed on the mounting device j in
the 7th slot.

The constraints:

e No component type may be assigned more than once to
a column

e Certain component types may not be assigned together
in a column

e Each component type achieves a certain workload when
assigned to a column. The workload differs from column
to column. This represents the visibility of the mounting
device.

In the real-world the matrix x would have about 10 rows
and 6 to 20 columns. Where the most common case is a ma-
trix with 12 columns.

5.2 Weak Symmetry and the Separable Objective

The columns of the matrix x can be permuted which doesn’t
change feasibility. But the assigned component types achieve
a different potential workload. Therefore the column permu-
tation is a weak symmetry.

The objective function is separable in the columns since
the potential workload can be determined for each column
separately.

A drawback in the problem is that pruning due to objective
value bounding for P, is not very effective. The reason
is that we maximise the objective value and the contributions
of each assigned column is strictly positive. That means that
mostly the majority of the SymVars have to be instantiated
before pruning can be performed.

I'The actual workload assigned to the devices is a subset of the
workload determined in this subproblem. But the higher the possible
workload the higher the degree of freedom for the concrete assigning
problem not considered here.

R. Martin

5.3 Neighbourhood of the Problem

In this problem solutions have a rather high degree of neigh-
bourhood. This is due to the fact that only few changes in the
setup constitutes a new solution. This way the neighbourhood
degree decreases slowly such that the time spent for storing
solutions for a cardinal solution is outperformed by the saving
of performing permutations.

5.4 Efficiency of Applying the Approach

This discussion is held from a theoretical point since the tech-
nique has not been applied to the problem yet. Still due to
the investigations in [1] we have a lot of knowledge about
the structure of the solution space. As mentioned before the
neighbourhood degree is very high in the problem. In prac-
tice a lot of solutions just differ by two or three columns. In
a standard instance with 12 columns that would mean a re-
duction from 12! to 122 — 12 = 132 permutations for several
solutions. The number of solutions is rather high in the prob-
lem. This means that even for instances with 12 columns it is
not possible to solve the problem exhaustively within reason-
able time. Using our method for weak symmetry exploitation
a much larger number of solutions can be investigated or the
problem could be solved exhaustively for smaller instances
which is a large improvement for the problem.

6 Extensions of the Approach

Here we consider some extensions and variations that could
be used for the approach. We discuss the advantages and dis-
advantages of each idea.

6.1 Neighbourhood as a Discrete Feature

We limit ourself to regard neighbourhood as a successional
feature. This is done to make the approach applicable. The
memory consumption is growing super-exponential other-
wise which would allow only very small instances to be
solved.

Advantages

If the neighbourhood is defined discrete, i.e. columns do not
have to be successional to count for the neighbourhood degree
we do not have to impose a variable ordering on P; that is that
strict. Columns do not have to be considered increasingly but
can be assigned arbitrarily as long as all variables of a column
are assigned successively.

Disadvantages

The memory consumption is much higher for saving all dom-
inating partial permutations. This is due to the fact that in the
successional neighbourhood the values for each k-elementary
subset are only assigned to the SymVars sv; ..., svg. Fora
discrete neighbourhood these values could be assigned to any
k SymVars. Also there are more saving operations which con-
sume time during the search.

6.2 Imposing a Lower Bound £,,;, for the
Neighbourhood Degree

We limit ourself to store data only for cardinal solutions. But

since the neighbourhood degree is decreasing during search

more and more efficiency is lost. This happens for solutions

54

s,8', 8" with nbhDeg(s, s”) < nbhDeg(s',s"), whereby s
is the cardinal solution. In this case the permutation reduc-
tion would be better if s’ was the cardinal solution. It is pos-
sible to impose a lower bound for the neighbourhood degree
kmin such that the saving for further solutions is higher. That
would mean that a solution s’ with nbhDeg(s, s') < kmin
to a cardinal solution s is announced a new cardinal solution
and partial permutations for s’ have to be stored.

Advantages
Imposing a lower bound on the neighbourhood degree k.,
would guaranty that for each non-cardinal solution at most

i ”y!y - permutations have to be performed.

Disadvantages

For the newly announced cardinal solutions storing opera-
tions have to be performed which cost time. Fortunately the
storing capacity has not to be extended. Moreover, if for a so-
lution s’ and a cardinal solution s it holds nbhDeg(s, s’) =
k < Kpmin, the k-elementary subsets do not have to be com-
puted again. Only subsets with more than k elements have
to be stored anew. But for s’ n! permutations have to be
performed. It is not possible to use the stored k-elementary
partial solutions and extend them to an optimal permutation.
This way solutions could be lost.

6.3 Imposing on Upper Bound %,,,, for the
Neighbourhood Degree

On the other hand we do not restrict the maximal degree of
neighbourhood k.. Since the memory consumption is ex-
ponential in the neighbourhood degree it may be necessary
to impose an upper bound. That means that only neighbour-
hood degrees up to k are respected. Clearly this is a loss of
efficiency for the method but it makes it applicable.

Advantages

The clearest advantage is that the extra memory consump-
tion is under control which makes the approach applicable.
Although this clearly limits the theoretically achievable effi-
ciency it also offers us a chance of pruning in Psy,,. Only
permutations of the first k,,,,, variables are stored. We only
have to investigate the assignment of these variables exhaus-
tively since we do not have to keep track of the optimal partial
assignments. That gives us the freedom to prune partial per-
mutations beyond an assignment of k. variables.

Disadvantages

Clearly not full efficiency could be achieved since the solu-
tions of the problem may have neighbourhood degrees greater
than k... such that theoretically more permutations could be
avoided to perform.

7 Conclusions and Outlook

We proposed a new algorithm that exploits weak symmetries
for separable objectives in a way such that the number of per-
mutations to perform can be reduced for certain solutions. By
spending a manageable amount of memory partial permuta-
tions are stored for so called cardinal solutions. These data is
used to save performing permutations for non-cardinal solu-
tions. We introduced the definitions for separable objectives

Speeding up Weak Symmetry Exploitation for Separable Objectives

and the neighbourhood between solutions. Also we stated
the theoretical ideas of the algorithm and showed correctness.
The algorithm is presented in pseudo-code but could be im-
plemented in many solvers as a global constraint which we
do not present here.

Already outlined is a generalisation of the algorithm such
that the stored data can be updated from time to time if de-
sired. Up to now there are no experimental results for the
approach. So the next step is clearly to test it in a constraint
solver environment and determine the outcome of applying
this technique. Due to recent tests with weak symmetries we
are very confident that this algorithm could considerably re-
duce the search.

Not investigated yet is the possibility to reduce the search
effort for cardinal solutions by using a dominance criterion
on the permutations to consider following the idea of Smith
[9]. But using the idea we would have to change the way
the permutations are investigated. This could mean that the
approach may be faster in exhaustive search but might not be
suitable for online optimisation as for example the application
of the automated manufacturing. This has to be investigated
in future.

References

[1] Roland Martin The Challenge of Exploiting Weak Sym-
metries In B. Hnich et al ed.: Lecture Notes in Computer
Science, Volume 3978, 2006

[2] Peter Gregory Almost—Symmetry in Planning SymNet
Workshop on Almost-Symmetry in Search, New Lanark,
2005

[3] Alastair Donaldson Partial Symmetry in Model Checking
SymNet Workshop on Almost-Symmetry in Search, New
Lanark, 2005

[4] Roland Martin Approaches to Symmetry Breaking
for Weak Symmetries SymNet Workshop on Almost-
Symmetry in Search, New Lanark, 2005

[5] Warwick Harvey Symmetric Relaxation Techniques for
Constraint Programming SymNet Workshop on Almost-
Symmetry in Search, New Lanark, 2005

[6] Warwick Harvey The Fully Social Golfer Problem Sym-
Con’03: Third International Workshop in Constraint Sat-
isfaction Problems, Kinsale, Ireland, 2003

[7] Rico Gaudlitz Optimization Algorithms for Complex
Mounting Machines in PC Board Manufacturing Diploma
Thesis, Darmstadt University of Technology, 2004

[8] T. Fahle, S. Schamberger, and M. Sellmann Symmetry
Breaking In CP 2001, pp. 225239, 2001

[9] Barbara M. Smith Caching Search States in Permutation
Problems In CP 2005, pp.637-651, 2005

[10] Filippo Focacci, Paul Shaw Pruning sub-optimal search
branches using local search In CPAIOR’02, pp. 181-189,
2002

55

A comparison of SBDS and Dynamic Lex Constraints

Jean-Francois Puget
ILOG
9 Avenue de Verdun
94253 Gentilly Cedex, France
puget@ilog.fr

Abstract

Many symmetry breaking methods have been
proposed so far. Previous works have shown
that these methods could be combined together
under some conditions. We use a different an-
gle : we compare the pruning power of two
symmetry breaking methods. The first one is
the rather classical SBDS method. The sec-
ond one is the recently proposed dynamic lex
constraints (DLC). We theoretically show that
DLC prunes more nodes than SBDS if values
are tried in increasing order. We also show ex-
perimentally that DLC can be more efficient
than SBDS.

1 Introduction

Symmetries are mappings of a Constraint Satisfaction
Problem (CSP) onto itself that preserve its structure as
well as its solutions. If a CSP has some symmetry, then
all symmetrical variants of every dead end encountered
during the search may be explored before a solution can
be found. Even if the problem is easy to solve, all sym-
metrical variants of a solution are also solutions, and
listing all of them may just be impossible in practice.
Breaking symmetry methods try to cure these issues.

SBDS is one of the most popular symmetry breaking
methods. It has been proposed in [5], and further im-
proved in [4]. It is a special case of the method proposed
in [1]. This method adds conditional constraints dur-
ing search in order to not revisit symmetrical variants of
previously explored parts of the search tree.

Adding lexicographic constraints can break all
symmetries[3]. However, it can be quite inefficient when
the symmetry breaking constraints remove the solution
that would have been found first by the search proce-
dure. In order to overcome this issue, we have recently
proposed in [12] to use a dynamic variable order (the
one used during search) in the lexicographic constraints.
This yields dynamic lexicographic constraints (DLC).

We performed an experimental comparison of these
tow methods, and discovered that DLC resulted in a
smaller search tree than SBDS. This paper presents an

explanation of this fact. After some preliminaries in sec-
tion 2, we recap the SBDS method in section 3. We
then present DLC in section 4. A small example pre-
sented in section 5 shows that DLC can visit strictly
less nodes than SBDS. Section 6 relates the two meth-
ods from a theoretical point of view. Section 7 contains
some experimental results, and Section 8 contains our
conclusions.

2 Preliminaries

We denote the set of integers ranging from 0 to n — 1 by
.

2.1 CSP

We use standard notations for CSPs. A constraint satis-
faction problem P (CSP) with n variables is a triple P =
(V, D,C) where V is a finite set of variables (v;);ern, D a
finite set of finite sets dom(v;);ecrn, and every constraint
in C is a subset of the cross product @), ;. dom(v;). The
set dom(v;) is called the domain of the variable v;. With-
out loss of generality, we can assume that dom(v;) C I*
for some k.

The order in which variables appear in a (partial) as-
signment or in a solution is meaningful in the context
of this paper. A literal is an equality (z; = a;) where
a; € dom(z;). An assignment is a sequence of literals
such that the sequence of the variables in it is a per-
mutation of the sequence of the variable v;. A partial
assignment is sub sequence of an assignment.

A solution to (V, D, () is an assignment that is consis-
tent with every member of C.

2.2 Symmetries

A symmetry is a bijection from literals to literals that
map solutions to solutions. Our definition is similar to
the semantic symmetries of [2]. We note 19 the applica-
tion of the symmetry g to the literal [.

The symmetries of a CSP form a mathematical group.
The inverse of a symmetry g is noted g—!. The compo-
sition of a symmetry o and a symmetry 6 is of. The
variable symmetries of a CSP form a sub group of its
group of symmetries. The value symmetries of a CSP
form a sub group of its group of symmetries.

A Comparison of SBDS and Dynamic Lex Constraints

We consider in this paper symmetries that are a com-
bination of variable symmetries and value symmetries.
Variable symmetries are defined by a permutation o of
I™. Value symmetries are defined by a permutation 6 of
I*. The effect of such symmetry on a literal is :

(vi = a;)" = (vie = (a;)") (1)
If S = (vo=ap,v1 = ar,...,Up—1 = Ap_1) is & so-
lution, then (voe = (ag)?, (vir = (al)e,...,(v(n,l)a =
(aqx — 1))?) is the solution S99
We have shown in [11] that the effect of value sym-
metries could be modeled by element constraints. An
element constraint has the following form :

y = T|x]

where T' = [ag,a1,...,ax—1] is an array of integers,
x and y are variables. The above element constraint is
equivalent to :

y=a, Nz eclF

i.e. it says that y is the z-th element of the array
T. We will only consider injective element constraints,
where the values appearing in the array 1" are pair wise
distinct. In this case, the operational semantics of the
element constraint is defined by the logical equivalence :

Vielt (z=1i)=(y=a)

We extend element constraints to sequences of vari-
ables. If X = (v;);cr» is a finite sequence of variables,
then we define T'[X] as the application of an element
constraint to each element of the sequence :

TX] = (Tloi)ier

Element constraints can be used to describe applica-
tions of finite functions. For instance,

y=3"ANzel*

is equivalently expressed through the following ele-
ment constraint :

y=T[z] AT =11,3,9,27]

Element constraint can also be used to represent the
effect of value symmetries. Indeed, let 6§ be a value per-
mutation corresponding to a value symmetry. By def-
inition, any assignment of a value a to a variable z is
transformed into the assignment of a? to x :

(x=a)’ = (e =)

The permutation 6 is represented by the array Ty =
(09,19, ..., (k — 1)?]. Tt defines a finite function that
maps a to a’. The application of this function to = can
be expressed by Ty[z]. We have represented the effect of
the value symmetry by an element constraint.

More generally, if (ag, a1, -..,an—1) is the sequence of
values taken by the variables V = (vg,v1,...,0n—1), then
((ao)?, (a1)?,. .., (an_1)?) is the sequence of values taken

57

by the variables Ty[V].
solutions S.

Let us consider now the case where any symmetry is
the composition o8 of a variable permutation ¢ and a
value permutation . The variable permutation o is de-
fined by a permutation of I"™. The value permutation is
defined by a permutation of I*.

Therefore, S = Ty[S] for all

If (ap,a1,...,an—1) is the sequence of values
taken by the variables V = (vo,v1,...,0,-1), then
((aoe)?, (a12)?, ..., (a(n—1)~)?) is the sequence of values

taken by the variables Tp[V?]. Therefore, S7¢ = Tp[S7]
for all solutions S.

2.3 Search tree

Al
x =al x !=al
B1 A2
X=% Y I=a2
B2 A3

\

\

Ak
X:V\(hak
Bk

Figure 1: A tree search

We are interested in tree search methods (as opposed
to local search methods for instance). Let us assume that
the search tree is constructed as follows, see Fig. 1. In
a given node Aj, then a variable x is selected. Then the
all the values of the domain of « are tried before another
variable can be selected. More precisely, if the domain
of z contains the values (a1, ...,ax) in increasing order,
then Ay has two children : one where x = a1 is added,
the other where = # ay is added. Let us call the former
B; and the latter A;. The node A; (where x # a; is
added) has two child nodes, B; where = a; is added,
and A;;1 where x # a; is added. Note that in each node
Aj, a; is the minimal value in the domain of z :

T 2 a; (2)

J.-F. Puget

This way of searching is quite common in CP systems
and languages. It corresponds to what is called the “la-
beling” procedure in some CLP systems. It corresponds
also to the “generate” procedure of ILOG Solver[6]. We
restrict ourselves to this form of search because DLC
apply to such search only.

Constraints can prune the tree : some nodes are in-
consistent. These nodes have no children. Solutions are
leaves of the search tree that are not inconsistent. Some
constraint propagation algorithm may be applied at ev-
ery node. It may result in some assignment of variables.

3 SBDS

SBDS posts conditional constraints during search. It
assumes a depth first search of the tree. Let A; be a non
leaf node of the search tree (see Fig. 1), and let x be
the variable selected for branching in this node. Let a;
be the value selected for x. Then the search proceeds
with the sub tree rooted at B;. Upon backtracking, the
search proceeds with the sub tree rooted at A;;;. For
each symmetry o6, SBDS adds the following constraint
in A;y1, where A stands for the assignment valid at the
node A;yq :

ANAN (z# a;) = (x # a;)? (3)

The constraint (3) is posted as a local constraint in
A;i11. It is valid only for the sub tree rooted at this node.
In this node, both A and (z # a;) hold. Therefore, the
constraint actually posted is :

A% = (x # a;)°° (4)

The above is the original method described in [5] when
the search tree is constructed as in section 2.3. Note that
SBDS can be applied to more general trees. Various
improvements to SBDS are presented in [4], but they
will not be discussed in this paper.

Let us assume there are k variables fixed in the node
A;. Then, the partial assignment valid in this node is
A = (Uio = bOanl = bl,...,U,‘k71 = bk_1). Let us
rename v;; into xz;. Then, the partial assignment is
A = (o = bp,x1 = by,..., 251 = br—1). Let us also
rename x into xy, and a; into by.

Then, the constraint (3) is equivalent to :

(woe = (b)) A A(@(g1)r = (br—1)?) = (Tho # (bkzeg
)

4 DLC

A very powerful symmetry breaking method has been
proposed in [3]. The idea is to use a lexicographic or-
der to compare solutions. Given two finite sequences
X = (l’o,.’El, oo 7xn71) and Y = (yOvyla R 7yn71)7 we
say that X is lex smaller than Y (denoted X <Y if,
and only if :

vk e I™, (mo =YoN...NTp_1 :ykfl) =z < Yk (6)

58

We have introduced in [12] a new symmetry breaking
method called dynamic lex constraints (DLC). These are
lexicographic constraints such as in [3] with one major
difference : the order in which variables appear in the
lex constraints is not static. It is the order in which
variables are selected during the search.

Then, DLC amounts to post the conditional constraint
of (6) during the search. With the notations of Fig.
1., it posts at node A; the following constraints, where
A= (xo=Dbyg,...xj—1 = b;j_1) is the assignment valid in
A1 :

AN (A = (z < (210)7) (7)
This amounts to :

(wor = (b0))N . A@(j—1ye = (bj-1)") = (wx < Tylag-])
(8)
When k% = k, then the constraint xy < Ty[z) can be
propagated as follows. For any value a in the domain of
xk, if Tpla] < a, then a can be removed from the domain
of z. Indeed, x; = a would violate the constraint. This
is somewhat reminiscent of the GE-tree method [13], as
explained in [12].

5 An example

Both SBDS and DLC post conditional constraints.
There are two differences. First, DLC posts constraints
only in node A;, whereas SBDS posts constraints in
Ag, ..., Ag. Second, the right hand sides of the con-
straints posted by DLC are inequalities, whereas they
are disequalities for SBDS.

Let us consider a simple example that clearly shows
that DLC can prune more nodes. We consider a CSP
with one variables v € {0, 1}, with 2 values in its domain
(k =), and no constraint. We assume there is one value
symmetry 6 that swaps 0 and 1. It is defined by the
array Ty = [1,0].

Let us look at the behavior of SBDS on this problem.
At the root node, SBDS states no constraint. Then two
children are constructed for this node, one where v = 0,
the other where v # 0. Search proceeds with the first
node. This node is a solution for the problem. Then
search backtracks and visits the second node (v # 0). In
this node, SBDS adds the following constraint :

v # Ty[0]

It is equivalent to :

v#1

Then the node is inconsistent and the search stops
here, after having visited 3 nodes.

Let us see what DLC would do on the same search.
At the root node, it states :

v < Tylv]

As explained in the previous section, the constraint is
propagated as follows. Any value a such that Ty[a] < a is

A Comparison of SBDS and Dynamic Lex Constraints

removed from the domain of v. Therefore, 1 is removed
from the domain of v, since Tp[1] = 0.

Then at the root node v is set to 0 and the search
stops with a solution.

On this tiny example, DLC has explored one node,
whereas SBDS has explored 3 nodes.

We have seen that DLC can explore less nodes than
SBDS. We will prove in the next section that the con-
verse is not true. Indeed, any node pruned by SBDS
would be pruned by DLC.

6 Comparing DLC and SBDS

We want to show that DLC will prune at least as many
nodes as SBDS. First of all, DLC posts a constraint in
A;p. This constraints can prune A; altogether, or it can
prune some nodes in the sub tree rooted at Bi. Since
SBDS posts no constraint on A;, then no such pruning
can occur. This was examplified in the previous section.

Let us look at the sub tree rooted at A,. We want
to show that the constraints posted by DLC are at least
as strong as the ones posted by SBDS. Let us look at
one of the node A;, for i > 1. Let A be the assignment
valid at this node. A is of the form A = (z¢ = by, z1 =
b1,...,Zk—1 = bk—1). The assignment valid at the node
A; is a prefix of the assignment valid in A;, i.e. it is of
the form A/ = ({,Co = bo,l’l = bl, ey Tj1 = I)j,l)7 with
i<k

SBDS posts (5) at node A;41.

DLC has posted (8) in A;. Therefore, this constraint
is valid is A;41.

In the node A; 1, we have that xj > by, because by, =
a; and because of (2). Therefore (8) implies the following
in node A;4+, for all o and for all 6 :

(l‘oa = (bo)e)/\. . ./\(l‘(j,l)o = (bj_l)g) = (Tg[l‘ka] > bk)
(9)
Since it is posted for all 8, it is posted for all 61:

(20r = (b0)"). A& (j-1)e = (bj-1)") = (Ty-1[wxe] > by)

(10)
If, Lo = (bk)a then Tg—l[l’ko’} = bk. Therefore, (10)
implies :

(2or = (b0)") A+ A2(i1ye = (bj-1)") = (ke # (br)°)
(11)

The left hand side of (11) is included in the left
hand side of (5). Therefore, (11) implies (5). We have
proved that the constraints posted by DLC imply the
constraints posted by SBDS. This proves the following :

Theorem 1. With the above notation and search pro-
cedure, any node pruned by SBDS would be pruned by
DLC.

The above proof may be easier to understand if we
state constraints at a higher level. SBDS posts the fol-
lowing constraint at node A;, fori > 1 :

59

ANAY N (2 # ai) = (2pe # (a5)?) (12)
DLC posts the following constraint at node A; :
AN (AN = (g < (20)?) (13)

(13) implies (12) because A’ = A.
We will see in the next section that the reverse is not
true : DLC may prune strictly more nodes than SBDS.

7 Experimental results

We reproduce here some of the experimental results re-
ported in [12]. All experiments were run with ILOG
Solver 6.3 [6] on a 1.4 GHz Dell D800 laptop running
Windows XP.

A graph with m edges is graceful if there exists a la-
beling f of its vertices such that :

e 0 < f(i) < m for each vertex i,
e the set of values f(i) are all different,

o the set of values abs(f(i) — f(j)) for every edge
(7,7) are all different. They are a permutation of
(1,2,...,m).

A straightforward translation into a CSP exists where
there is a variable x; for each vertex ¢. These are hard
CSPs introduced in [7]. They have been used as test
bed for symmetry breaking methods, see for instance
[8][11]. A more efficient CSP model for graceful graphs
has recently been introduced in [15]. In this model, any
symmetry of the graph induces a value symmetry. To-
gether with this model, a clever search strategy is pro-
posed. It is of the form described in section 2.3. It is
shown in [15] that this search strategy clashes with lex
constraints when they are used for breaking symmetries.
For this reason, symmetries are broken using SBDS in
[15].

We present in Table 1. and Table 2. results for var-
ious graceful graph problems. We use the implementa-
tion of [5] for SBDS, and our implementation for DLC
[12]. Since all experiments use the same version of ILOG
Solver and since they are run on the same computer we
believe the comparison is fair. For each method we re-
port the number of solutions found, the number of back-
tracks, and the time needed to solve the problem. Table
1. present results for finding all solutions (or prove there
are none when the problem is unsatisfiable). Table 2.
presents results for finding one solution when the prob-
lem is satisfiable.

These results show a significant increase of pruning
from SBDS to dynamic lex constraints. They are con-
sistent with Theorem 1. The improvement in running
times aren’t as large as the improvements in the number
of backtracks.

8 Conclusion

We have compared two symmetry breaking methods,
SBDS and DLC. Both methods post conditional con-
straints during search. Both methods do not interfere

J.-F. Puget

Table 1: Results for computing all solutions for graceful
graphs

Graph SBDS DLC

SOL BT sec. | SOL BT sec.
K3xP2 4 16 0.02 4 14 0.01
K4xP2 15 166 0.3 15 151 0.27
K5xP2 1 828 5.51 1 725 5.18
K6xP2 0 1839 43.2 0 1559 40.5
K7xP2 0 2437 1494 0 1986 139.4

Table 2: Results for computing one solution for graceful
graphs

Graph | No sym break SBDS dynamic lex

BT sec. | BT sec. | BT sec.
K3xP2 0 0 5 0.01 5 0.01
K4xP2 16 0.08 | 12 0.05| 12 0.05
Kb5xP2 | 2941 19.1 | 428 2.79 | 392 2.77

with the search ordering. We have shown that the con-
straints posted by DLC are stronger than the ones posted
by SBDS when the search procedure is the standard la-
beling procedure. Experiments using graceful graphs are
consistent with this theoretical analysis.

We intend to extend this comparison to other sym-
metry breaking methods such as SBDD and STAB. We
think that such comparison might provide new insights
into symmetry breaking, possibly yielding to the discov-
ery of better symmetry breaking methods.

The comparison we did only considered the original
SBDS method. It would be interesting to perform the
same analysis with improved SBDS methods such as [4].

Last, DLC are currently limited to search where all
values for a given variable are tried before another vari-
able can be selected. SBDS is applicable to more general
search procedures. It would be interesting to generalize
DLC to general search procedures.

References

[1] Backofen, R., Will, S.: “Excluding Symmetries
in Constraint Based Search” Proceedings of CP’99
(1999).

[2] Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.,
Smith, B.: “Symmetry Definitions for Constraint
Satisfaction Problems” In proceedings of CP 2005,
ed. Peter van Beek, pp. 17-31, Springer, LNCS3709,
2005.

[3] Crawford, J., Ginsberg, M., Luks E.M., Roy, A.:
“Symmetry Breaking Predicates for Search Prob-
lems”. In proceedings of KR’96, pp. 148-159.

[4] Gent, LP., and Harvey, W., and Kelsey, T.:
“Groups and Constraints: Symmetry Breaking Dur-
ing Search” In proceedings of CP 2002, pp. 415-430.

60

[5] Gent, I.P., and Smith, B.M.: “Symmetry Breaking
During Search in Constraint Programming” In pro-
ceedings of ECAI’2000, pp. 599-603.

[6] ILOG: ILOG Solver 6.3. User Manual ILOG, S.A.,
Gentilly, France, July 2006.

[7] I. J. Lustig and J.-F. Puget. “Program Does Not
Equal Program: Constraint Programming and Its
Relationship to Mathematical Programming”. IN-
TERFACES, 31(6):29-53, 2001.

[8] Petrie, K., Smith, B.M. 2003. “Symmetry breaking
in graceful graphs.” In proceedings of CP’03, LNCS
2833, pp- 930-934, Springer Verlag, 2003.

[9] Petrie, K.: ”Comparison of Symmetry Breaking
Methods in Constraint Programming” In proceedings
of SymCon05, the 5th International Workshop on
Symmetry in Constraints, 2005.

[10] Puget J.-F. 2005¢. “Breaking All Value Symmetries
in Surjection Problems” In proceedings of CP 05, pp.
490-504, 2005.

[11] Puget J.-F. “An Efficient Way of Breaking Value
Symmetries” To appear in proceedings of AAAI 06.

[12] Puget J.-F. “Dynamic Lex Constraints” To appear
in proceedings of CP 06.

[13] Roney-Dougal C.M., Gent, I.P., Kelsey T., Linton
S.: “Tractable symmetry breaking using restricted
search trees” In proceedings of ECAI’04.

[14] Seress, A. 2003. Permutation Group Algorithms
Cambrige University Press, 2003.

[15] Smith, B.: “Constraint Programming Models for
Graceful Graphs”, To appear in Proceedings of CP
06

