Principles and Practice of
Constraint Programming
(CP 2005)

WORKSHOP PROCEEDINGS:

Symmetry and Constraint
Satisfaction Problems

October 1st, 2005
Melia Hotel, Sitges SPAIN

Jbbbbbbbbbbibbbbbb6&666868&&5bibbbbbbblbb5&&&&&&55666&&6&&&‘

POIPIIIIPIIIPIIVIVIPIVIVIVIVPIPVIVVVPVPVP0000000000000000000COGOGEISISIGITY

Karen E. Petrie Meinolf Sellmann
Jean-Francois Puget (Eds.)

Symmetry and

Constraint Satisfaction
Problems

Fifth International Workshop
Sitges (Barcelona), Spain, 1st October 2005
Proceedings

Held in conjunction with the
Eleventh International Conference on
Principles and Practice of

Constraint Programming (CP 2005)

Programme Committee

Belaid Benhamou (Université de Provence, France)

Pascal Brisset (ENAC, Toulouse, France)

Pierre Flener (Uppsala University, Sweden)

Alan Frisch (University of York, U.K.)

Tan Gent (University of St. Andrews, U.K.)

Zeynep Kiziltan (Universita di Bologna, Italy)

Francois Margot (Carnegie Mellon University, U.S.A.)

Igor Markov (The University of Michigan Ann Arbor, U.S.A.)
Michela Milano (Universita di Bologna, Italy)

Barry O’Sullivan (4C, University College Cork, Ireland)

Justin Pearson (Uppsala University, Sweden)

.Karen Petrie (Cork Constraint Computation Centre, UCC, Ireland)
Steve Prestwich (University College Cork, Ireland)

Jean-Francois Puget (ILOG, France)

Meinolf Sellmann (Brown University, U.S.A.)

Barbara Smith (Cork Constraint Computation Centre, UCC, Ireland)
Toby Walsh (NICTA and UNSW, Australia)

i

(P PIIIIIIIIIIIVIIIVIVIVIVIIVIIVIIIVNISIVIIGIVIVDIGIGIIGSOIGIIOGIOSIGIGBIGEOGIOSIUETIOIITIOITOSVY

Table of Contents

Some improvements in symmetry elimination in not-equals binary constraint networks
Belaid Benhamou and Mohamed Réda Saidi

Algebraic Structure Helps in Finding and Using Almost-Symmetries
Igor L. Markov

Comparison of Symmetry Breaking Methods in Constraint Programming

Karen E. Petrie and Barbara M. Smith

Breaking symmetries in symmetric matrices
Jean-Francois Puget

Sets of Symmetry Breaking Constraints
Barbara M. Smith

iii

1

14

22

27

!‘&bbbbbbbbbb&bbbtbbbbbb&bb&bb5565bbbbbbb&&bblbb&bl&&l&&l&&&i‘

Some improvements in symmetry elimination in not-equals binary constraint
networks

Belaid Benhamou and Mohamed Réda Saidi
Laboratoire des Sciences de I’Information et des Systmes (LSIS)
Centre de Mathmatiques et d’Informatique
39, rue Joliot Curie - 13453 Marseille cedex 13, France
email:Belaid. Benhamou@cmi.univ-mrs.fr, saidi@cmi.univ-mrs.fr

Abstract

Detecting and eliminating symmetrical values
when solving CSPs reduces drastically the search
space. Symmetrical values with a given value are
in a sense redundant, their removal simplifies the
problem without affecting its consistency. Verify-
ing the conditions of symmetry is in general a hard
task, but in not-equals binary constraint networks,
these conditions can be simplified. In this paper, we
show how some symmetrical value are eliminated
when the instantiation of the current variable to a
value of its domain fails. We give a simple suffi-
cient condition proving that these eliminated values
are symmetrical with the value of the current vari-
able. A Linear time complexity algorithm witch
verifies this sufficient condition and which detects
symmetrical values is proposed. These symme-
tries are exploited in a simplified forward check-
ing method adapted to solve not-equals CSPs. This
method is experimented on both randomly gener-
ated instances of graph coloring and Dimacs graph
coloring benchmarks. The obtained results shows
that symmetry elimination is a considerable im-
provement for solving graph coloring.

1 Introduction

Constraint Satisfaction Problems (CSPs) are at the heart of
many applications in artificial intelligence, such as in visu-
alization of scenes in CAO, scheduling problems, program
verification, model checking. Several problems are expressed
and solved in the framework of constraints.

A CSP is a set of constraints where each constraint involves
a subset of the CSP variables. The main question is how to
assign each variable a value of its domain without violating a
constraint. This problem is known to be Np-complete.

In practice several methods and techniques are proposed.
The backtracking search method and its improvements [Har-
alik and Elliot, 1980; Sabin and Freuder, 1997] are often
used to solve CSPs. Sometimes, the backtracking method
can be improved by simplifying the problem by verifying
some k-consistencies [Freuder, 1978], or by using the tech-
niques of CSP decomposition [Jégou, 1990; 1993; Dechter
and Pearl, 1987; 1989] or those of symmetry elimination

[Freuder, 1991; Benhamou, 1994; Crawford et al., 1996;
Focacci and Milano, 2001; Fahle et al., 2001; Puget, 2001].

We investigate in this article symmetry in not-equals bi-
nary constraints CSPs. In theory, there is no matter to restrict
our study to this framework, since each CSP can be reduced
to a not-equals CSP. Graph coloring fits in this framework and
solving not-equals CSPs is in general an NP-complete prob-
lem. Besides, in practice, this framework is quite expressive,
it covers a broad range of problems in artificial intelligence,
such as time-tabling and Scheduling, Register Allocation in
compilation, and cartography [A.Ramani ef al., 2004].

Detecting symmetrical domain values of a CSP variable
during search is in general a hard task. A symmetry detection
method is proposed in [Benhamou, 1994], but its complexity
is exponential in the worst case. In case of not-equals CSPs,
some symmetrical values are detected with a linear time com-
plexity [Benhamou, 2004].

We show in this article how the symmetry condition given
in [Benhamou, 2004] is weakened in the case of failing to
instantiate a variable with a value of its domain during the
search. We give a more simplified symmetry condition which
leads to a symmetry detection algorithm whose efficiency is
better and which detects more symmetries than the algorithm
defined in [Benhamou, 2004].

The rest of this article is organized as follow: Section 2
gives a brief background on CSPs. In section 3 we discuss
the symmetry notion and show how the symmetry condition
given in [Benhamou, 2004] is weakened in order to detect
efficiently new symmetries in not-equal CSPs. We show in
section 4 how the symmetry property is exploited in a For-
ward Checking backtracking method adapted to not-equals
CSPs. In section 5 we evaluate and compare the effectiveness
of our result by carrying experiments on both Dimacs graph
coloring benchmarks and randomly graph coloring generated
instances. Section 6 concludes the work.

2 CSPs formalism

A CSP (Constraint Satisfaction Problem) as defined in
[Montanari, 1974; Mackworth, 1977] is a quadruple P =
(X,D,C, R) where: X = {X3,...,X,} is a set of n vari-
ables; D = {D», ..., Dy} is the set of finite discreet domains
associated to the CSP variables, D; includes the set of possi-
ble values of the CSP variable X;; C = {C4, ...,Cy, } is a set
of m constraints involving some subsets of the CSP variables.

A binary constraint is a constraint which involves two vari-
ables; R = {Ry, ..., Ry} is a set of relations corresponding
to the constrains of C, R; represents the list of value tuples
permitted by the constraint C;. A CSP P can be represented
by a constraint graph G(X, E) where the set of vertices X is
the set of the CSP variables and each edge of E connects two
variables involved in the same constraint C; € C.

A binary constraint is called a not-equal constraint if it
forces the two variables X; and X; to take different values
(it is denoted by X; # X). A Not-Equal CSP (NECSP) is a
CSP whose all constraints are not-equal constraints.

An instantiation I = (a1, as, ..., a,,) is the variable assign-
ment {X; = a1, X2 = ag,...,Xn = a,} where each vari-
able X; is assigned to a value a; of its domain D;. A con-
straint C; € C is satisfied by I if the projection of I on the
variables involved in C} is a tuple of R;. The instantiation I
is consistent if it satisfies all the constraints of C, thus I is a
solution of the CSP. An instantiation of a subset of the CSP
variables is called a partial instantiation. An instantiation is
total if it is defined on all the CSP variables.

Example 2.1 Take the binary NECSP whose constraint
graph is shown in the figure 1. The CSP variables are the ver-
tices X1, ..., X5 and the domains are include in boxes. Each
edge of the the constraint graph connecting two verticesX ;
and X ;, expresses a not-equal constraint between the corre-
sponding CSP variable X; and X ;.

Figure 1: Constraint graph of a NECSP

3 Symmetry in CSPs

We recall in this section some definitions and properties first
introduced into [Benhamou, 1994] which we will use to prove
our result on symmetry in NECSPs. Some proofs are omitted
for space reason.

Definition 3.1 A permutation o of domain values
in a binary CSP P = (V,D,C,R) is defined as:
o UienmDi — Uiep,nDi, such that ¥i € [1,n]
andVd; € D;, O‘(di) € D;.

Definition 3.2 A domain value permutation o is a symmetry
ofabinary CSPP = (V,D,C, R) iff VR;j € R, < d;,d; >€
tuples(Rij) =< o(d;),o(d;) >€ tuples(R;;)].

In other words, a symmetry ofa CSP P = (V, D,C, R) isa
permutation of domain values that leaves the CSP P invariant,
i.e. UR(Rij) = Rij 1.

Definition 3.3 Two domain values b; and c; for a CSP vari-

able v; € V are symmetrical (notation b; ~ c;) if there exists
a symmetry o of the CSP P suchthat o(b;) = c; oro(c;) = b;

Now we will show how symmetry is involved in CSP con-
sistency. Let I be a value assignment of the CSP P, ¢ a sym-
metry of the CSP P and I /o the value assignment obtained
by substituting in I every domain value d; of the CSP vari-
able v; by o(d;), formally: I/o[v;] = o(I[v;]), Vi € [1,n].
The followin property can be used to compute new solutions
from known ones using symmetry:

Proposition 3.1 I is a solution of P if and only if I /o is a
solution of P.

Proof 1 See [Benhamou, 1994].

Now we give the main property which relates symmetry
and CSP consistency:

Theorem 3.1 If b; and c; are two symmetrical values of a
CSP variable v; € V then b; participates in a solution of the
CSP if and only if the value c; participates in a solution of the
CSP.

Proof 2 See [Benhamou, 1994].

Corollary 3.1 Ifd; ~ d; and d; doesn’t participate in any
solution of P, then d; doesn’t participate in any solution.

Corollary 3.1 allows to remove symmetrical values with a
value d; € D, without affecting the CSP consistency if the
value d; is already shown to not participating in any solution
of the CSP.

3.1 Symmetry in NECSPs

All the symmetry notions defined previously works on NEC-
SPs. A symmetry detection algorithm in general discreet fi-
nite CSPs is proposed In [Benhamou, 1994]. Its complex-
ity is exponential in the worst case. It is shown in [Ben-
hamou, 2004] how the symmetry conditions can be simplified
in NECSPs and how the symmetrical values can be detected
efficiently with a simpler algorithm having a linear time com-
plexity w.r.t to the NECSP size. This result is based on the
following property: o

Theorem 3.2 Let a; and b; be two values of the domain D ; of
a Not-equals CSP P. If a; and b; appear in the same domains
of the not-instanciated variables, then they are symmetrical.

Proof 3 See [Benhamou, 2004].

It is a very simple property, but very useful for detecting
and eliminating symmetrical values of the same domain. By
using this property, we can deduce that the values a and b of
the domain of the CSP variable X illustrated in Figure 1 are
symmetrical. Indeed, they both appear in the domains of X o,
X3, X4 and do not appear in the domain of X 5. By a similar
reasoning, we can also deduce that the values a and b of the
domains of the variables X5, X3 and X, are symmetrical.

o R: is the generalization of o to the relations of R

CETEIIIIIIIIIIIIIIIISIIIIIIIIIINIIIIIINIISISNSSNSSOIIIseG e @

3.2 The weakened symmetry condition

Before introducing the new symmetry property, we define the
notion of assignment trees and failure trees corresponding to
the enumerative search method used to prove the consistency
of the considered CSP.

Definition 3.4 We call an assignment tree of a CSP P, a
tree which gathers the history of all the variable assignments
made during its consistency proof, where the nodes represent
the variables of the CSP and where the edges outcomming
from a node X; are labeled by the different values used to
instantiate the corresponding CSP variable X ;.

The assignment tree of a CSP is sensitive to the order in
which the variables are instantiated during its consistency
checking. The root of the tree is the first variable in the order-
ing. In the sequel, we consider only assignment trees corre-
sponding to the Forward Checking [Haralik and Elliot, 1980]
method. Forward Checking method is an improvement of the
classical CSP backtraking which performs a look ahead fil-
tering consisting in removing in the domains of the not yet
instantiated variables, the values which do not support the in-
stanciation of the current variable.

Example 3.1 Take the CSP of Figure 1 and apply a for-
ward checking process on it w.rt the variable ordering
{X1, X2, X3, X4, X5}. Figure 2 illustrates the assignment
tree of the considered CSP.

Figure 2: Assignment tree

In an assignment tree of a CSP, a path connecting the root
of the tree to a node defines a partial instantiation of the CSP.
The variables of the partial instanciation are the nodes of the
considred path. The last node of the path corresponds to the
last affected variable in the instantiation.

We associate to each inconsistent partial instanciation, cor-
responding to a given path in the assignment tree, a failure
tree defined as follows:

Definition 3.5 Let T' be an assignment tree corresponding to
a consistency proof of a CSP P, I = (a1,as,...,a;) an in-
consistent partial instanciation of the variables X 1,Xo,...,X;
corresponding to the path {X1, Xo,...,X;} inT. We call a
failure tree of the instanciation I, the sub-tree of T' noted by
T1=(a1,a2,...,a;) SUch that:

1. The root of the tree T and the root of the sub-tree
T1—(a1,a,...,a;) are joined by the path corresponding to
the instanciation I;

2. All the CSP variables corresponding to the leaf nodes of
T1—(a1,a3,...,a;) have empty domains.

Example 3.2 Let us consider the assignment tree of the fig-
ure 2 corresponding to the CSP of Example 2.1. If we take
as a partial instantiation I = (b, a) which assigns X1 to the
value b and X5 to the value a, then the failure tree T q)
of the instanciation I is shown in the figure 3 (the part in a
box).

Figure 3: failure tree of the partial instanciation I = (b, a)

We can now give the new symmetrey property which rep-
resents the principal contribution of this work. The main idea
is to weaken the symmetry condition of theorem 3.2 when
an inconsistent partial instantiation is generated during the
search.

Theorem 3.3 Let P(X,C, D, R) be a CSP, a; € D; and
b; € D; two values of the domain D; of the current CSP
variable X; under instantiation, Iy = (a1, ...,ai—1) a par-
tial instanciation of the © — 1 variables instantiated before
X; such that the extension I = Iy J{a;} = (a1, ..., ai—1,a;)
is inconsistent, Tr—(q, ... a;_,,a;) IS the failure tree of I and
Var(Tr=(as,...,ai_1,0:)) the set of variables corresponding
to the nodes of Ti—(a,,....a;_1,a;)- We have the following:
If a; € D; and b; € D; appear in the same domains of
the variables of Var(Ti—(a,,....a;_1,a;)) then the extension

J = Iy U{b:} = (a1, ..., ai—1, b;) is inconsistent.

Proof 4 Let P'(V',C',D',R') be a sub-CSP of the CSP
P(V,C, D, R) such that

"=Var(Ti=(as,...,0i_1,a:)) UXi and C' € C, D' C D and
R’ C R are the restrictions of C,D, and R to the variables of
V'. By the hypothesis, T1—(a,,...,a;_1,a;) 1S a failure tree of
I in P. This implies that the assignment of X; to the value
a; leads to a failure in P'. In other words, a; do not par-
ticipate in any solution of P’. By the hypothesis, both val-
ues a; and b; appear in the same domains of the variables
of Var(Ti=(ay,....ai_1,a;))- This means that a; and b; ap-
pear in the same domains of non-instantiated variables of the
CSP P'. By application of Theorem 3.2 we deduce that the

s

value b; is symmetrical to a; in P'. By application of corol-
lary 3.1, we deduce that the value b; do not participate in
any solution of P’. This implies that the partial instancia-
tion J = In|J{b:} = (a1,...,ai—1,b;) is inconsistent in P.

(OED)

This new property of symmetry is a weakening of the con-
dition of Theorem 3.2 in the case of instanciation leading to
an inconsistency. The case of inconsistent instantiation is im-
portant, because it allows to prune the consistency proof tree
of a CSP w.r.t Corollary 3.1.

Some symmetries not captured by Theorem 3.2 can result
from this new condition. Let us consider for instance the CSP
of Figure 1. If we take the inconsistent partial instanciation
I = (b,a) of the variables X; and X3, then the two values
a and c of the domain of the current variable X 5 are sym-
metrical by application of the new theorem 3.3, whereas they
are not symmetrical by application of the theorem 3.2. The
branch corresponding to the assignment of X 5 to c is not ex-
plored in the consistency proof tree thanks to Theorem 3.3.
This defines a symmetry cut which we use in the section 4 to
shorten the proof tree of CSP consistency checking.

Remark 3.1 Theorem 3.2 can be used to compute symmetri-
cal solutions, whereas theorem 3.3 cannot, it is used only to
avoid some redundant partial inconsistent instantiations.

3.3 Symmetry detection

Now we deal with the symmetry detection problem. To be
symmetrical, values have to satisfy the weakened symmetry
condition of theorem 3.3. The algorithm sketched in Figure
4 computes the symmetrical values with a value a; of a given
domain w.r.t the condition of theorem 3.3. These values form
the class of symmetry of a; which we denote by cl(a;)).

procedure weak_symmetry(a: € D;,Var(Ti=(a,,..., ai))»
var cl(a;):class);
input: a value a; € D;, a set of variables Var(Ti—(a,,...,a;))
Output: the class cl(a;) of symmetrical values to a;.
begin

cl(ai)={ai}

for each d; € D;-{a:} do

if for each domain Dy, of variables of

(ai € D and d; € Dk)
or (a; ¢ Dy and d; & Dy,)
then cl(a;):=cl(a;)U{d;}
end

Figure 4: The algorithm of search for symmetries in NECSPs

Complexity:
Let n be the number of variables of the NECSP, and d the
size of the largest domain. It is easy to see that the algo-
rithm of Figure 4 can run at most d times the first loop and
at most n times the second one. It then computes the class
cl(d;) of symmetrical values with a complexity O(nd) in the
worst case. This algorithm has a linear complexity w.r.t the
NECSP size.

In theory, this algorithm has a same complexity as the one

of the algorithm described in [Benhamou, 2004] in the worst
case. But, this new algorithm detects some symmetries which
are not detected by the algorithm in [Benhamou, 2004] and
in practice, its efficiency is guaranteed to be better since it
works on a weakened symmetry condition. That is, the sym-
metry condition is verified on a reduced subset of the non-
instantiated variables (the ones of Var(T'1—(q,,...,q,))) rather
on the hole set of non-instantiated variable as it is done in
[Benhamou, 2004].

4 Exploiting symmetry in NECSPs

Now, we show how the symmetry property given in Theorem
3.3 is exploited to increase the efficiency of NECSP back-
tracking algorithms. For efficiency reasons, we implement
a Simplified Forward Checking method (denoted by SFC)
adapted to NECSPs which we want improve by adding the
symmetry property.

The principle of the Forward Checking [Haralik and
Elliot, 1980] is based on filtering the domains of the non-
instantiated variables w.r.t the instantiated one. When the
current variable v; is instantiated with a value d;, the domains
of the non-instantiated variables (called future variables)
having a constraint with v, are filtered such that all the values
which do not support the value d; of the current variable v;
are removed.

In the case of NECSPs, the filtering is simplified. It
consists only in removing the value d; from the domains of
the future variables having a constraint with v;. This results
in a Simplified Forward Checking which we considered in
our implementation.

If during the filtering, a domain of a future variable v ;
becomes empty, Forward Checking stops the filtering, its
effects are undone, and the current variable v; is instantiated
with a new value from its domain. If all possible instan-
tiations for the current variable v; are inconsistent then a
backtracking is made and the variable v;_; becomes the
current variable. Otherwise, if v; could be instantiated with
no constraint violation then the next variable to instantiate is
selected among the future variables, and the same process is
repeated.

Forward Checking can have different performances ac-
cording to the variable ordering in the instantiation. Several
heuristics exist, in practice, the one minimizing the ratio

r— _|Dil
Degree(v;)

where Degree(v;) denotes the number of constraints of the
initial CSP in which the variable v; is involved, is one of the
most effective to chose the next variable to instantiate. This
heuristic is known under the name DomDeg. We use it in
SFC to select the future variable to instantiate.

Theorem 3.3 allow to prune k-1 branches in the search tree
if there are k symmetrical values and one of them is shown
to not participating in any solution. If SymClass(d;) de-
note the class of values of the domain D; symmetrical to d;,
then we consider only the value d;, since the other values of
SymClass(d;) are redundant.

(PP DIIIIIPBVIVDVVVDVPDIP999 3302039303333 3 3333333939030 d0csdsesev

Procedure SFC-sym-weak(D, I, k, Var(Tr));
input: a set of domains D, I = (di, ..., d) a partial instantiation
of variables {v1, ..., vk }; k the index of the current variable and V ar(TT)
the set of variables of the failure tree T (at beginning V ar(T) is empty).
var empty:boolean;
begin
if k = nthe [d1,d2, ...
else
begin
empty:=false;
for each v; € V,suchas C;i € C, v; € future(vy) do
if not(empty) and dy, € D; then
begin
D;=D;-{dx};
if D;=0 then
begin
undo filtering effects;
add(vi, Var(Tr));
weak_symmetry(dx € Dg,V ar(T7),SymClass(d));
Dk=Dk =] SymClass(dk);
empty:=true;
end
end
if not(empty) then
begin
add(vi, Var(Tr));
Vj41=next-variable(vy)
repeat
take di41 € Dr41
Dy+1=Dgy1 — dig+1
I=[dy,da2,...,dk,drs1];
SFC-sym-weak(D, I, k + 1, Var(Tr1));
weak_symmetry(dx+1 € Di+1,Var(Tr),SymClass(dk+1));
Di41=Dr41 — SymClass(di+1);
until D)c+1 = @
end
end
end

, di] is a solution, stop

Figure 5: SFC method combined with the new symmetry de-
tection algorithm

4.1 Combining trivial symmetry with the detected
one

Some trivial symmetrical values can be exploited without ef-
fort of detection. Indeed, all the values which form the inter-
section of the domains of a NECSP are trivially symmetrical.

Proposition 4.1 If P is a NECSP having n domains, then all
values in Q@ = N, D; are symmetrical.

Proof 5 The proofis trivial, since all the values in S appear
in all the domains, thus the condition of Theorem 3.2 is hold.

The trivial symmetries are very important, since during
search, the values of the subset 2 which are not used in
the partial instantiation remain symmetrical at each node of
the search tree. We consider only one of them and the oth-
ers are, in fact, removed . These symmetries are very use-
ful for solving graph coloring where all the variables have
identical domains. There is one domain D;={0,...,c — 1}
of ¢ values and =D, in this case. If during the search
all the first values {0, ..., mdn} of the ordered finite do-
main D; = {0,...,c — 1} (with 0 < mdn < ¢ — 1) are
used in the partial instantiation I, then the values of the part
{mdn+1,...,c— 1} remain symmetrical. All the values of
the domain D; are trivially symmetrical before starting vari-
able instantiation (mdn = 0).

Such trivial symmetries are useful but they disappear as
soon as the first variables are instantiated. The propaga-

tion process forces new values to be used, thus increases the
mdn and decreases the subset {mdn + 1,...,c — 1} of triv-
ial symmetrical values. This subset becomes empty when
mdn reaches the value ¢ — 1. On the other hand, the sub-
set {0,...,mdn} of the used values increases and become
quickly identical to the whole domain D ;.

A lot of symmetries exist between the values of the part
{0, ..., mdn} which we detect by using the symmetry pro-
cedure of figure 4. The trivial symmetry of the part {mdn +
1,...,c—1} and the one we detect on the part {0, ..., mdn}
are independent, since they are defined on two disjoint parts
of the domain. Their combination is then straight forward and
if k is the number of detected symmetrical values at given
search node, then ¢ — mdn — 1 4+ k symmetry cuts can be
made when both kind of symmetry are associated to prune
the search space.

Figure 5 sketches the SFC procedure augmented by the
symmetry property of theorem 3.3 and the DomDeg heuris-
tic (notation SFC-sym-weak). The structure future(v;) en-
codes the set of non-instantiated variables remaining after the
instantiation of v; and next-variable a function which en-
codes the (DomDeg) heuristic. In the sequel SFC will denote
the SFC method augmented by the DomDeg heuristic.

5 Experiments

We will now evaluate the performances of our imple-
mentation. The tests are made on both randomly gen-
erated graph coloring instances and some graph col-
oring benchmarks of the 27¢ challenge of Dimacs
(http://dimacs.rutgers.edu/

Challenges/). The graph coloring problem consists in
coloring the n vertices of a graph with m colors, such that
no two adjacent vertices have the same color. This problem
is trivially expressed as a NECSP. We will test and com-
pare both the Simplified Forward Checking augmented by
the symmetry property defined in [Benhamou, 2004] (SFC-
sym) and the Simplified Forward Checking augmented by the
advantage of the symmetry property of theorem 3.3 (SFC-
sym-weak). The complexity indicators are the number of
nodes and CPU time. The source codes are written in C and
compiled on a machine equipped with an AMD Athlon XP
2200+processor with 512 MB.

5.1 Random graph coloring problems

Random graph coloring problems are generated according to
the parameters:(1) n the number of vertices (the variables),
(2) Cls the number of colors (the domain values) and (3) d
the density which is a number between 0 and 1 expressing the
ratio:

number of constraints

~ Yotal number o f possible constraints

For each test corresponding to some fixed value of the param-
eters n, Cls and d, a sample of 100 instances are randomly
generated and the measures (CPU time, nodes) are taken in
average.

Tables 1 and 2 give the performances of the two meth-
ods SFC-sym and SFC-sym-weak on random graph coloring

Pb SFC-sym [[SFC-sym-weak

Cls Nodes | Time Nodes Time | %Cons
13 69 0.0 67 0.0 0.0
14 479 0.0 467 0.0 0.0
15 7014 0.0 6843 0.0 0.0
16 181448 2.8 177024 2. 17.0
17 1894312 325 1837245 32.0 45.0
18 288708 4.6 279559 4.5 100.0
19 7760 0.1 7389 0.1 100.0
20 252 0.0 239 0.0 100.0
21 102 0.0 101 0.0 100.0

Table 1: Graph coloring instances with n = 100 and d = 0.5

Pb SFC-sym SFC-sym-weak

Cls Nodes Time Nodes Time | %Cons
35 114061 2.6 110578 2.6 0.0
36 1645219 39.7 1585537 384 0.0
37 5327514 | 1103 5152504 106.8 15.0
38 18553369 | 374.8 | 17992800 365.5 55.0
39 2638689 52.7 2520893 50.25 95.0
40 437893 7.15 423600 6.9 100.0
41 163319 24 157073 2.35 100.0
42 14743 0.2 14008 0.1 100.0

Table 2: Graph coloring instances n = 100 and d = 0.9

problems. The number of variables is fixed to n = 100 and
d = 0.5 for the instances of Table 1 and d = 0.9 for the ones
of Table 2 . Both tables give the number of colors (Cls) of
the problem, the number of nodes (Nodes), the CPU time in
seconds (Time) for both methods and the percentage of con-
sistency (%oCons). We can see that SFC-sym-weak, generates
in general less nodes than SFC-sym and spend less time than
SFC-sym to solve the problems. This proves that SFC-sym-
weak detects and eliminate more symmetries than SFC-sym
and the detection is faster in SFC-sym-weak. The gain is not
very important on the random problems, but the symmetry be-
havior is shown and there is no case where SFC-sym is faster
than SFC-sym-weak.

5.2 Dimacs graph coloring benchmarks

Table 3 shows the results of the two methods on some graph
coloring benchmarks of Dimacs. These problems are known
to be hard. We seek for each problem the minimal number
k of colors needed to color the vertices of a given graph (the
chromatic number). The search of the chromatic number con-
sist in proving the consistency of the problem with k& colors
(existence of a k-coloration of the graph); and in proving its
inconsistency when using k—1 colors. The symbol ”’?”” means
that the corresponding method does answer the question in 12
hours.

We can remark that only SFC-sym-weak is able to solve
the problems “mulsol.i.l”, “fpsol2.i.3”, and “fpsol2.i.2”,
and SFC-sym-weak outperforms drastically SFC-sym on the
problems “miles1500”, and ”fpsol2.i.1”. On the other prob-
lems both methods compare.

6 Conclusion

In this work we weakened the symmetry condition and im-
proved the symmetry property in not-equals constraint net-
works when an inconsistent partial instantiation is generated.
We implemented a more efficient symmetry search algorithm

Pb | SFC-sym SFC-sym-weak
instance k Nodes Time Nodes | Time | Consistency
queen8_8 8 1284400 8.5 1265496 8.4 no
queen8_8 9 | 5869838 34.3 5820278 34.4 yes
le450_5a 4 23 0.0 18 0.0 no
1e450_5a 5 125546 4.7 124275 4.8 yes
1e450_5b 4 6 0.0 6 0.0 no
1e450_5b 5 9898 0.4 9869 0.4 yes
myciel5 5 32133 0.12 31504 0.12 no
myciel5 6 46 0.0 46 0.0 yes
mulsol.i.1 48 2 ? 70162 1.83 no
mulsol.i.1 49 196 0.0 196 0.0 yes
mulsol.i.4 30 3454 0.0 3454 0.0 no
mulsol.i.4 31 184 0.0 184 0.0 yes
fpsol2.i.1 64 | 4353805 149.76 9189 0.7 no
fpsol2.i.1 65 495 0.3 495 0.3 yes
fpsol2.1.2 29 ? ? 384612 14.5 no
fpsol2.i.2 30 450 0.1 450 0.1 yes
fpsol2.1.3 29 ? 2 384612 13.4 no
fpsol2.i.3 30 424 0.1 424 0.1 yes
zeroin.i.1 48 152 0.0 53 0.0 no
zeroin.i.1 49 210 0.0 210 0.0 yes
zeroin.i.3 29 49 0.0 31 0.0 no
zeroin.i.3 30 205 0.0 205 0.0 yes
schooll 13 36923 1.9 13199 0.7 no
schooll 14 107498 5.5 47877 2.7 yes
schooll_nsh 13 63 0.0 56 0.0 no
schooll_nsh 14 734 0.0 589 0.0 yes
miles750 30 50890 0.4 167 0.0 no
miles750 31 127 0.0 127 0.0 yes
miles1500 72 | 6030066 104.8 14079 0.3 no
miles1500 73 127 0.0 127 0.0 yes
1-Fullins_4 4 21876 0.1 17667 0.1 no
1-Fullins_4 5 92 0.0 92 0.0 yes
2-Fullins_3 4 29099 0.1 5806 0.0 no
2-Fullins_3 5 51 0.0 51 0.0 yes

Table 3: Dimacs graph coloring benchmarks

which detects more symmetries and exploit the new symme-
try property in a a Forward Checking backtracking algorithm
adapted to NECSPs. Experiments are carried on both ran-
dom generated graph coloring problems and Dimacs graph
coloring benchmarks. The obtained results show that the new
symmetry property is a real improvement for solving NEC-
SPs.

Further investigation consists first in combining some
clique search algorithms, or CSP decomposition methods
with our method to improve graph coloring solving. An other
interesting point is to extend the new symmetry property to
general CSPs.

References

[A.Ramani et al., 2004] A.Ramani, F.A.Aloul, I.L.Markov,
and K.A.Sakallak. Breaking instance-independent sym-
metries in exact graph coloring. In Proceeding of Design
Automation and Test in Europe, pages 324329, 2004.

[Benhamou, 1994] B. Benhamou. Study of symmetry in
constraint satisfaction problems. In the working notes of
the workshop PPCP’94, 1994,

[Benhamou, 2004] B. Benhamou. Symmetry in not-equals
binary constraint networks. SymCon’04 : 4th Interna-
tional Workchop on Symmetry and Constraint Satisfaction
Problems, 2004.

[Crawford ef al., 1996] James Crawford, Matthew L. Gins-
berg, Eugene Luck, and Amitabha Roy. Symmetry-

VIDPIPIIIBIIVIIVIIPIIOIDOIOVSVIOVNOIGDPIGDIONONDDSDSSIOSIBSOSIOLOOLOSNOSGIOGIOGOIOGIOSGIOGIOSIGOSIEOIOSVILTIOGTET

breaking predicates for search problems. In KR’96: Prin-
ciples of Knowledge Representation and Reasoning, pages
148-159. Morgan Kaufmann, San Francisco, California,
1996.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl. The
cycle-cutset method for improving search performance in
ai applications. Proceedings of the Third IEEE Conference
on Al Applications, 1987.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree
clustering for constraint networks. Artificial Intelligence,
38:353—-366, 1989.

[Fahle et al., 2001] T. Fahle, S. Schamberger, and M. Sell-
mann. Symmetry breaking. In International conference
on constraint programming, volume 2239 of LNCS, pages
93-108. Springer Verlag, 2001.

[Focacci and Milano, 2001] F. Focacci and M. Milano.
Global cut framework for removing symmetries. In Inter-
national conference on constraint programming, volume
2239 of LNCS, pages 77-82. Springer Verlag, 2001.

[Freuder, 1978] E.C. Freuder. Synthesing constraint expres-
sions. CACM, 21(11):958-966, 1978.

[Freuder, 1991] E.C. Freuder. Eliminating interchangeable
values in constraints satisfaction problems. Proc A4AI-91,
pages 227-233,1991.

[Haralik and Elliot, 1980] R. M. Haralik and G. L. Elliot. In-
creasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14, pages 263-313, 1980.

[Jégou, 1990] F. Jégou. Cyclic-clustering : A compromise
between tree-clustering and cycle-cutset method for im-
proving search efficiency. ECAI1990, pages 369-371,
1990.

[Jégou, 1993] F. Jégou. Decomposition of domains based on
the micro-structure of finite constraint-satisfaction prob-
lems. AAA11993, pages 731-736, 1993.

[Mackworth, 1977] A.X. Mackworth. Consistency in net-
works of relations. Artificial Intelligence 8, pages 99—118,
1977.

[Montanari, 1974] U. Montanari. Networks of constraints
: Fundamental properties and applications to picture pro-
cessing. Information Science 7, pages 95-132, 1974.

[Puget, 2001] J.F. Puget. Symmetry breaking revisited. In
International conference on constraint programming, vol-
ume 2470 of LNCS, pages 446—461. Springer Verlag,
2001.

[Sabin and Freuder, 1997] D. Sabin and E. Freuder. Under-
standing and improving the mac algorithm. In CP97, pages
167-181, 1997.

Algebraic Structure Helps in Finding and Using Almost-Symmetries

Igor L. Markov
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122
imarkov@eecs.umich.edu

Abstract

Many successful uses of symmetries in dis-
crete computational problems rely on group-
theoretical properties. For example, large
sets of permutational symmetries can be
compactly represented by small sets of gen-
erators and manipulated using stabilizer-
chain algorithms. While almost-symmetries
may be more numerous than symmetries,
no group-like properties or efficient algo-
rithms are currently known for them. In
this work, we identify an algebraic structure
formed by almost-symmetries and, using it,
develop a complete “life-cycle” for almost-
symmetries, including their discovery, com-
pact representation and symmetry-breaking.

1 Introduction

A structure-preserving reversible transformation of a
structured object is often called a symmetry (or aufo-
morphism), with prime examples being (1) a permu-
tation of vertices of a given graph, that maps edges
to edges and preserves vertex labels, (2) a permuta-
tion of variables in a system of constraints, that pre-
serves the system, (3) a permutation of possible values
of some variables, such as the simultaneous negation
of two Boolean (or two integer) variables, (4) a permu-
tation of input and output variables of a Boolean func-
tion that leaves the function invariant. Computational
applications often involve finite domains. For exam-
ple, identifying a pair of symmetric variables x and y in
an equation allows one to introduce the additional con-
straint x < y so as to reduce the amount of searching by
up to 25%, or closer to 50% for non-Boolean variables.
Combining many such symmetries sometimes reduces
the complexity of search, proofs or refutations from ex-
ponential to polynomial, both in provable lower bounds
[18] and empirical performance [1]. Recent progress
in understanding and manipulating symmetries accel-
erates the solution of large, practical Boolean equa-
tions [1], instances of Integer Linear Programming [3;
4], and other discrete problems. This is often accom-
plished through the use of fast symmetry detection [20;
8] and symmetry-breaking techniques [7; 13; 2]. A
broad range of affected applications include (i) formal
verification of microprocessors and software, (ii) opti-
mal scheduling and planning, (iii) protein folding and

other optimization problems in natural sciences. A rich
literature exists on semantic symmetries of Boolean
functions and describes many uses in synthesis and op-
timization of digital circuits [21, ibid]. For example, in
a given VLSI layout one may permute the input pins
of a single AND gate or a whole 64-bit multiplier to
improve wiring congestion by uncrossing wires [6].
Identifying and using a greater variety of symme-
tries often improves computational efficiency. Hence,
it is natural to relax the notion of symmetry and
deal with almost-symmetries which retain useful prop-
erties, occur more often and have greater impact.
Such extensions have already been studied for tilings
and partial differential equations in Mathematics [22;
12], quasicrystals and approximate conservation laws
in Physics [16; 22], stars and planets in Astrophysics
[23], molecular configurations in Chemistry [17; 9] and
computational problems in Artificial Intelligence [15].
To be useful, the effort to exploit symmetries or
almost-symmetries should be justified by tangible ben-
efits, especially when symmetry-agnostic processing is
possible [14; 8]. Such trade-offs are poorly understood
for almost-symmetries. In Section 2 we show that for
regular symmetries, computational improvements can
only be achieved by using the algebraic structure of
symmetries. The latter observation is driving much of
our work on almost-symmetries as outlined below.
Existing techniques for using symmetries tend to be
undermined by the freedom of choice. Namely, all
computational techniques cited above assume simulta-
neous constraints, as in Boolean satisfiability, but are
not sensitive to disjunctive constraints involving multi-
ple variables [11]. In another example, the behavior of
digital circuits is often left underspecified on invalid in-
puts (resolved later so as to simplify the design), which
leads to Boolean functions with don t-cares. In Sec-
tion 3 we study possible generalizations of symme-
tries in these cases. It turns out that relevant almost-
symmetries cannot be composed as freely as regular
symmetries and therefore do not form groups, cosets,
semi-groups, monoids, groupoids, or other named al-
gebraic structures. However, any meaningful proper-
ties carried by almost-symmetries can potentially be
interpreted as a type of structure. We identify such an
algebraic structure in Section 4 and show how it helps
to compactly represent almost-symmetries, facilitating
symmetry-finding in Section 5 and almost-symmetry-
breaking in Section 7. In Section 6 we discuss possible
generalizations and applications of almost-symmetries.

DIV IPIIPFIPIIIPIPS I PSPPIV DPSPI PSPPI IGIGGsIssssdssswvewse

2 Necessary Background

Below we review a representative modern paradigm for
exploiting syntactic symmetries in search and discrete
optimization [1; 2], and then contrast it with seman-
tic (functional) symmetries and related notions of in-
terchangeability and substitutability [24].

Finding and representing symmetries efficiently.
Consider an instance of constraint-programming or
combinatorial optimization where all constraints must
be simultaneously satisfied. To identify its semantic
symmetries, all variables, constraints and optimization
objectives are represented by labeled vertices in a graph
G where occurrences of variables are represented by
edges, e.g., a forest of parse trees (uses of hypergraphs
or graph gadgets are allowed and do not affect our dis-
cussion). The graph is constructed in such a way that
the group Hjy,, of symmetries of the original problem
is isomorphic to the graph’s group of automorphisms
Aut(G), which can be found by advanced software
tools such as NAUTY [20] or SAUCY [8]. Aut(G)
is captured in a compact form by an unordered list of
group generators, which cannot be much larger than
|G|. Having a group isomorphism, rather than an ar-
bitrary one-to-one mapping between two sets, ensures
that sets of generators of Aut(G) map onto those of
Hgym. Also, NAUTY and SAUCY would not have been
applicable if symmetries did not form groups.

Using symmetries in search. For a given symmetry,
a symmetry-breaking predicate (SBP) is a set of addi-
tional constraints added to the original constraints to
prevent redundant search through symmetric branches.
For multiple symmetries, compatibility is ensured by
lex-leader SBP constructions [7] which have recently
been improved [2]. It is often best to generate SBPs
for group generators only [1], thus adding very few
constraints (breaking fewer symmetries does not affect
correctness). In practice, the SBPs for symmetries 7;
and 1, make the addition of an SBP for products of 7
and 7, (and products of their powers) essentially un-
necessary [2]. Group properties are essential in other
paradigms for using symmetries, where efficiency calls
for algorithms based on stabilizer chains [14].

Functional symmetries & don’t cares. A Boolean
function f with » input bits can be captured by a truth
table with 2”7 lines and one output column filled with
0s and 1s. Permutational and negational symmetries of
f can be captured as symmetries of its truth table, or
as automorphisms of the n-dimensional Boolean cube
whose vertices represent the lines of the truth table and
are labeled 0 or 1 (see further optimizations in [6]).
Such symmetries can be generalized to non-Boolean
domains and in that form subsume Freuder’s notions
of interchangeability and substitutability [10], allow-
ing simultaneous variable permutations and value sub-
stitutions even when a particular representation of f is
not symmetric. Application-derived functions are often
partially defined, i.e., some of the output values can be
resolved later. Such output don’t-care conditions can
be captured by asterisks in the truth table or by yet-
undefined vertex labels in the Boolean cube.

Disjunctive constraints [11] can be modeled by
graphs with removable edges, also suggesting that we
study almost-symmetries of graphs first.

3 Possible Notions of Almost-symmetries

Semantic symmetries include syntactic ones and form
the same algebraic structure. However, using all se-
mantic symmetries is often computationally impracti-
cal. The same can be expected for almost-symmetries.

In order to relax the notion of symmetry, one con-
siders transformations that do not necessarily preserve
the structure in question. One known possibility is
that of conditional symmetries that arise in the course
of constraint-solving algorithms based on backtrack-
ing [13; 24]. Such algorithms work by assigning trial
values to variables, which simplifies the original prob-
lem instance and potentially facilitates new symme-
tries. Given that conditional symmetries may exist in
an exponential number of different contexts, it may be
difficult to batch symmetry-detection and symmetry-
breaking with as much efficiency as for unconditional
symmetries. A typical conditional symmetry is ap-
plicable in a considerably smaller scope than a regular
symmetry and therefore holds less promise to acceler-
ate constraint-solving.! Yet, much of what we propose
in this paper works for conditional symmetries as well.

Almost-symmetries are commonly defined as sym-
metries of slightly modified objects [15]. For example,
adding or removing one constraint can make the overall
set of constraints more symmetric. This may seem like
a generalization of conditional symmetries, whose con-
ditions can be viewed as constraints of a special kind.
However, conditional symmetries rely on the interpre-
tation of their conditions, i.e., assigned values are used
to simplify constraints, whereas almost-symmetries are
often formulated entirely in terms of synfactic manip-
ulations on the set of constraints and promise greater
computational efficiency. We note that such differences
are only meaningful in the context of specific search
procedures and can be ignored at first. Therefore we
focus on labeled graphs, except in Section 7.

A popular example of an almost-symmetry of a
graph is a symmetry of the graph derived by adding or
removing a small number of edges [19]. However, we
are first going to warm up by studying a different re-
laxation of graph symmetries that deals with vertex la-
bels instead of edges, it is motivated by functions with
don’t-cares (see Section 2). From now on we are going
to perceive vertex labels as colors — recall that a graph
symmetry is a permutation of vertices that maps each
vertex to a vertex of the same color and maps every
pair of vertices connected by an edge to another such
pair. The color-related limitation can be relaxed by in-
troducing the chameleon color: a chameleon vertex can
be mapped to a chameleon vertex or a vertex of any reg-
ular color. Additionally, a vertex of a regular color can
be mapped to a chameleon vertex.”

1Symmetry-breaking for two symmetric Boolean vari-
ables reduces the solution space by 25%. However, when
such a symmetry is conditional on fixed values of three other
Boolean variables, the 25% reduction applies only to 1/8 of
the solution space, thus the overall reduction is only by 3%%.

2Qur definition extends to several chameleon colors com-
patible with different sets of regular colors, and even a hier-
archy of chameleon colors. However, most of the discussion
that follows would still apply to such extensions.

4 Algebraic Structure in
Almost-symmetries of Graphs

As long as the n vertices of the graph remain fixed,
almost-symmetries are permutations from S,. Thus

e products of almost-symmetries are unambiguous,
e the identity permutation is an almost-symmetry,
e each almost-symmetry has a unique inverse.

Unfortunately, almost-symmetries are not closed un-
der compositional product. For example, consider a
3-vertex graph with no edges, the permutation mt; that
swaps the blue vertex v; with the chameleon vertex vy,
and 7, that swaps v, with the red vertex v3. The prod-
uct 11 - T, maps the blue vertex v; to the red vertex
v3, which is forbidden. Worse, a power of an almost-
symmetry may not be an almost-symmetry. We cannot
fix all products, but we can fix the powers.

We further restrict almost-symmetries to those
automorphisms of the underlying unlabeled
graph G * with the property that each cycle con-
tains vertices of no more than one regular color.

This constraint is justified by considerations of
group theory and symmetry-breaking. First, since reg-
ular symmetries are almost-symmetries and use the
same compositional product, they form a subgroup of
whatever structure almost-symmetries form. To this
end, it is natural to seek additional subgroups. How-
ever, if powers of T are not almost-symmetries, then 1t
cannot be in any subgroup of almost-symmetries. Sec-
ond, given two almost-symmetries that have different
contexts and do not form a product, their symmetry-
breaking predicates can be extended by preconditions
and conjoined (Section 7). However, this mechanism
fails on powers of an almost-symmetry.

With their compositional product defined only par-
tially, almost-symmetries do not form groups, semi-
groups or monoids. They do not form cosets because
any coset containing the identity permutation () must
be a subgroup. We can also try groupoids (also known
as a virtual groups), which allow for partially-defined
products but requires associativity. The latter property
states that V o, B, 7, if either (o.-) -yor a- (B-7v) is de-
fined, then both are defined and equal (we ignore other
axioms of a groupoid for now). Given that the compo-
sitional product of almost-symmetries is inherited from
S,,, there can be no problems with equality. However, it
is possible that only one of the two products is defined.
In the above example with vertices vi,v2,v3 and per-
mutations 7t; = (12),m, = (23), the product 7ty - T, was
not a valid almost-symmetry. Now consider the prod-
ucts (11 - 71) - 2 and 7t; - (701 - o). Since -y = (),
the former is defined (= 72), but (71 -) is not.

Before we reveal an algebraic structure compatible
with these properties, we offer the following obser-
vation. For any given color-based almost-symmetry
of a graph, there is a specialization of colors for
the graph’s chameleon vertices that turns the almost-
symmetry into a regular symmetry. Indeed, each cycle
can include vertices at most one regular color, to which
all chameleon vertices in this cycle can be specialized.
If all vertices in the cycle are chameleon-colored, spe-
cialize all of them to any existing color.

Now consider all possible color specializations of
the chameleon vertices (which are just partitions of this
vertex set into as many cells as we have regular colors).
In each case we obtain a regular labeled graph with
a group of symmetries, and each almost-symmetry is
contained in at least one of those groups. To rephrase,

The set of almost-symmetries is a set-theoretic
union of subgroups of Sy,.

In an irredundant union-of-subgroups expression no
subgroups can be skipped. Greedy removal of redun-
dant subgroups from an expression ensures irredun-
dancy, but not the smallest size. Even solving the (im-
plicit) set-covering problem for given subgroups may
not produce a union with fewest subgroups possible. °

Observe that all relevant subgroups are contained
in the automorphism group Aut(G*) of the unlabeled
(colorless) graph G * and contain all automorphisms of
G* whose cycles do not mix chameleon vertices with
regular vertices. Such permutations form a sub-group
that can be recovered in two steps: (1) construct the la-
beled graph ! by specializing all chameleon vertices
to a color that has not been used before, (2) finding
Aut(G"). The algebraic structure described above is vi-
sualized in Figure 1. In practice the intersection of sub-
groups can be larger than Auz(G*), e.g., consider two
disconnected vertices v; (blue) and v, (chameleon), for
which Aut(G") = {()} but the only non-trivial almost-
symmetry (12) generates a larger subgroup.

Our analysis suggests that solutions to the graph
almost-automorphism problem can be represented
by subgroup generators arranged in potentially-
overlapping unordered lists — one lists per sub-
group of Sy, in the union-of-subgroups structure.

Edge-based almost-symmetries discussed earlier
also form a union of subgroups of S,, taken over
the various modifications of the original graph, and
all powers of such almost-symmetries remain almost-
symmetries. Furthermore, edge-based and color-based
relaxations of graph symmetries can be combined,
and the resulting almost-symmetries still form a set-
theoretic union of subgroups of S,,.

3Consider Z, x Zy, the symmetry group of the letter H
represented by the union of its three two-element subgroups.

(&)

Figure 1: Algebraic structure in almost-symmetries —
a set-union of subgroups: Aut(G%) C G;UG, UG5 C
Aut(G*). All shapes represent groups or subgroups,
and illustrate containment relations geometrically.

PP VPP TP PIP IO I PB IO OPO S DGO DS SS PSSP DS S DS IPIISISTOSOEIOGSIISTISTOTOTOTITITTEYTE

5 Finding Almost-Symmetries

To find almost-symmetries and represent them com-
pactly by lists of lists of permutations, we extend
a common graph-automorphism algorithm, used in
solvers NAUTY [20] and SAUCY [8], to handle color-
based almost-symmetries. Since color specializations
are partitions of the set of chameleon vertices, we are
looking to capture all almost-symmetries by a small set
of such partitions. Fortunately, a great deal of parti-
tion refinement is already performed the above graph-
automorphism algorithm, which we describe next.
First, vertices of a given graph are differentiated by
degree, creating an initial partition to separate vertices
that cannot possibly be symmetric. The cells of this
partition will be gradually split further. In particular,
immediate refinement is based on external adjacencies,
e.g., two vertices of same degree cannot be symmetric
if one is adjacent to a vertex of degree m and the other
is not adjacent to any vertex of degree m [8, Figure 1].
Such refinements can be exhausted by an efficient pro-
cedure due to Hopcroft. After that the algorithm resorts
to (traditional) branching by, conceptually, picking a
non-singleton cell and mapping its lowest-indexed ver-
tex v; to another vertex v; (for more details, see [20;
8]). This may trigger another round of immediate par-
tition refinement — neighbors of v; can only map to
neighbors of v;. The overall algorithm proceeds by
alternating between branching and refinement until all
vertices in some cells are mapped to other vertices (or
themselves), which allows one to test the resulting per-
mutation for being a symmetry of the original graph [8,
Figure 2]. Confirmed symmetries are accumulated,*
and the algorithm backtracks to explore other branches
of the search tree. With appropriate pruning [20], the
algorithm ignores all branches leading only to symme-
tries expressible as compositions of accumulated sym-
metries. This ensures that group generators at the out-
put are irredundant and can implicitly express an expo-
nential number of symmetries in polynomial space.
Our extended algorithm leverages existing partition-
refinement techniques and interleaves traditional
branching with branching on colors of chameleon ver-
tices. Since each branching on a chameleon vertex may
create different subgroups in the union-of-subgroups
structure, we seek to delay such branching and de-
crease the branching factor. The algorithm repeatedly
applies rules from the following prioritized list.

1. Since all almost-symmetries of a given graph
G are in Aut(G*), apply an existing graph-
automorphism algorithm to G * (i.e., ignore vertex
colors) until it needs branching or terminates.

2. Any cell with vertices of more than one regular
color, but no chameleon vertices, must be split
immediately, possibly triggering further partition
refinement. Cells containing chameleon vertices
cannot be split based on internal vertex colors, but
can be refined based on external adjacencies.

4For graphs in engineering applications it is relatively
rare to reject potential symmetries at this stage, but such
bad leaves are common for highly symmetric Cayley graphs.
With no bad leaves, the algorithm runs in polynomial time.

3A. If a cell contains only chameleon vertices, then
specialize all vertices to one arbitrary color.

3B. If a cell contains chameleon vertices and vertices
of one regular color, then specialize all chameleon
vertices to this regular color.

4. In a non-trivial cell without chameleon vertices,
invoke traditional branching in the hope that
some cells with chameleon vertices will be re-
fined through adjacencies. This rule does not
use traditional branching in cells with unspecified
chameleon vertices due to difficulties with color
assignment, implied in some, but not all branches.

5. Branch on chameleon vertices in cell j with the
smallest branching factor as follows:

e Specialize all k; chameleon vertices in cell j at
once — otherwise splitting and traditional branch-
ing will not work (Rules 2 and 4).

e Assign only c; regular colors used in cell ;. .
e Select j to minimize branching factor c;’.

Symmetry generators accumulated since the last
branching on chameleon vertices can only be used in
that branch, hence we output a new subgroup upon re-
turning from the lowest-level chameleon branch.

Rule 2 (immediate refinement) and Rules 3A, 3B
(dominant colors) perform constraint propagation, in-
terleaved with two types of branching (Rules 4 and
5). Pruning by accumulated symmetry ensures that
generators of each subgroup are irredundant. For
many graphs, constraint propagation alone will spe-
cialize all chameleon vertices, and for most randomly-
generated graphs no branching will be invoked at all.
However, even when almost-symmetries form a group,
chameleon branching may be necessary, as shown in
Figure 2. This example also shows that our algo-
rithm may produce redundant unions-of-subgroups and
therefore needs post-processing. However, in general,
delayed branching on chameleon vertices and the min-
imization of branching factors lead to more compact
union-of-subgroup expressions. The core algorithm
above allows a number of engineering improvements,
e.g., its decoupled branching on chameleon vertices
can honor color-based constraints and preferences.

Figure 2: A graph with three red vertices (vi, V2, v3),
two blue vertices (vs, v7) and three chameleon vertices
(vs, vg, v6). Rule 1 separates vg from other vertices, and
Rule 3A colors vg red. The remaining cell cannot be
split (Rule 2), and traditional branching is not allowed
in it (Rule 4). Therefore, Rule 5 must be applied with
branching factor 4 — on two vertices (v4,V6) With two
colors. Three of those branches produce non-trivial
almost-symmetries after traditional branching (Rule 4),
but one of the resulting subgroups contains two others.
Indeed, every almost-symmetry becomes a symmetry
when v4 is colored red and vg is colored blue.

\
N
\
s
\
N
N
\
N
\
N,
@

Figure 3: A graph with one regular and two chameleon
edges illustrating difficulties in ensuring that powers of
almost-symmetries are, too, almost-symmetries. Con-
sider a clockwise 45°-rotation about the center.

6 Generalizations and Applications

Here we discuss other potential notions of almost-
symmetry in graphs, with an eye on algebraic structure.

To bridge the gap between color-based and edge-
based almost-symmetries in graphs one can introduce
chameleon edges whose end-vertices may be mapped
into other pairs of vertices that are either connected
by edges or not. In other words, we classify all pairs
of vertices into regular edges, chameleon edges, and
non-edges, so as to prohibit mapping edges to non-
edges and vice versa. Just as in the case of color-
based almost-symmetries, ensuring that all powers of
an almost-symmetry are, too, almost-symmetries is
tricky. For example, consider the five-vertex graph
in Figure 3 with one regular edge and two chameleon
edges. The 4-cycle (2345) satisfies the constraints im-
posed so far, but its square (24)(35) swaps the regular
edge (v1,v2) with the non-edge (v1,v4), which is pro-
hibited. To ensure that powers of almost-symmetries
do not map edges to/from non-edges, one can impose
an additional restriction similar to that in Section 4.

For a given vertex-permutation T € Sy, define
its action on pairs of vertices by means of
e (vi,v}) = (n(vi),n(v})) so that T, € S(;). We
prohibit each permutation T whose T, has at least
one cycle containing both an edge and a non-edge.

According to this restriction, a chameleon edge in a
cycle without edges (in a particular almost-symmetry)
can be resolved into a non-edge, and in a cycle with
edges — into an edge. This subsumes the popular
view of graph almost-symmetries as symmetries of
modified graphs [19]: if a given edge can be modi-
fied, it should be viewed as a chameleon edge. One
can additionally constrain the number of instantiated
edges or handle chameleon edges with preference for
non-edges/edges. Such almost-symmetries, too, form
unions of subgroups.

Almost-symmetries of functions with don’t-cares
are isomorphic to almost-symmetries of labeled
graphs, as explained in Section 2. We now discuss dis-
junctive constraints using the DNF-SAT instance ac +
bc as example. This formula has one non-trivial per-
mutational symmetry (ab), with SBP (a < b) =d' +b.
We can also swap either (a with ¢) or (b with c), but not
both. The obvious almost-symmetry-breaking predi-
cate (a<c)+(b<c)=(d+c)+(b'+c)=d +b +c
removes the non-solution 110 allowed by @’ + b.

7 Almost-symmetry-breaking

Existing approaches to exploiting symmetries in search
include pre-processing with symmetry-breaking pred-
icates (SBPs), symmetry-breaking during search [13;
14] and symmetry-breaking by dominance. The first
approach is largely independent of the search al-
gorithm, while the last two require implementation
changes and typically have greater overhead [4]. Since
in this work we only seek to demonstrate a com-
plete and sufficiently general “life-cycle” for almost-
symmetries, we focus on pre-processing from now on.
We do hope that the discussion below will also be use-
ful in future work targeting specific search algorithms.

As mentioned in Section 2, the group isomorphism
Hgym ~ Aut(G) is important when computing symme-
tries of non-graph objects — it allows one to pull back
group generators that are critical to efficient symmetry-
breaking [1]. We now define isomorphism of almost-
symmetries so that descriptions of almost-symmetries
in terms of generators always map to valid descriptions.

An isomorphism of almost-symmetries is a one-
to-one mapping y such that ¥ almost-symmetries
71, T, their product Ty - Ty is defined if and only
if the product Y(my) - Y(®2) is defined, in which
case we require that Y(T -) = y(11) - Y(102).

Isomorphism-of-symmetries proofs for graph con-
structions (that model constraints and objective func-
tions) [1; 3] all extend to almost-symmetries. Omit-
ting details, each such graph construction defines an
isomorphism of containing S; groups (for £ initial
variables and & graph vertices), and this mapping re-
mains an isomorphism on every subgroup in the union.
Hence, if either of the two permutations y(1;) - y(72)
and 1 - T, is in a valid subgroup, then so is the other.

When defining SBPs, the key issue is not to prohibit
all good solutions. To aid in this, we build global SBPs
from known lex-leader SBPs [2] for every generator of
almost-symmetries. In particular, generator SBPs can
be conjoined within subgroups because the respective
almost-symmetries can be freely composed. When the
union of subgroups is derived from a disjunctive con-
straint, we can OR all subgroup SBPs because the lex-
smallest assignment satisfying a disjunctive term will
satisfy one of subgroup SBPs. Yet, for a general CSP, a
unique overall solution may violate all subgroup SBPs,
which suggests additional conditions per subgroup G;.
We propose to pick lex-leaders only among those as-
signments that enable almost-symmetries in G;.

For almost-symmetries gi1,8i2,- - - ,Zim from sub-
group G;, we build their SBP as ¥ (G;) := (®g, =
(Ajw(gij)) where y(g1;) is a lex-leader SBP for
the permutation g;; and ®g, is a pre-condition.
The overall SBP for U;G; then N\;'¥(G;).

For function f, @g, is (ideally the weakest) specializa-
tion of don’t-cares that turns g;;,Vj into symmetries.
For a constraint graph, if turning g;; into symmetries
requires adding (or removing) an edge, then ®g; ex-
presses the new constraint represented by this edge (or
its negation). When a good precondition is hard to
build, we can skip G; by assuming &g, = 0,¥(G;) = 1.

PP PP PPPIIIPDPSIVOSPPDISDSD38383030380806000300000000OC0OCOOOSBTC

8 Conclusions and Ongoing Work

In this paper we have studied almost-symmetries of
several kinds, demonstrating that they possess the
structure of a set-theoretic union of subgroups of Sj,.
We explained how almost-symmetries can be com-
pactly represented, computed for a labeled graph and
used for symmetry-breaking.

Open questions span abstract algebra, computational
complexity, algorithm design as well as applications in
search and optimization. While groups (of symme-
tries) admit a complete abstract characterization and
have many known properties, such a theory is not
yet available for the union-of-subgroups structure (can
any union-of-subgroups appear as a set of almost-
symmetries?). Regarding worst-case complexity, re-
call that graph-automorphism is in NP, but is unlikely
to be NP-complete. It cannot currently be solved in
polynomial time, except in the bounded-degree case
[5]. While all graph automorphisms can be captured
in poly-space by group generators, almost-symmetries
may require exponential space even in the bounded-
degree case — an example is given in the Appendix.
Yet, we believe that application-derived and “average-
case” graphs can be solved quickly, as is the case
for graph automorphism [8]. Extending symmetry-
breaking during search [13; 14; 4] and by dominance
to almost-symmetries is another interesting direction.

Our discussion of algebraic structure in almost-
symmetries of graphs also applies to functions with
don’t-cares and to disjunctive constraints. Other
types of almost-symmetries may carry the union-of-
subgroups structure with union taken over the allowed
variants of the underlying object. The subgroups then
contain regular symmetries of the variant objects. A
computational challenge is to minimize the number of
subgroup terms in the union. Almost-symmetries can
be captured using group generators — instead of the
usual list of generators all of which are compatible, one
needs a list of lists of generators, which are guaranteed
compatible only within a given list. This leads to a gen-
eralization of existing symmetry-breaking predicates
by means of preconditions. Unlike well-known con-
ditional symmetries, almost-symmetries do not depend
on the variable ordering and may be entirely syntactic,
which makes them potentially more numerous and eas-
ier to find. On the other hand, conditional symmetries
also form unions of subgroups and can be viewed as a
type of semantic almost-symmetries.

Appendix: Exp-sized Union of Subgroups

Consider n + 2 disconnected vertices: v; is red, v, is
blue, and 7 vertices are chameleon. All color special-
izations are indexed by j = 0..2” — 1 such that 1s in
the binary expansion of j correspond to red vertices.
With #/ red vertices and n — #, blue vertices, G; ~
Syj X Sp—#j- No element of G; for any j maps vi — V2,
hence this is an invariant of U;G;. However, V i # j,
the minimal subgroup containing G; and G; contains a
permutation that maps vi — v2. Hence in any union-
of-subgroups expression for almost-symmetries of the
graph in question, each G; must be contained in a sep-
arate term. Therefore, any list of lists of generators
representing such an expression requires €(2") space.

References

(1

(2]

(3]

(4]

[5]
(6]

(7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F. A. Aloul, A. Ramani, I. L. Markov, and K. A.
Sakallah, “Solving Difficult Instances of Boolean Sat-
isfiability in the Presence of Symmetry”, IEEE Trans.
on CAD, Sep. 2003, pp. 1117-1137.

F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Efficient
SymmetryBreaking for Boolean Satisfiability,” in Proc.
IJCAI <03, pp. 271-282.

F. A. Aloul, A. Ramani, I. L. Markov and K. A.
Sakallah, “Symmetry-Breaking for Pseudo-Boolean
Formulas”, in Proc. ASPDAC ‘04, pp. 884-887.

F. A. Aloul, A. Ramani, I. L. Markov and K. A.
Sakallah, “Dynamic Symmetry-Breaking for Improved
Boolean Optimization”, ASPDAC ‘05, pp. 445-450.

L. Babai and E. M. Luks, “Canonical Labeling of
Graphs”, in Proc. STOC ‘83, pp. 171-183.

K.-H. Chang, 1. L. Markov and V. Bertacco, “Post-
Placement Rewiring and Rebuffering by Exhaustive
Search For Functional Symmetries”, Proc. ICCAD*05.
J. Crawford, M. Ginsberg, E. Luks and A. Roy,
“Symmetry-breaking Predicates For Search Problems”,
Int’l Conf. Principles of Knowledge Represent. & Rea-
soning (KR) *96, pp. 148-159.

P. T. Darga, M. H. Liffiton, K. A. Sakallah, and
I. L. Markov, “Exploiting Structure in Symmetry
Detection for CNF”, in Proc. DAC ‘04, pp. 530-534.
http://vlsicad.eecs.umich.edu/BK/SAUCY/
J. D. Dunitz, “Symmetry Arguments in Chemistry”,
Proc. Nat’l Acad. Sci. USA 1996; 93: 14260-14266.
E. C. Freuder, “Eliminating Interchangeable Values in
Constraint Satisfaction Problems”, in Proc. A4AI ‘91,
pp- 227-233.

E. C. Freuder and P. D. Hubbe, “Using Inferred Dis-
junctive Constraints to Decompose Constraint Satisfac-
tion Problems”, in Proc. IJCAI ‘93, pp. 254-260.

W. Fushchych, W. Shtelen, “On Approximate Sym-
metry and Approximate Solutions of Nonlinear Wave
Equations With Small Parameters”, J. Physics 4, 1989,
vol. 22, L887-L890.

L. P Gent, B. M. Smith, “Symmetry Breaking in Con-
straint Programming”, in Proc. ECAI‘00, pp. 599-603.
I. Gent, W. Harvey, T. Kelsey, “Groups and Con-
straints: Symmetry breaking during search”, in Proc.
CP “02, LNCS 2470, pp.415-430, Springer.

P. Gregory and A. Donaldson, “Concrete Applica-
tions of Almost-Symmetry”, in Workshop on Almost-
Symmetry in Search, pp. 1-5, Comp. Sci. TR-2005-201,
Univ. of Glasgow, 2005.

D. J. Gross, “The Role of Symmetry in Fundamental
Physics”, Proc. Nat'l Acad. Sci. USA 1996; 93: 14256-
14259. ™

M. E. Kellman, “Symmetry in Chemistry: From the
Hydrogen Atom to Proteins”, Proc. Nat’l Acad. Sci.
USA 1996; 93: 14287-14294.

B. Krishnamurthy, “Short Proofs For Tricky Formu-
las”, Acta Informatica, vol. 22, pp.327-337, 1985.

D. Long and M. Fox, “Restoring Symmetries in
Almost-Symmetric Graph Structures”, in Workshop on
Almost-Symmetry in Search, pp. 6-13, Comp. Sci. TR-
2005-201, Univ. of Glasgow, 2005.

B. D. McKay, “Practical Graph Isomorphism”, Con-
gressus Numerantium 30(‘81), pp. 45-87.

A. Mishchenko, “Fast Computation of Symmetries in
Boolean Functions”, IEEE Trans. on CAD, Nov. 2003,
pp- 1588-1593.

P. J. Steinhardt “New Perspectives on Forbidden Sym-
metries, Quasicrystals, and Penrose Tilings”, Proc.
Nat’l Acad. Sci. USA 1996; 93: 14267-14270.

V. Trimble, “Astrophysical symmetries”, Proc. Nat’l
Acad. Sci. USA 1996; 93: 14221-14224.

Y. Zhang and E. Freuder, “Conditional Interchange-
ability and Substitutability”, in Proc. SymCon ‘04.

Comparison of Symmetry Breaking Methods
in Constraint Programming

Karen E. Petrie and Barbara M. Smith
Cork Constraint Computation Center
University College Cork
Cork, Ireland
k.petrie@4c.ucc.ie,b.smith@4c.ucc.1ie

Abstract

Symmetry in a Constraint Satisfaction Problem can
cause wasted search, which can be avoided by
adding constraints to the CSP to exclude symmetric
assignments or by modifying the search algorithm
so that search never visits assignments symmetric
to those already considered. One such approach
is SBDS (Symmetry Breaking During Search); a
modification is GAP-SBDS, which works with the
symmetry group rather than individual symmetries.
There has been little experience of how these tech-
niques compare in practice. We compare their
performance in finding all graceful labellings of
graphs with symmetry. For these problems, GAP-
SBDS is faster than SBDS unless there are few
symmetries. When simple symmetry-breaking con-
straints can be found to break all the symmetry,
GAP-SBDS is slower; if the constraints break only
part of the symmetry, GAP-SBDS does less search
and is faster. Eliminating symmetry has allowed us
to find all graceful labellings, or prove that there are
none, for several graphs whose gracefulness was
not previously known.

1 Introduction

Constraint Satisfaction Problems (CSPs) are often highly
symmetric. Symmetries may be inherent in the problem, as
in placing queens on a chess board that may be rotated and
reflected. Additionally, the modelling of a real problem as a
CSP can introduce extra symmetry: problem entities which
are indistinguishable may in the CSP be represented by sepa-
rate variables, leading to n! symmetries between n variables.
Symmetries may be found between variables or values or
variable/value combinations. An example of value symmetry
can be found in graph colouring problems where the different
colours are interchangeable.

Symmetries can give rise to redundant search, since sub-
trees may be explored which are symmetric to subtrees al-
ready explored. This difficulty has been seen in the practi-
cal solving of real world constraint problems [Henz, 2001].
To avoid this redundant search, constraint programmers have
designed methods, which try to exclude all but one in each
equivalence class of solutions.

A common way to reduce or eliminate symmetry is to
add constraints to the CSP, to exclude some or all symmet-
ric equivalents. Ideally, the new constraints should be sat-
isfied by only one assignment in any symmetry equivalence
class. It is often hard to find simple symmetry constraints.
Crawford ef al. [Crawford ef al., 1996] give a systematic
method for generating symmetry breaking constraints, when
the problem only contains variable symmetry. This method
encompasses writing down a solution to the CSP and then
calculating what effect each of the problem symmetries has
on this solution. Lexicographic ordering constraints are then
imposed, to ensure that the original solution is smaller than
any of its symmetric equivalents. There is no systematic pro-
cedure to calculate symmetry breaking constraints when the
symmetry does not just affect the variables, but sometimes
such constraints can be identified. Symmetry breaking con-
straints can interact badly with the search strategy. It may be
that amongst the solutions in a symmetry equivalence class
that do not satisfy the new constraints is one that would be
found earlier, given the search strategy being used, than any
of the solutions that can still be found. Hence, the constraints
can still allow wasted search, and if only one solution is re-
quired, adding symmetry-breaking constraints can be worse
than doing nothing.

An alternative is to adapt the search algorithm so that con-
straints are added during search to prevent exploration of as-
signments. Symmetry Breaking During:Search (SBDS), as
can be seen in previous chapters, adds such constraints on
backtracking. SBDS requires a function for each symmetry
in the problem describing its effect on the assignment of a
value to a variable. Although SBDS has been successfully
used with a few thousand symmetry functions, many probl-
ems have too many symmetries to allow a separate function
for each. To allow SBDS to be used in such situations Gent
et al. [Gent et al., 2002] linked SBDS (in ECL*PS¢) with
GAP (Groups, Algorithms and Programming) [GAP, 2000],
a system for computational discrete algebra and in particular
computational group theory. GAP-SBDS allows the symme-
try group rather than its individual elements, to be described.

GAP-SBDS allows the symmetry to be handled more effi-
ciently than in SBDS; the elements of the group are not ex-
plicitly created, as is required in the original SBDS. On the
other hand, GAP-SBDS has the overhead of the communica-
tion between ECLPS® and GAP. Furthermore, the symmetry-

A A AR EREERENENEENRNRRENRNERERENRNRERNENR§E RN NN RN NN ERNE RSN EZE}SESENESESRSENLELS LSS SN

breaking constraints posted on backtracking are constructed
dynamically from the stabiliser rather than being pre-defined
in the symmetry functions as in SBDS. It can be expected that
GAP-SBDS will be a better choice than SBDS when the sym-
metry group is large, if only because it becomes impractical
to list explicitly the individual elements of the group. How-
ever, for small symmetry groups, SBDS can be faster.

In [Gent ef al., 2002], limited experiments with GAP-
SBDS are reported; it is much faster than the original SBDS
on the Alien Tiles problem [Gent et al., 2000], where the sym-
metry group has 1152 elements. Experiments with two Bal-
anced Incomplete Block Design problems (BIBDs) showed
that it can successfully handle symmetry groups with mil-
lions of elements, which SBDS clearly cannot do. However,
symmetry constraints gave better results than GAP-SBDS on
the two problems considered, except for variable orderings
incompatible with the constraints.

More experience of these techniques is required in order to
identify which is appropriate for a given situation. If simple
constraints can be found that will break some of the symme-
try in a CSP, the CP users needs to know whether they should
be used, or whether one of the techniques that break symme-
try during search should be applied. In this paper, symmetry
breaking is investigated in a class of graph labelling probl-
ems. SBDS is compared with GAP-SBDS; and GAP-SBDS
with constraints to break the symmetry.

As well as providing further experience of these techniques
in practice, constraint programming has proved to be a valu-
able technique for investigating these problems. Eliminating
symmetry has allowed many new results to be found, which
are presented throughout this chapter.

2 Graceful Graphs

A labelling f of the nodes of a graph with ¢ edges is graceful
if f assigns each node a unique label from {0,1, ...,q} and
when each edge zy is labelled with |f(z) — f(y)|, the edge
labels are all different. (Hence, the edge labels are a permu-
tation of 1, 2, ..., ¢.) Figure 1 shows an example. The study
of graceful graphs is an active area of graph theory. Gallian
[Gallian, 2004] surveys graceful graphs, i.e. graphs which
have a graceful labelling, and lists the graphs whose status
is known. [Gallian, 2004] is the latest version of a dynamic

19 1 18

Figure 1: The unique graceful labelling of K5 x Ps.

survey which first appeared in 1997 and has been regularly
updated.

Finding a graceful labelling of a given graph, or proving
that one does not exist, can be expressed as a CSP. Spe-
cific cases have previously been considered; for instance,
the all-interval series problem (problem 007 in CSPLib, at
http://www.csplib.org) is equivalent to finding a graceful la-
belling of a path, and Lustig & Puget [I.J.Lustig and Puget,
2001] found a graceful labelling of a graph discussed in sec-
tion 4.

There are two kinds of symmetry in the problem of finding
a graceful labelling of a graph: first, there may be symme-
try in the graph. For instance, if the graph is a clique, any
permutation of the vertex labels in a graceful labelling is also
graceful. If the graph is a path, P,, the labels 1,2, ..., Zn
can be reversed to give an equivalent labelling z,,, ..., T2, Z1.
We might call this type of symmetry geometric. The second
type of symmetry is that we can replace every vertex label z;
by its complement n — z;. We can also of course combine
each geometric symmetry with the complement symmetry.

The advantage of this class of problem is that graphs can be
picked with interesting symmetries. In general this is a neces-
sary property in the choice of problems for symmetry evalua-
tion. Hence, different symmetry-breaking approaches applied
to different kinds of symmetry can be compared. Moreover,
a particular type of symmetry, e.g. vertex permutations, can
be chosen, and the number of symmetries varied, e.g. the
number of vertices. This allows comparison of SBDS and
GAP-SBDS on a range of problems, starting with ones that
SBDS can easily handle and going on to ones that it cannot.

2.1 Modelling Decisions

A basic CSP model has a variable for each node
Z1,Z32, ..., Tn, €ach with domain 0, 1, ..., ¢ and a variable for
each edge dy,ds, ..., dq, each with domain 1,2,...,q. The
constraints of the problem are: if edge k joins nodes 4 and
j then dr = |z; — zj|; 1,2, ..., T are all different; and
di,ds, ...,d, are all different. The node variables are used as
the search variables as they give the best results both when
and when not considering symmetry breaking. They are also
the simplest set to consider symmetry breaking over. When
undertaking a comparative study, it is important to find a
model that is efficient enough to solve the problem in rea-
sonable time; but simple enough not to mask any empirical
differences between symmetry breaking methods. The model
must also hold for all instances of the problem. All modelling
decisions were made after experimental testing, using SBDS
to find all graceful labellings of K4 X Ps.

All Different

ECL*PS® provides two different levels of propagation for the
all_different constraint, it can either be treated as a set of bi-
nary # constraints, or a global all_different with higher prop-
agation. Results of testing both constraints over the edge vari-
ables and node variables are shown in table 1.

In accordance with these results we use the global
all_different on the edge variables and the # version on the
node variables. They are treated differently because the val-
ues assigned to the edge variables form a permutation and
hence give more scope for domain pruning than the node vari-
ables, which have far more possible values than variables.

Version of all_different constraint

all_diff on nodes & # all_diff on edges

Global all_diff on nodes & # all diff on edges

= all_diff on nodes & Global all_diff on edges
Global a/l_diff on nodes & Global all_diff on edges

bt sec.
3188 91.94
3184 91.56
147 12.53
147 12.41

Table 1: Comparison of all_different constraints finding all graceful labellings of K4 x Ps.

Variable K4 X P2 K5 X PZ
Ordering Heuristic | bt sec. bt sec.
lex 147 12.53 | 4172 1325.69
SDF 175 12.54 | 5781 1531.52

Table 2: Comparison of different variable ordering heuristics
using SBDS for finding all graceful labellings.

3 Search Decisions

Once the model is fully developed, it can be considered which
search heuristic should be used. The remit for this is similar
to that of choosing the model. We need a search heuristic that
leads to efficient testing of the symmetry breaking methods,
whilst not masking the different performances. In [I.J.Lustig
and Puget, 2001] Lustig and Puget found smallest domain
first (SDF) variable ordering to be far superior, so we com-
pared this to a static variable ordering over both K4 x P (the
variable ordering used for this graph is shown in Figure 2)
and K5 x P,. The results can be found in table 2.

These results show the static ordering to be using less
search than smallest domain first when using SBDS. In gen-
eral, static variable ordering heuristics are a good choice
when comparing symmetry breaking methods as symmetry
breaking constraints can often conflict with dynamic heuris-
tics. In fact, symmetry breaking constraints can conflict with
static variable orderings as well, but in that case it is usually
possible to find a reasonable heuristic by empirical testing
within the study. Static search orders also provide a better
test bed for dynamic search methods, as any differences in
the search tree are due to earlier pruning due to the symmetry
breaking method, and not because the dynamic search method
causes a different search path to be taken.

4 K,, x P, Graphs: SBDS v. GAP-SBDS

The graph shown in Figure 2, with the node numbering used
in the CSP and one of its graceful labellings, is the cross-
product of the clique K4 and the path Ps: it consists of
two copies of K, with corresponding vertices in the two
cliques also forming the vertices of a path P». Lustig & Puget
[I.J.Lustig and Puget, 2001] found a graceful labelling of this
graph; it was not previously known to be graceful. However,
they looked for only one graceful labelling of the graph and
did not break any of the symmetry.

The symmetries of the graph are, first, intra-clique permu-
tations: any permutation of the 4-cliques which acts on both
in the same way. For instance, we can transpose nodes 1 and
2 and simultaneously 5 and 6. Second, inter-clique permuta-
tions: the labels of the first clique (nodes 1, 2, 3, 4) can be

Figure 2: The graph K4 x Ps.

interchanged with the labels of the corresponding nodes (5,
6, 7, 8) in the second. These can also be combined with each
other and with the complement symmetry. Hence, the size of
the symmetry group is 4! x 2 x 2, or 96.

GAP-SBDS requires the symmetry group of the problem
as input. In SBDS, a function is required for every symmetry
other than the identity: i.e. 95 functions for K4 x P,. GAP is
used to output the required functions, using the same gener-
ators as for GAP-SBDS. As described in [Gent et al., 2000],
GAP was used in a similar fashion to produce the symmetry
functions for the Alien Tiles problem.

Some of the symmetry in the K4 x P, problem can al-
ternatively be eliminated using constraints. Several different
strategies have been devised for eliminating or reducing the
symmetry, in order to compare the original SBDS and GAP-
SBDS.

A: All the symmetry can be eliminated (i.e. the full sym-
metry group of 96 elements) using SBDS or GAP-SBDS.

B: Alternatively, it might be decided not to eliminate the
complement symmetries; at worst this will double the number
of solutions. This leaves just the graph symmetry group, i.e.
48 symmetries. ™

C: Once the complement symmetry has been ignored,
the inter-clique symmetry can be eliminated by adding con-
straints to the CSP, provided that they do not interfere with
permuting the node labels within the cliques. A permissible
constraint is that the smallest node label in the first clique
is less than the smallest in the second clique. Since there is
a node with value 0, this means that it must be in the first
clique. With this constraint, SBDS or GAP-SBDS need only
eliminate the 24 remaining symmetries.

D: the 24 remaining symmetries consist of all permutations
of the subsets {1,5}, {2,6}, {3,7} and {4,8} of the variables.
This is a generalisation of symmetry due to variables being
indistinguishable, and in this special case, the symmetry can
be eliminated by just the transpositions of the variables, or
sets of variables, being permuted. Here, each transposition
acts on two of the variable subsets, e.g. one swaps the labels
of nodes 1 and 2, and of nodes 5 and 6. In SBDS, a function

J0000ObblbibblbbbbbbCD55056555&Cbbbbb&bb‘6“&&‘&0006‘6606661

Graph Strategy + SBDS GAP-SBDS
no. of syms. BT sec. BT sec.
Ksx P, | A 24 6 0.25 9 0.54
B 12 16 0.24 16 0.59
C 6 16 0.21 16 0.58
D 3 16 0.2 - -
Kix Py | A 96 | 147 129| 165 83
B 48 | 369 13.1 | 369 143
C 24 | 369 11.0| 369 14.1
D 6| 369 10.6 - -
Ksx P, | A 480 | 4172 1356 | 4390 382
B 240 | 9889 929 | 9889 793
C 120 | 9889 659 | 9889 783
D 10 | 9889 629 - -

Table 3: Comparison of different levels of symmetry breaking
using SBDS or GAP-SBDS for finding all graceful labellings
of K, X Ps.

can be provided for each of the six transpositions. This can-
not be done in GAP-SBDS, however, because the subset of
transpositions is not closed under composition and so is not
a subgroup of the full symmetry group. As in strategy C, the
inter-clique symmetry is broken by a constraint.

These different ways of dealing with symmetry in K4 x P
using SBDS and GAP-SBDS are compared in Table 3. Re-
sults are also given for K3 X P, with 24 symmetries, and
K5 x P,, with 480. There are 4 non-isomorphic graceful la-
bellings of K3 x P, and 15 of K4 X P,. K5 x P has a
unique graceful labelling (shown in Figure 1). Strategies B,
C and D only break the graph symmetries and so find twice
as many solutions. If we do nothing to break symmetry, there
are 1440 solutions for K4y X P,. K3 X Py and K4 X Ps
were already known to be graceful, but the number of non-
isomorphic graceful labellings, and the results for K5 x P,
are new.

For each graph, when all but the complement symmetries
are eliminated, i.e. for strategies B and C, SBDS and GAP-
SBDS incur the same search effort, although the runtime dif-
fers considerably. In strategy A, SBDS does less search than
GAP-SBDS; this seems to be due to the lazy evaluation of
g(A) in GAP-SBDS, to delay imposing constraints, which
results sometimes in missing some constraint propagation.
However, it is not clear why this results in a difference in
search only when the complement symmetries are involved.
The best strategy for SBDS is D, where the number of sym-
metry functions is smallest. Increasing the number of symme-
try functions severely affects the running time of SBDS, to the
extent that strategy A is much the slowest strategy for SBDS
on the largest problem, even though the number of backtracks
is more than halved. The running time of GAP-SBDS, on the
other hand, is much less affected by the number of symme-
tries, and its best strategy is to break all the symmetry and
hence benefit from the reduction in search.

For each problem, strategy C is faster for SBDS than for
GAP-SBDS, showing that for a sufficiently small number of
symmetries (120 for K5 x P,) it is faster to have the individual
symmetries expressed explicitly than as a group, and so avoid

w

the overheads of interacting with GAP. However, it does not
depend solely on the size of the symmetry group: for K4 x P,
strategy A is faster for GAP-SBDS than for SBDS, although
there are only 96 symmetries.

These symmetry-breaking strategies can be extended to
the graph K4 x Ps. This has a third 4-clique whose nodes
are joined pairwise to the second. The 704 non-isomorphic
graceful labellings of this graph have been found. As with
K5 x Py, K4 x P3 was not previously known to be grace-
ful. GAP-SBDS, breaking all the symmetry, was compared
with SBDS using strategy D, i.e. the best strategy for each
method. The symmetries are exactly as in K4 X Ps, but in-
stead of swapping the first and second clique, the first and
third are swapped. In using strategy D (6 SBDS functions
+ a constraint), the constraint must now be that the smallest
node label in the first clique is less than the smallest node
label in the third, since the node labelled 0 may now be in
the central clique. In the best cases for each strategy GAP-
SBDS takes 386,068 backtracks and 21150 sec; SBDS takes
844,629 backtracks and 32700 sec.

This reinforces the conclusion that for these problems the
best strategy for GAP-SBDS is faster than the best for SBDS,
except for the small K3 x P, problem. It is better to break
all the symmetry using GAP-SBDS than to break only half
using SBDS, even though only a small number of symmetry
functions is required using strategy D.

5 Symmetry-Breaking Constraints

Alternatively breaking the symmetry of K,,, x P, using con-
straints added to the CSP could be considered. For all except
the combinations of the complement symmetry and the graph
symmetries, this is straightforward. The systematic proce-
dure given by Crawford ef al. [Crawford et al., 1996] for
generating such constraints can be followed: write down a
solution (1, Z2, ...,) to the CSP and the effect on this so-
lution of every symmetry in the problem, and then impose
constraints ensuring that the original solution is lexicographi-
cally smaller than any of its symmetric equivalents. In theory,
this might lead to one constraint for every symmetry, but often
the constraints can be simplified so that many symmetries are
eliminated by the same constraint. For instance, in K4 X P,
any symmetry which transposes the labels of nodes 1 and 2
(and hence also of nodes 5 and 6) is eliminated by the cons-
traint z; < x2. (The task of finding constraints is simplified
by the fact that z1 and z5 cannot be equal.) This is explained
more fully by Puget [Puget, 2004].

The constraints 1 < T2, T2 < T3, T3 < x4 exclude per-
mutations within the cliques and 1 < x5, 1 < Z6, 21 < Z7,
xz1 < xg exclude swapping the first clique with the second
and permuting both. Since the constraints imply that z; = 0,
we can add this and then only need z2 < z3, 3 < z4. Hence,
three constraints eliminate half the symmetry, i.e. 48 elements
of the symmetry group.

These constraints can be compared with those added dur-
ing search by SBDS. When a symmetry function is had in
SBDS for every graph symmetry (strategy B) the effect will
be similar to adding a constraint to the model for every sym-
metry, and will result in many duplicated constraints added on

backtracking. Hence, strategy B is roughly comparable to us-
ing Crawford et al.’s procedure without doing any simplifica-
tion and amalgamation of the resulting constraints. Strategy
D, with only 6 symmetry functions, is roughly comparable
to the three simplified constraints which break all the graph
symmetries. The constraints are slightly quicker than strategy
D for K4 x P, and K5 X P», and take almost exactly the same
number of backtracks. However, SBDS has an additional ad-
vantage in being independent of the variable ordering. The
procedure for deriving the symmetry constraints assumes that
“the variables will be assigned in the order 1,2, .-+, Tn; if
they are not, finding solutions may be delayed. On the other
hand, SBDS will always find the first solution, with respect
to the variable ordering, in any symmetry equivalence class.

In principle, all the symmetry could be eliminated by
adding constraints to the CSP. However, the combinations of
the complement symmetry and the graph symmetries require
many more, and more complex, constraints than the graph
symmetries. For instance, the solution shown in Figure 2, (0,
3,13, 14,16,7,1,9), can be transformed to (16, 13, 3, 2, 0,
9, 15, 7) by taking the complement, then to (0, 9, 15, 7, 16,
13, 3, 2) by swapping the two cliques, and finally to 0,7,9,
15, 16, 2, 13,3), by a permutation of the cliques. The final
solution satisfies the constraints already added.

This symmetry transforms the general solution (1, T2, 3,
T4, Ts, Te, T7, Tg) t0 (@ — 5,9 — T8,q — T7,4 — L6,d —
T1,q—T4,q—T2,q—3). Following [Crawford et al., 1996],
constraints could be add to ensure that the first solution is lex-
icographically less than the second. ECL?PS® allows this to
be stated as a single constraint, which is equivalent to (and in
other constraint programming systems would have to be ex-
pressed as) the set of constraints: 1 < ¢g—x5;ifx1 = q¢— 25
then o < q — xg; if x1 = ¢ — 5 and o = q — zg then
z3 < qg—w7;ifrr = q—25 and xo = q—xzg and r3 = ¢—T7
then z, < g — we. This is a cumbersome way of excluding
just one symmetrically equivalent solution. Unless we can
combine and simplify the constraints arising from different
symmetries, which would require time and effort even if pos-
sible, we need one such set of constraints for every one of the
48 remaining symmetries.

To break these 48 symmetries in SBDS, we provide a sym-
metry function for each. This effectively automates the con-
ditional constraints and again gives independence of the vari-
able order. GAP-SBDS, of course, does the same job, but
using the group and not the individual elements.

There is a way to break the complement symmetry, using
a simple constraint, which is oulined by Beutner and Har-
both [Beutner and Harboth, 2002]. If a graph G is graceful
it must have an edge labelled g, so two adjoint nodes must
be labelled 0 and g. There also must be an edge labelled
q — 1, which means that either, there are two adjoint nodes
labelled 0 and ¢ — 1 or, two adjoint nodes labelled 1 and g; by
constraining the former, rather than the latter the complement
symmetry is broken. It is not possible to derive this const-
raint from the approach outlined in [Crawford et al., 1996].
So experimentation with this constraint included, would not
easily generalise to other problem classes. Hence, this const-
raint is not considered further within this thesis. However, in
the next sections we do consider further the role of symmetry

constraints in graceful graphs.

6 GAP-SBDS v. Constraints

As in the last section, for the graphs considered here some but
not all of the symmetry can easily be broken by adding con-
straints to the CSP. K4 x K3 is composed of three 4-cliques
and four 3-cliques and is shown in figure 3 with the node
numbering used in the CSP. It was not previously known to
be graceful: figure 3 shows one of its graceful labellings.

Figure 4: The graph K3 X Ks.

The variables of the CSP could also be represented by a3
T T T
x 4 matrix (zé 75 7 o8) in which the rows represent the
T9 T10 T11 T12

4-cliques and the columns represent the 3-cliques. The graph
symmetry can be translated into row and column symmetry in
the matrix, i.e. given any solution, permuting the rows and/or
the columns gives another. Flener ef al. [Flener et al., 2002]
show that if a CSP can be represented by a matrix of vari-
ables with row and column symmetry, and all the values in
the matrix are required to be distinct, as here, then the row
and column symmetry can be broken by constraints that the
largest value should be in the bottom-right corner of the ma-
trix and that the last row and last column should be ordered.
In this case, 712 = 30 (the number of edges) and since there
must be an edge joining the nodes labelled 0 and 30, either
x4 = 0orzg =0.

Because of the complement symmetry, breaking the row
and column symmetry does not break all the symmetry of the
problem; however, we can use GAP-SBDS to break all 288
symmetries (4! x 3! X 2).

Finding all graceful labellings of this graph takes too long

using ECL'PS®, and we restricted the search to solutions in

O OOOO IO DSV DD PISDIODIDOOPPDSS PSPPI P PSS IPIINISIIISIOSIISISTOETITEOESTRSTTSES

which the edge with value 30 occurs in a 4-clique rather than
a 3-clique. When using the symmetry constraints, this means
that 29 = 0, since z12 = 30. GAP-SBDS found the 17 non-
isomorphic solutions in 10.6 hours runtime, but only 29 so-
lutions had been found using the symmetry constraints after
allowing 50% more time. (Since the complement symmetries
are not being broken, there are 34 possible solutions.)

A possible factor in the poor performance of the symme-
try constraints is that they conflict with the variable order-
ing. The constraints have been used as stated in [Flener et
al., 2002] and they do not seem an obviously bad choice.
However, the graph symmetries can be broken by forcing any
corner element of the matrix to be the maximum element of
the matrix, and ordering the row and column containing the
corner. To investigate these different symmetry constraints,
while keeping the same variable ordering, a smaller graph,
K3 x K3, shown in figure 4 is considered, which can be rep-
resented by a 3 x 3 matrix. This is not graceful: any graph in
which every node has even degree and the number of edges is
congruent to 1 or 2 (mod 4) is known to be not graceful.

As shown in figure 4, the graph is made up of two sets of
triangles. As well as permutations within each set of trian-

gles, corresponding to row and column permutations in the
r1] T2 T3

matrix (228 2) One set of triangles can be exchanged for
7 T8

the other, corresponding to transposing the matrix. Hence, the
problem has 3! x 3! x 2 x 2 symmetries, or 144; constraints
to eliminate the row and column symmetries of the matrix
will only eliminate 36. In table 4, GAP-SBDS and symmetry-
breaking constraints are compared, in proving that the graph
is not graceful. GAP-SBDS is used with the full symmetry
group of 144 elements, and with subgroups. Those elements
involving interchanging the two sets of triangles are omitted
first; since K4 x K3 does not have this symmetry, these results
are comparable to those for the larger graph. Secondly, the
complement symmetries are also omitted, giving a subgroup
of size 36; GAP-SBDS is then breaking the same symmetries
as the constraints.

GAP-SBDS, breaking: BT sec.
144 symmetries | 1393 68

72 symmetries | 2651 137

36 symmetries | 5513 207

Symmetry-breaking constraints, with
maximum element at: top-left | 5499 144
top-right | 7050 184

bottom-left | 5008 148

bottom-right | 8276 241

Table 4: Comparison of GAP-SBDS and symmetry breaking
constraints in proving that K3 x K3 is not graceful.

The row and column symmetries of the corresponding ma-
trix are broken as for K4 x K3, and then the results of con-
straining the maximum element to be in each of the four cor-
ners in turn are compared. (Instead a corner element could be
forced to be the minimum element in the matrix, and change
the ordering constraints on the row and column containing the
corner appropriately. However, in ECL*PS® this gives exactly

the same number of backtracks for this problem.)

Table 4 shows that with symmetry-breaking constraints,
the least search is done when the maximum element of the
matrix is constrained to be in the bottom-left corner, and that
the bottom-right corner (as used for K4 x K3) is the worst
choice. It seems to us that this behaviour would be hard to
predict, and that a priori any of the four choices seem rea-
sonable. When GAP-SBDS breaks the same symmetry as the
constraints, its performance is comparable: it does better than
the worst choice of constraints, but worse than the best. When
it breaks more symmetry than the constraints, i.e. when it is
given the full symmetry group of 144 elements, or the sub-
group of 72 elements, it does less search and is faster.

In the K4 x K3 problem, similarly, GAP-SBDS breaks all
the symmetry and the constraints only half. The experience
with the K3 x K3 graph suggests that this, rather than a con-
flict with the variable ordering, is the reason for the poor per-
formance of the symmetry constraints relative to GAP-SBDS,
and that changing the constraints to be more compatible with
the variable ordering would not improve their performance
sufficiently to beat GAP-SBDS.

Gent et al. [Gent et al., 2002] compared GAP-SBDS and
symmetry constraints in solving two BIBDs. As with the
graphs considered in this section, BIBDs can be represented
as matrices of variables with row and column symmetry. It
is not usually possible to find simple constraints which are
guaranteed to break all the row and column symmetry ina
matrix; the graceful graph problems are an exception because
of the requirement that all the values must be different. In
the BIBDs, constraints were imposed to order the rows and
columns lexicographically. Such constraints are not usually
able to break all the symmetry, and from the results here
it should therefore be expected that GAP-SBDS would be
faster. However, the constraints did break all the symmetry
in the two BIBD instances considered. The problems were
solved faster using the constraints than with GAP-SBDS, but
it is not clear whether this is because the constraints did break
all the symmetry in these instances, or whether the size of the
symmetry group (millions of elements) also played a part.

7 Double-wheel Graphs

The final category of graphs that have been investigated con-
sist of two wheels, W,,,, with a common hub: they are re-
ferred to as DW,,. They could be composed as (Crn |J Cm)+
K7, i.e. two copies of the cycle Cp,, with each vertex joined
to a central point. Figure 5 shows DW;5 with a graceful la-
belling.

This class of graphs was selected because all the symme-
try can be broken using simple constraints; and hence it al-
lows comparison between GAP-SBDS and symmetry con-
straints in a problem class where it is expected that the con-
straints will do well. It is believed that the gracefulness of
these graphs has not previously been investigated: it has been
shown that DWs5 is not graceful, whereas DWy and DW;
are, with 44 and 1216 non-isomorphic labellings respectively.

The two cycles, Cp,, each have rotation and reflection sym-
metries. These can be eliminated by adding, for the cycle con-
sisting of nodes 2, 3,4, ..., m+ 1, them constraints o < 3,

GAP-SBDS Constraints

Graph Symmetries BT sec. BT sec.
DWs 144 48 195 21 034
DW,y 256 1053 36.1 911 133
DWs5 400 33622 1609 | 26115 539

Ordering BT sec. BT sec.
DW, | 1,2,6,7,8,9,3,4,5 963 293 570 11.0
DWy | 1,2,3,4,5,6,7,8,9 | 1053 36.1 911 133
DWy | 2,3,4,5,6,7,8,9,1 | 1328 54.1 1190 49.6
DW, | 9,8,7,6,54,3,2,1 | 1328 53.0 | 1311 84.5

Table 5: Comparison of GAP-SBDS and symmetry breaking
constraints for finding all graceful labellings of double-wheel
graphs.

Ty < Xgy ey Tog < Tmy1 and 3 < Typy1. Similar con-
straints can be added for the second cycle. The labels of the
two cycles can also be interchanged: we eliminate that sym-
metry by a constraint that the smallest node label in the first
cycle is less than the smallest in the second. With the other
constraints, this simplifies to o < Zy42.

The central node (node 1) is unaffected by the graph sym-
metries. This allows the complement symmetries in these
graphs to be easily broken. Given any solution and its com-
plement, one has z; < ¢/2 and the other z; > ¢/2. However,
x1 cannot be equal to ¢/2: node 1 would then be connected to
every other node, and in particular to those nodes labelled 0
and g, and so there would be two edges labelled ¢/2. Hence,
the constraint z; < ¢/2 ensures that we do not get both a so-
lution and its complement and so eliminates the complement
symmetries.

9.(7)

Figure 5: The double wheel DWs5, with a graceful labelling.

Hence, for the graphs in this class, all the symmetry is elim-
inated by adding 2m + 2 constraints to the CSP. These con-
straints could be derived using the procedure from [Crawford
et al., 1996] described earlier, assuming that variables will be
assigned in the order z1, Zs, ..., Zom+1. On the other hand,
the symmetry group has 2m x 2m x 2 x 2, or 16m?, el-
ements, so GAP-SBDS must handle a group of this size to
eliminate all the symmetry.

Table 5 compares symmetry-breaking constraints and
GAP-SBDS for these graphs. Constraints are the better
choice, when the variables are assigned in the usual order

T1,T2,T3,Tq,..... However, the difference in speed is not as
great as might be expected, given that in DW5, say, GAP-
SBDS is handling a group of 400 elements, whereas only
12 constraints are required for the same task. Clearly, GAP-
SBDS is dealing with a large group very efficiently.

Symmetry-breaking constraints are sensitive to the variable
ordering, and in Table 5 the effect of changing the variable
ordering for graph DWj is shown. The results are repeated
for the original ordering, and results are given for a better or-
dering (found by trial and error) and for orderings with the
central node variable assigned last. GAP-SBDS is much less
affected by the variable ordering than the symmetry-breaking
constraints are. In fact, 2,3,4,5,6,7,8,9,1 is symmetrically
equivalent to 9,8,7,6,5,4,3,2,1 (and many other orderings) in
GAP-SBDS, and hence the number of backtracks is the same,
whereas the symmetry-breaking constraints have the effect of
differentiating between these orderings. It is notable that the
worst ordering takes much longer with constraints than with
GAP-SBDS. Although a user might be unlikely to choose
such a bad ordering in this case, it is a risk of using con-
straints to break symmetry. Gent ef al. [Gent et al., 2002]
similarly showed that in their BIBD experiments, the lexico-
graphic ordering constraints performed very poorly given the
wrong variable and value ordering, whereas GAP-SBDS was
much more robust.

8 Finding One Solution

It is sometimes thought that breaking symmetry is only im-
portant when finding all solutions. However, even when only
one solution is required, finding one can require searching
large subtrees which contain no solution and hence symme-
try in the CSP can still lead to wasted search. (Of course, if a
problem has no solution, then it makes no difference whether
the intention wasto find one or all.)

For some of the smaller graphs, finding a single solution
requires the same search effort whether or not we break any
of the symmetry and irrespective of whether we use SBDS,
GAP-SBDS or constraints (although the runtime varies).This
is true, for instance, for K4 x P, and K4 x Ps;. However,
for K5 x P, and K4 x K3 finding a solution takes a sig-
nificant amount of search, and symmetry breaking saves a
lot of wasted search, as shown in table 6. Here, the symme-
try breaking constraints eliminate only the graph symmetries,
and not the complement symmetries.

In the two cases shown in table 6, both GAP-SBDS and
symmetry constraints show a significant saving over having
no symmetry breaking, for both graphs. However, SBDS
does not always compete with having no symmetry break-
ing in terms of runtime. In the K4 x K3 graph, where this is
the case, there are 288 symmetries which relates to more of
an overhead for SBDS, than finding just the first solution can
justify. In general, these results confirm that both dynamic
and static symmetry breaking can be used to good effect when
searching for one solution, on relatively large problems, with
a proportionally large symmetry group.

EFEE R AN RN N RN R NN N NN NN NNNNNENNENNNENRENENNENNNNRNRNRHN:RZ:SRH:.EH:SRJ:SESENLENLELESLSR S

SBDS GAP-SBDS Symmetry No symmetry

constraints breaking
Graph BT sec. BT sec. BT sec. BT sec.
Ksx Py | 3368 998 | 3381 300 | 5138 324 | 30010 1850
Ky x K5 | 25698 3150 | 25698 1930 | 12087 1100 | 40702 2360

Table 6: Finding one graceful labelling of K's x P,: comparison of symmetry breaking methods and no symmetry breaking.

9 Conclusions

An experimental comparison has been carried out of a num-
ber of symmetry-breaking techniques on graceful graph pro-
blems. These problems allow graphs with different symme-
try to be chosen. The symmetry of the graph also combines
with the complement symmetry, which doubles the size of the
symmetry group.

Two techniques have been compared which break symme-
try during search, namely SBDS and GAP-SBDS. In compar-
ing SBDS and GAP-SBDS, our experiments with the K, X P,
graceful graph problems have confirmed that increasing num-
bers of symmetries seriously affect the speed of SBDS. If
the symmetry group is small enough (in one case, 120 el-
ements), SBDS is faster than GAP-SBDS. The boundary is
not clearly defined, and it appears to depend on other factors
such as the type of symmetry and the problem being solved,
rather than just the number of symmetries. However, since
GAP-SBDS is slower on small problems, but still acceptable,
whereas SBDS is unusable on large problems, GAP-SBDS is
the better general choice, from the point of view of perfor-
mance.

GAP-SBDS has also been compared with adding con-
straints to the CSP to eliminate symmetry. For finding all so-
lutions to these graph problems, if simple symmetry-breaking
constraints can be devised to eliminate all the symmetry in a
problem, they are faster than GAP-SBDS. However, if there
is a choice between breaking some of the symmetry using
constraints or breaking all of it using GAP-SBDS, then GAP-
SBDS does less search and runs faster. This may be gener-
ally true when the constraints break at most half of the sym-
metry, as in the problems considered here. GAP-SBDS has
the additional advantage of being independent of the search
order; symmetry constraints are based on the assumption of
a particular search order and deviating from that order can
delay finding solutions. When just looking for one solution
the comparison between symmetry breaking constraints and
GAP-SBDS is not so clear. However, both methods can pro-
vide an improvement both in search effort and runtime over
no symmetry breaking being undertaken.

With good symmetry breaking, constraint programming is
a valuable tool for finding all graceful labellings of symmetric
graphs or proving that they are not graceful. This investiga-
tion has produced several new results on graceful graphs, and
those for K,, X P, graphs are included in the latest version
of Gallian’s survey [Gallian, 2004].

References

[Beutner and Harboth, 2002] D. Beutner and H. Harboth.
Graceful labelings of nearly complete graphs. Results in

Mathematics, 41:34-39, 2002.

[Crawford ef al., 1996] J. Crawford, M. L. Ginsberg,
E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In Luigia Carlucci Aiello, Jon
Doyle, and Stuart Shapiro, editors, KR’96: Principles
of Knowledge Representation and Reasoning, pages
148-159. Morgan Kaufmann, San Francisco, California,
1996.

[Flener et al., 2002] P. Flener, AM. Frisch, B. Hnich,
Z. Kiziltan, 1. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In P. Van
Hentenryck, editor, Proc. of CP’02, LNCS 2470, pages
462-476. Springer, 2002.

[Gallian, 2004] J. A. Gallian. A Dynamic
Survey of Graph Labeling. The Elec-
tronic Journal of Combinatorics (DS6), 2004.

(http://www.combinatorics.org/Surveys).

[GAP, 2000] The GAP Group. GAP — Groups, Al-
gorithms, and Programming, Version 4.2, 2000.
(http://www.gap-system.org).

[Gent et al., 2000] LP. Gent, S.A. Linton, and B.M. Smith.
Symmetry breaking in the alien tiles puzzle. Tech-
nical Report APES-22-2000, APES Research Group,
October 2000. Available from http://www.dcs.st-
and.ac.uk/“apes/apesreports.html.

[Gent et al., 2002] 1. P. Gent, W. Harvey, and T. Kelsey.
Groups and constraints: Symmetry breaking during
search. In P. Van Hentenryck, editor, Proc. of CP’02,
LNCS 2470, pages 415-430. Springer, 2002.

[Henz, 2001] M. Henz.
ketball conference—revisited.
49(1):163-168,2001.

Scheduling a major college bas-
Operations Research,

[L.J.Lustig and Puget, 2001] L.J.Lustig and J.-F. Puget. Pro- |
gram Does Not Equal Program: Constraint Programming | .

and Its Relationship to Mathematical Programming. In /N-
TERFACES, volume 31(6), pages 29-53, 2001.

[Puget, 2004] J.-F. Puget. Breaking symmetries in all differ-
ent problems. In Proceedings SymCon-04: Symmetry and
Constraint Satisfaction Problems, pages 71-78, 2004.

Breaking symmetries in symmetric matrices

Jean-Francois Puget
ILOG
9 Avenue de Verdun
94253 Gentilly Cedex, France

puget@ilog.fr

Abstract

The lex? constraint is a well known way to break
many of the variable symmetries in matrix models
that have both full row and column symmetry. We
derive in this paper a similar set of symmetry break-
ing constraints for symmetric matrices, i.e. matri-
ces M such that M = M?*. We apply our new con-
straint to a combinatorial problem. We show that
this is more efficient than previous work.

1 Introduction

Adding symmetry breaking constraints is one of the oldest
ways of breaking variable symmetries for constraint satisfac-
tion problems (CSPs) [Puget, 1993]. For instance, it is shown
in [Crawford et al., 1996] that all variable symmetries could
be broken by adding one lexicographical ordering constraint
per symmetry. Unfortunately, this method is not tractable in
general, as there may be an exponential number of symme-
tries. It is however possible to remove many symmetries us-
ing a polynomial number of constraints. For instance, when
the variables of the CSP can be represented as a mm X n matrix
X such that any row or column permutation is a symmetry,
we say that the CSP is a two dimensional matrix model with
full row and full column symmetry. In such case, the size
of the symmetry group is |G| = m!n! elements. For matrix
models, it is possible to add a lexicographic order on both
the rows and the columns [Lubiw, 1987] [Flener et al., 2002].
We denote this set of constraints by lez?. It is also shown in
[Flener et al., 2002] that although lex? breaks many symme-
tries, it does not break all of them.

We consider in this paper another kind of matrix models
where the matrix of variables is symmetric, i.e. is such that
X = X'. This means that the matrix is square and equal to
its transpose. Such matrices arise for instance as incidence
matrices of graphs. When we search for a graph on n vertices

satlsfymg some property, we might want to solve this witha

~CSP where there is a 0 — 1 variable z;; for each pair of nodes
(i,7): the variable z;; equals 1 if and only if there exists an
edge between 7 and j. The variable z;; equals the variable
xj; by definition. Therefore the 2 dimensional matrix of the
variables z;; is symmetric. Moreover, this matrix has some
symmetries. Indeed, any permutation of the vertices of the

underlying graph is a symmetry of the problem. A permuta-
tion of the vertices is translated into a permutation of the rows
and of the columns of the matrix. For instance, for a graph
with 4 vertices, the matrix of variables can be depicted as the
one in figure 1a. When we permute the first two vertices, we
permute the first two rows as well as the first two columns.
The result is shown in figure 1.b.

A B C D E B F G

B E F G B A C D

C F H I F C H 1

D G I K G D I K
@ (b)

Figure 1: Some symmetric matrices.

Another case of symmetric matrices appears in quasi group
completlon problems: variable T stands for the product of 4
“by j. If multiplication is commutative, i.e. when z;; = i,
then the multiplication table is represented by a symmetric
matrix.

This paper is organized as follows. Section 2 contains defi-
nitions and notations used in the rest of the paper. We show in
section 3 that the lex? constraint is valid for symmetric ma-
trices. We apply this result to a Ramsey problem in section 4.
Experimental results show that this symmetry breaking con-
straint is much more efficient than previously proposed ones.
We conclude in section 5.

2 Notations

The symmetries we consider are permutations, i.e. one to one
mappings (bijections) from a finite set onto itself. Without
loss of generality, we can consider permutations of 1™, where
I™ is the set of integers ranging from 1 to n. For instance, we
can label the variables of a graph with integers, such that any
variable symmetry is completely described by a permutation
of the labels of its variables. This is formalized as follows.
Let S™ be the set of all permutations of the set /™. The
image of 7 by the permutation o is denoted i%. A permutation
o € S™ is fully described by the vector [1,27,...,n’]. The

product of two permutations o and 6 is deﬁned by z("e) =

(i7)°.

A AN R RN RN N AN R RN RN N RN RN NN NN NN NN NN NN NN N RN NN N NRNNNENNNNHNNH-NNZS. RN N

A constraint satisfaction problem P (CSP) with m vari-
ables is a tuple P = (X, V,D,C) where X is a finite set of
variables (z;)icrn, V is a finite set of values, D a finite set
of finite sets (D;)scrn, and every constraint in C is a subset
of the cross product), ;= D; such that D; C V for all 4.
Without loss of generality, we can assume that V = I™ for
some 7.

A literal is a statement of the form z; = j where j € D;.

An assignment is a set of literals, one for each variable of
the CSP. A partial assignment is a subset of an assignment.

A solution to (V, D, C) is an assignment that is consistent
with every member of C.

A symmetry is a bijection from literals to literals that maps
solutions to solutions. The symmetries of a CSP form a
group : the product of two symmetries is a symmetry, the
identity is a neutral element, and every symmetry has an in-
verse symmetry.

A variable symmetry is a symmetry g such that there is a
permutation o of I™ such that (z; = j)9 = (z;» = j). In
such case, we will denote g by o:

(zi =5)7 = (2 =) ey

A value symmetry is a symmetry g such that there exists a
permutation 6 of I™ such that (z; = j)9 = (z; = j°). In
such case we will denote g by 6:

(z: = §)° = (s = §°))

Our definition of symmetries is similar to the one used in
[Kelsey et al., 2004].

The transpose of a matrix M is denoted M*.

A CSP is a symmetric matrix model if the variables of
the CSP can be represented in a 2 dimensional matrix X =
(zij)icrm jer such that X = X*,i.e. if the following holds :

Vi,j S In, Tij = Tjj

We say that this CSP has full row symmetry (equivalently
full column symmetry), if the following holds: Given any
permutation o of I™, then the permutation p(c) that maps z;;
to z;-jo is a variable symmetry. We say that p(o) is induced
by o. The symmetry amounts to appy the permutation o to
both rows and columns.

3 Breaking Variable Symmetries in
Symmetric Matrices

Adding constraints is one of the oldest methods for reducing
the number of variable symmetries of a CSP[Puget, 1993].
In [Crawford et al., 1996], it is shown that all the variable
symmetries of any CSP can be broken by the following con-
straints.

Vo € G,V =3V° 3)

where V is the vector of the variables of the CSP, and <
is the lexicographic ordering relation. Unfortunately, there
may be an exponential number of symmetries 0. Several
researchers have proposed ways to state only a polynomial
number of constraints [Aloul et al., 2003] [Shlyakhter, 2002]
[Flener et al., 2002] [Puget, 2005]. In most of these cases the

symmetry breaking constraints do not remove all symmetries,
but they remove most of them. The purpose of this paper is
to derive such a polynomial set for symmetric matrices with
row symmetry.

Let us consider an example for the sake of clarity. We con-
sider a 6 x 6 symmetric matrix depicted in figure 2. The vec-
tor of the variables of the problem is ABCDEFGHIJKLMNO.
The diagonal for the matrix is empty. The results we will de-
rive can be adapted to cover the case for non empty diagonals
as well.

A B C D E
A F G H I
B F J K L
cC G I M N
D H K M o
E I L N O

Figure 2: A 6 x 6 symmetric matrix.

Let us consider the permutation of the third and fourth
rows. Then the third and fourth columns are permuted as
well. This yields the matrix depicted in figure 3.

A C B D E
A G F H I
C G J M N
B F I K L
D H M K o
E I N L O

Figure 3: After permuting third and fourth rows (and

columns).

The lex constraint for this symmetry is:
ABCDEFGHIJKLMNO < ACBDEGFHIIMNKLO

This can be simplified into by removing identical variables
occurring at identical indices. This gets rid of variables ADE-
HIJO. We chose to keep J for reasons that will become clear
later. This yields the simplified constraint :

BCFGJKLMN =< CBGFJMNKL

This can be further simplified by removing pairs of vari-
ables already appearing at a lower index. For instance, the
first variable of the first vector is B, and C is the first variable
of the second vector. This means that the set {B, C} is com-
pared at the first index. Then any occurrence of that set can
be removed from the constraint. This set occurs again at the
second index since C is the second variable of the first vector,
and B is the second variable of the second vector. These vari-
ables can be removed from both vectors without modifying
the constraint. Getting rid of all duplicated sets yields :

BFJKL < CGIMN

This says that the third row is lexicographically smaller
than the fourth row! This also says that the third column is
lexicographically smaller than the fourth column. We kept
the variable J in both vectors in order to get this nice result.

This example can be turned into a proof of the following
result. We denote by oy, the permutation induced by the per-
mutation of rows k and [/, and permutation of columns & and
L

Lemma 1. Given a matrix X such that X = X, and given
k < lthen, if ok is a variable symmetry, equation (3) implies
that row k is lexicographically smaller than row l.

As a consequence, if any row permutation is a symme-
try, then we can order all the rows lexicographically by re-
peated application of lemma 1 to permutations of two consec-
utive rows. Since the matrix is symmetric, this is equivalent
to order lexicographically the columns. Therefore, we have
proved the following result:

Theorem 2. Given a symmetric matrix X with full row

symmetry, then equation (3) implies the lex? constraints on
X,

The above proof is inspired by a the proof of the validity
of the lex? constraint given in [Shlyakhter, 2002] for 2 di-
mensional matrices with full row and column symmetry. A
similar proof was later given in [Kiziltan, 2004]. The allperm
constraint of [Frisch et al., 2003] was derived in a similar way
as well.

We have proved that the lex? constraint was valid for sym-
metric matrices. It is known that the lez? constraint does not
break all symmetries for non symmetrical matrices. Is this the
case for symmetric matrix? The answer is yes unfortunately.
We can even use the negative example given in [Flener et al.,
2002] to construct a negative example for symmetric matrix.
Indeed, any 2 dimensional matrix can be used to define a sym-
metric matrix as follows.

Given a m X n matrix A with full row and column symme-
try, we construct the matrix depicted in figure 4. The m x m
upper left quarter is filled with 0 except for the diagonal, as
well as the n x n lower quarter. The upper right quarter is the
matrix A. The lower left quarter is the transpose of A. The
diagonal of this matrix is empty by definition.

A

At

Figure 4: A symmetric matrix.

Any permutation of the first m rows of this matrix is a
symmetry, because A has a full row symmetry. Therefore,

we can order lexicographically the first m rows by repeated
application of lemma 1 to permutations of two consecutive
rows. This amounts to lexicographically order the rows of A.
Similarly, any permutation of the last n rows is a symmetry
because A has full column symmetry. Therefore, we can or-
der lexicographically the last n rows by repeated application
of lemma 1 to permutations of two consecutive rows. This
amounts to lexicographically order the rows of A*. In turn,
this is equivalent to lexicographically order the columns of
A. We have proved that staing lez? on the matrix of figure 4
is equivalent to stating the lez? matrix for A.

Let us look at the matrices given in figure 5. These matri-
ces were given in [Flener et al., 2002]. Both have rows and
columns lexicographically ordered. One can move from one
to the other by swapping the first two rows and the last two
columns. This shows that lexz? does not break all symmetries.

0 0 1 0 0 1

0 1 0 0 1 0

1 0 1 1 1 0
@ (®)

Figure 5: Two matrices with rows and columns ordered.

‘We can now construct two symmetrical matrix, by applying
the construct of figure 4 with each of the matrices in figure 5.
This yields two symmetrical matrices given in figure 6. Both
matrices have rows and columns lexicographically ordered.
However, one can move from one to the other by swapping
the first two rows (and two columns) and the last two columns
(and last two rows).

0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 1 1 0
0 0 1 0 0 0 0 1 0 0
0 1 0 O 0 0 1 1 0 0
1 01 0 O 1 0 0 0 O
@ (®)

Figure 6: Two matrices with rows and columns ordered.
This proves the following. —

Theorem 3. Given a symmetric matrix X with full row
symmetry, then the lex? constraints on X does not break all
symmetries.

In [Kiziltan, 2004] other symmetry breaking constraints
are studied, namely multiset ordering constraints. It is shown
that one can use these constraints to order both rows and
columns for matrices that have full row and full column sym-
metries. A similar argument shows that this is also true for
symmetric matrices.

Theorem 4. Given a symmetric matrix X with full row
symmetry, then X has a symmetrical variant where the rows
and the columns are mutlitset ordered.

Jdd&bilbbbbbbblbbblb&&bb6666&blb&&lbbbb&&&666666666‘66666661

4 The Ramsey Problem

We will use as an example a problem which has been pro-
posed in [Puget, 1993], namely the Ramsey problem. Con-
sider the complete graph with n nodes (each node is con-
nected to every other node). The problem is to color the edges
of this graph with 3 colors, such that for any 3 nodes 1, j, &,
the three edges (4, 7) (4, k) (k, i) do not have all three the same
color (but two of them can have the same color). For n = 16,
this problem has a lot of solutions. For n = 17 there is no
solution. It is not very difficult to write a program for finding
solutions for n < 16. The challenge is to write a program
which solves the problem for n < 16, and proves that there
is no solution for n = 17. This problem can be modeled with
a symmetric matrix X such that x;; represents the color as-
signed to the edge (7,7). Since the graph is non oriented, we
have that z;; = zj;. The color constraint states that

Vi, j, ky Tij # Tik V Tik 7 Thi V Thi 7 Tij

In fact, using constraint reification, stronger constraints can
be stated:

Vi, g, k, (%ij = Tig) + @ik = Trs) + (@ =2i5) <1

Indeed, in any triangle, we can have at most two edges of
the same color.

This model has full row symmetry. It also has some value
symmetries. In fact, any value permutation is a value symme-

try here.

4.1 First Model

In order to break value symmetries, it was proposed in [Puget,
1993] to introduce extra variables counting the number of oc-
currences of each value. We therefore define the variable z;x
to be the number of occurrences of the value & in the i-th
row of the matrix X. The channeling constraints between the
variables z;;; and the variables x;; are generalized cardinality
constraints [Regin, 1996]. The z;;, variables are arranged in a
n X ¢ matrix Z (¢ = 3 in our example).

The following symmetry breaking constraints were pro-
posed in [Puget, 1993]:

The first element of the Z matrix is the largest element of
that matrix:

Vi € In,\/k € Ic, 211 Z Zik (4)
The first row of the Z matrix is decreasing:
Vk € I°7Y, 21k > 21 k41 ®)

The colors of the first row are in increasing order :
Vi eI 215 £ 2444 (6)

4.2 Second Model

The X matrix is symmetrical, therefore one could state lex?
on it. Our second model is obtained by stating (4), (5) and
lex2. We need to show that these constraints are consistent.
The approach of [Crawford et al., 1996] was defined for
Boolean variables and variable symmetries. We can extend it
to arbitrary variables and arbitrary symmetries as follows. A
solution is said to be canonical if it is minimal among all its

symmetrical equivalent. More formally, given G a group of
symmetries (containing variable symmetries, or values sym-
metries, or both) we define the orbit of a solution s to be the
set:

s¢ = {50 € G}

We say that a solution is canonical if it is minimal among
its orbit:

Vo eG, s=<s°

We say that a constraint is a symmetry breaking constraint
if it removes some solutions but removes no canonical solu-
tions. A symmetry breaking constraint is the following:

Vo € G, V=V Q)

This is very similar to (3). The difference is that now G
may contain value symmetries in addition to variable sym-
metries. Stating these constraints remove all solutions except
for the canonical ones.

Let us go back to our ramsey problem, where the vector of
variables V is arranged in the X matrix. We have shown that
lex? is implied by (3), hence it is implied by (7).

Assume that we have a canonical solution s. We have
shown that s is consistent with lez?. Therefore, the values
in the first row of X for this solution are in increasing or-
der. This row starts with z; 1 occurences of 1, followed by
occurences of other values. Assume s is not consistent with
(4). Let us look at the values of the variables z;. There exists
a variable z; ;, such that z; ;, > z11. Let us swap rows 1 and
1, columns 1 and 4, and colors 1 and k. Then let us order the
columns and rows of the X matrix. This yields another solu-
tion where the first row starts with z; j, occurences of 1. Since
zik > 21,1, this new solution is lexicographically saller than
s, which is a contradiction. Therefore, (4) does not remove
any canonical solution.

Assume s is a canonical solution that is not consistent with
(5). Let us look at the values of the variables z;. If the first
row of the Z matrix is non decreasing, then there exists k
such that z1; < 21 k+1. Let ¢ be the first column with value
k. Then in the first row of the solution, there are z; j values
k, starting at index cy,, followed by z; 41 values k+ 1. Then
let us swap the colors & and k + 1, and order the columns of
X after that. This yields a new solution. In this solution, the
first row is the same as the one in the other solution, except
for the occurences of k and k£ + 1. In the new solution, there
are 21 41 occurences of k, starting at cy, followed by z1
occurences of k+1. Since 21 k41 > 21k, the second solution
is lexicographically smaller. Therefore the first solution is not
canonical, which is a contradiction. This proves that (5) does
not remove any canonical solution.

We have proved that none of (4), (5) and lex2 remove
canonical solutions. Therefore their conjunction will not re-
move any canonical solutions. Hence, our second model con-
tains all canonical solutions.

We ran experiments using both models. Results are given
in Table 1. For each model we give the number of solu-
tions found, the number of backtracks and the running times.
The second model is clearly superior. The only difference

between the two models is the variable symmetry breaking
constraint : lex? vs (6).

[Regin, 1996] J-C. Regin: "Generalized Arc Consistency for
Global Cardinality Constraint”, AAAI-96 Portland, OR,
USA, pp 209-215, 1996

[Shlyakhter, 2002] Ilya Shlyakhter, “Generating effective

symmetry-breaking predicates for search problems.” Dis-
crete Applied Mathematics, 2002.

n first model second model
nsol bt time nsol bt time
4 24 3 0.01 12 5 0
5 343 7 0.01 122 16 0.01
6 7,697 50 0.32 1,174 58 0.08
7 252,325 453 5.6 20,773 266 0.57
8 | 7,752,909 35,571 202 | 355,663 3,318 9.09
14 16,285 210,747 26.38
15 30 7,708 1.16
16 | 1,036,800 35,699,452 6,559 6 713 0.25
17 0 651 0.12 0 171 0.06

Table 1. Result for finding all solutions.

5 Conclusion

We have presented a simple symmetry breaking constraint for
symmetric matrix models with full row symmetry. This sym-
metry breaking constraint is analogous to the lez? constraint
for matrix models with full row and column symmetries. Ex-
periments on a combinatorial problem show that these con-
straints break much more symmetries than previously pub-
lished work.

References

[Aloul et al., 2003] E. Aloul, I. Markov, and K. Sakallah “Ef-
ficient Symmetry-Breaking for Boolean Satisfiability”. /n
proceedings of IJCAI 03, Acapulco, Mexico, pp. 271-282,
2003.

[Crawford et al., 1996] Crawford, J., Ginsberg, M., Luks
E.M., Roy, A. “Symmetry Breaking Predicates for Search
Problems.” In proceedings of KR’96, 148-159.

[Flener et al., 2002] P. Flener, A. M. Frisch, B. Hnich, Z.
Kiziltan, I. Miguel, J. Pearson, T. Walsh.: “Breaking Row
and Column Symmetries in Matrix Models. *“ Proceedings
of CP’02, pages 462-476, 2002

[Frisch et al., 2003] Alan M. Frisch, Chris Jefferson, and Ian
Miguel “Constraints for Breaking More Row and Column
Symmetries “. Proceedings of CP’03.

[Kelsey et al., 2004] Kelsey, T, Linton, SA, Roney-Dougal,
CM. “New Developments in Symmetry Breaking in
Search Using Computational Group Theory”. In Proceed-
ings AISC 2004. Springer LNAIL 2004.

[Kiziltan, 2004] ZXKiziltan, Symmetry Breaking Ordering

Constraints PhD dissertation, Uppsala University, March
2004.

[Lubiw, 1987] Anna Lubiw Doubly lexical orderings of ma-
trices, SIAM J. on Computing 16, 1987, 854-879.

[Puget, 1993] Puget, J.-F.: “On the Satisfiability of Symmet-
rical Constraint Satisfaction Problems.” Proceedings of IS-
MIS’93 (1993), 350-361.

[Puget, 2005] Puget, J.-F.: “Breaking symmetries in all dif-
ferent problems”. To appear in proceedings of IJCAI 05.

OO0 OOIVOVNVVVVVV00VV000IINNIIIINININIOIGIOGIDIOIIIOIDBPOIOGIOGIOGIOGIOIGOGIOG®EGS®S

Sets of Symmetry Breaking Constraints

Barbara M. Smith
Cork Constraint Computation Centre, University College Cork, Ireland
b.m.smith@4c.ucc.ie

Abstract

[Puget, 2004] has shown that if the symmetry in
a constraint satisfaction problem acts only on the
variables and there is also an allDifferent con-
straint on the variables, the symmetry can be elim-
inated by adding a small number of constraints,
linear in the number of variables. In this paper,
Puget’s procedure for finding a set of symmetry-
breaking constraints is extended to find all possible
distinct sets? It is shown that there can be expo-
nentially many distinct sets of symmetry breaking
constraints, leading to the need to choose between
them. The choice depends on how the problem
will be solved, and specifically on the variable or-
der. Since a variable order can lead to a choice of
symmetry-breaking constraints, it seems plausible
that the same variable order should be used during
search; however, experiments with a graceful graph
problem do not show that pairing the symmetry-
breaking constraints with a compatible variable or-
der in this way leads to reduced search.

1 Introduction

If the symmetries of a CSP permute the variables, and not
the values, there is a systematic procedure for generating
symmetry-breaking constraints, given by Crawford, Gins-
berg, Luks and Roy [Crawford et al., 1996]. This proce-
dure requires an order of the variables to be specified, and
the symmetry breaking constraints that are derived depend
on this order; hence in theory, if there are n variables, there
could be n! different sets of symmetry-breaking constraints.
In practice, this does not happen; different variable orders can
give exactly the same constraints, or different orders can yield
equivalent constraints. Taking this into account, there may be
only a few distinct sets of symmetry-breaking constraints that
we can consider adding to the CSP, or perhaps only one.

This is true in general of these kinds of symmetry and
symmetry-breaking constraints. In this paper, the question
of how many distinct sets of symmetry-breaking constraints
there can be is investigated, specifically for problems where
there is an allDifferent constraint on the variables. Puget has
shown [Puget, 2004] that in such a case, the symmetry can be

broken with a small number of constraints (linear in the num-
ber of variables) and gives a procedure for generating them
from the symmetry group. Here, the procedure is adapted to
generate all the symmetrically distinct sets of constraints. As
in [Puget, 2004], instances of the ‘graceful graph’ problem
are used as examples, since these do have variable symme-
try and an allDifferent constraint on the variables. Grace-
ful graph problems also have a value symmetry, but for the
present purposes that is ignored.

2 Graceful Graphs

A labelling f of the nodes of a graph with ¢ edges is grace-
ful if f assigns each node a unique label from {0, 1, ...,q}
and when each edge xy is labelled with |f(z) — f(y)|, the
edge labels are all different. (Hence, the edge labels are a
permutation of 1, 2, ..., ¢.) [Gallian, 2003] gives a survey of
graceful graphs, i.e. graphs with a graceful labelling, and lists
the graphs whose status is known.

Figure 1: The graph K3 x P,: the node numbers correspond
to the indices of the CSP variables zg, =1, ..., Z5.

Figure 1 shows an example of a graph that has a graceful
labelling. This graph is an instance of the class of graphs
K, x P,, consisting of n copies of a m-clique (K ,), with
corresponding nodes in each clique joined by a path of length
n (P,). A possible model of this problem as a CSP has a vari-
able for each node, in this case zg, Z1, ..., Z5, corresponding
to the node numbering given in Figure 1. The domain of z ;
is {0..., 8}, since there are 9 edges. These are the search vari-
ables. We also have a variable for each edge, in this case
do, .., dg, with domains {1...,9}. If edge k joins nodes ¢
and j, we have a constraint d = |z; — x;|. The variables
29, T1, ..., Z5 are all different, as are do, .., d14.

As discussed in [Petrie and Smith, 2003], symmetry in the
resulting CSP arises in two ways. First there is the sym-
metry of the graph: in this case, we can permute the nodes
within any clique as long as we permute the nodes in the other
cliques in the same way; and we can reverse the order of the
cliques, so that in this case, the first clique (nodes 0, 1, 2)
swaps with the second clique (nodes 3, 4, 5). Second, in any
assignment to the node variables, we can replace any value
v by ¢ — v; this symmetry will be ignored in this paper. For
K,, x P, graphs, we can eliminate the graph symmetry by
adding constraints on the node variables to the model.

3 Examples of Symmetry Breaking
Constraints

In this section, two examples are given to show that different
variable orders do not necessarily yield different constraints,
but may do.

Suppose that we have n variables and the symmetry group
acting on them is S, i.e all permutations. A graceful graph
problem with this symmetry is the problem of finding grace-
ful labellings of a clique. It has been known for a long time,
and is easy to show, that the clique K, is graceful iff n < 4,
so that solving the corresponding CSP is not very interesting
in itself; nevertheless, it provides a good illustration.

The CSP model has a variable for each node,
Z0,T1,...,Tn_1. If the procedure given in [Crawford et
al., 1996] is applied to this problem, taking the variables in
lexicographic order, we get a set of symmetry-breaking con-
straints that can be simplified to ¢ < z1 < T2... < Tp_1.
(The simplification involves dropping constraints that are
implied by combinations of other constraints, through
transitivity, e.g. o < x3.)

If we started from another variable order, say
Tp—1,Tn_2, ...y T2, T1, Lo, We would get a different set
of constraints, i.e. Tp_1 < Tp—2 < < x1 < xo.
However, these constraints are equivalent to the first set: an
element of S,, acts on the order zg, z1, ..., £n—1 to produce
Tp_1,Tn_2,...,L2,2L1, Lo and also transforms the first set
of constraints into the second. A search for a solution to
the first CSP (i.e. with the first set of constraints added)
could be transformed into an equivalent search in the second
CSP, with the second set of constraints, by applying the
same symmetry to the assignments made. Hence, although
the n! possible variable orders each yield a different set of
symmetry breaking constraints, all these sets are effectively
the same.

Now consider the problem of finding graceful labellings
of the graph shown in Figure 1. The symmetry of the graph
allows the labels of the nodes in each 3-clique to be permuted
as long as the labels in the other clique are permuted in the
same way; we can also swap the labels of the nodes in one
clique with the corresponding nodes in the other clique; and
we can combine these transformations. The symmetry group
has 12 elements (3! X 2).

The variable order zg, z1, ..., 5 would give the symme-
try breaking constraints zo < z1;To < Z2;To < T3;To <
24; 20 < x5 and 1 < zs. In fact, any variable order in which
xo and 1 are placed first (as well as some other orders) will

give exactly the same constraints. Also, as with labelling K,
there are variable orders which will give different but equiv-
alent constraints, e.g. ¢, Ts, .., £o. However, starting from a
variable order that placed z(and z4 first, we would get the
constraints g < T1;Zo < To;xo < T3;%9 < T4;x9 < Ts
and z4 < z5. These constraints are different from the first
set; there is no element of the symmetry group which will
transform one into the other. Abstracting from the specific
naming of the nodes, the first set of constraints says that an
arbitrary node of the six is constrained to have the smallest
label, and an arbitrary ordering is imposed on the labels of
the other two nodes in the same 3-clique. The other set of
constraints similarly selects a specific node to have the small-
est label, but imposes an arbitrary ordering on the two nodes
in the other clique which are not connected to the first node.

The next section discusses deriving the distinct sets of
symmetry-breaking constraints by extending the method
given in [Puget, 2004].

4 Deriving Symmetry-Breaking Constraints

Finding symmetry-breaking constraints using the method de-
scribed in [Crawford ef al., 1996] requires, in theory, writing
down the effect of every element of the symmetry group. (In
practice, they are often derived more intuitively.) The method
given in [Puget, 2004] is specialised for problems where there
is an allDifferent constraint on the variables and in that case
gives the same results as [Crawford ez al., 1996]. It deals with
the original symmetry group and subgroups of that, rather
than the individual elements of the group. Puget’s method
can be used to derive the constraints automatically; however,
even if the constraints are derived by hand, it is much less
time-consuming than that in the earlier paper.

Recall that the symmetry group in a graceful graph prob-
lem acts only on the variables of the CSP (ignoring the com-
plement symmetry). The first step in Puget’s method is to
partition the variables into orbits: the orbit of a point acted on
by a group is the set of points that it can be transformed into
by the group elements. In finding graceful labellings of both
K, and K3 x Ps, any node can be transformed into any other
node by the graph symmetry, so the initial partition has just
one set, containing all the variables.

Next, we choose a (non-singleton) orbit, if there is more
than one, and pick an arbitrary variable in that orbit, say z o.
We impose the constraints that zo should be less than any
other variable in its orbit.

Next we find the stabiliser of xo; this is the subgroup of the
original symmetry group that leaves ¢ fixed. Intuitively, it
is easy to do this in the graceful graphs instances; we can for
instance imagine fixing node 0 in Figure 1 and see what trans-
formations of the graph are still possible. Clearly, with node
0 immovable, we can still swap z1 and x5 and simultaneously
x4 and z5. The stabiliser therefore has just two elements, in-
cluding the identity transformation that does nothing.

We again partition the variables into their orbits in the sta-
biliser of zo. Since zg is by definition fixed by its stabiliser,
its orbit just contains itself, and some other variables may also
be fixed by the stabiliser of z¢ (in the case of K3 x P, z3
is also fixed by the stabiliser of zo.) The other orbits in this

G O00POOSIVPVVINNNIPIPVVIVIIINIINIIINIININONNIIIPIOIOIOIOBGIOIOGOOIOOOPIOGOOOGSO®S

example are {1, z2} and {z4, z5}. Again, we choose an or-
bit and pick an element in the orbit, say =1, and impose the
constraint z1 < Zs.

We repeat these steps, finding the stabiliser of ¢ and z; (or
the stabiliser of z; within the stabiliser of zg, which amounts
to the same thing). In the example of K3 X P, if we fix
nodes 0 and 1, the whole graph is fixed, so the new stabiliser
contains just the identity, and this is the signal to terminate
the process.

If we select zo from the first orbit, and then choose the
orbit {z1,z2} and z; within that, we get the first set of
symmetry-breaking constraints given earlier for K'3 X P, i.e.
o < T1;%0 < T2;To < T3;To < Ta;To < x5 and 1 < .
However, if we chose the orbit {z 4, 5} in the second stage,
and x4 within that, the last constraint would be replaced by
z4 < s, 1.e. the second set of constraints given earlier.

We can therefore see that:

e the choice of one variable rather than another within an
orbit will give different sets of symmetry-breaking con-
straints, but the different choices in this case are sym-
metrically equivalent, since the group (either the orig-
inal group or the current stabiliser) acts equally on all
elements within an orbit;

e the choice of one orbit rather than another will give dif-
ferent sets of symmetry-breaking constraints which are
symmetrically distinct, since the group has a different
effect on each orbit.

The process gives the same symmetry-breaking constraints
as in [Crawford et al., 1996] if we use a pre-specified order
of the variables to guide the choice of orbit and the variable
within the orbit. In the K3 x P, example, any variable order
that has xzq first would lead to choosing x o from the first orbit.
Any variable order that has either x1 or x5 before both x4 and
x5 would choose the orbit {z1, 25 } rather than {z4, z5}; and
if the order had z; before x5 it would choose x1 < x5 rather
than x93 < z1. Hence, many different variable orders would
yield exactly the same set of constraints in this example.

5 Alternative Sets of Constraints

We can represent schematically the symmetrically distinct
choices, that are given by different orbits, and the constraints
that they lead to, as shown in the example below, which shows
the derivation of the two distinct sets of symmetry-breaking
constraints for K3 X P,. (Note that the elements of the orig-
inal group and the stabilisers are not listed, except when the
current stabiliser contains only the identity element, shown as

{i})

Go: symmetry group of K3 X P,
orbit: {330, Z1,%2,T3,T4, xS}
constraints: zg < T1;%0 < T2;To < T3;To < T4;
xo < s
G : stabilizer of zg
orbit 1: {z1,z2}
constraints: 7 < Z2
Go: stabiliser of g, z1 = {i}
o <x1; To < T2; To < T3; To < Ty;

o < T, T1 < T

orbit2: {z4, x5}
constraints: x4 < Is
Gl: stabiliser of zg, z4 = {1}
To < x1; To <ZT2; To <ZT3; To < T4;

To < Tz, T4 < Tp

Returning to the clique, K ,,, we get a single set of symme-
try breaking constraints, apart from symmetric equivalents.
At each stage, the stabiliser of the elements fixed so far is the
complete symmetry group, S, acting on the remaining % el-
ements, and these elements can all be transformed into each
other by the action of the stabiliser, so that there is a single
orbit.

Go: symmetry group of K,, = S,
orbit: {xg, Z1, ..., Tn }
constraints: g < Z1; %o < L2; Lo < T
G stabilizer of ¢ = .5, acting on
L1,22y -4y Tn
orbit: {1, T2, ..., Tn }
constraints: 1 < xo; 1 < 3;....;T1 < Ty
Go: stabiliser of zg,z;1 = S,_2 acting on
Z2,X3, ..., Tn
orbit: {z2,...,Tn}
constraints: o < x3; %2 < Tg;....;Ta < T

and so on. As mentioned earlier, the resulting constraints can
be simplified into ¢ < 1 < T2 < Z3.... < Zp.
A more interesting case is K3 X P3, shown in Figure 2. In

Figure 2: The graph K3 x Ps

this case, the original symmetry group of the graph partitions
the variables into two different orbits, since the nodes in the
two outer 3-cliques are interchangeable, as are the nodes in
the middle 3-clique, but an outer node cannot be mapped to
a middle node. In all, we get 9 distinct sets of symmetry
constraints:

Gy: symmetry group of K3 x Pj
orbit 1: {.1.7(), X1,T2,Z6, L7, 338}
constramnts: zog < x1; 20 < X2;Zo < Te; To < T7;
o < Ig
G'1: stabilizer of zg
orbit 1: {z1,z2}
constraints: 1 < Zo
Go: stabiliser of zg, z1 = {1}

To < x1; To <x2; To < xg; To < X7
To <xg; T1 < T2
orbit 2: {z4, x5}
constraints: 4 < s
G: stabiliser of zg, 4 = {3}
To <x1; To < T2; Zo < Tg; Zo < Tr;
To < xg; T4 < Ts
orbit 3: {z7, zs}
constraints: 7 < g
GJ: stabiliser of zo, z7 = {i}
o < x1; To < T2; Zo < Te; Lo < Tr;
To < xg; Ty < T8

orbit 2: {z3, 4, x5}
constraints: r3 < x4; 3 < Ts
(1 stabilizer of z3
orbit 1: {z, z6}
constraints: g < Zg
Go: stabiliser of z3, zg
orbit 1: {z1, 22}
constraints: z; < T2
G3: stabiliser of 3, zo, 21 = {i}
|9U3 < Tg; T3 <Ts5; To < Tg;
orbit 2: {z4, x5}
constraints: x4 < Zs
G3: stabiliser of z3, zg, 24 = {i}
|CE3 < x4; 3 < Ty, To < Te; $4<I5|
orbit 3: {z7,zs}
constraints: x7 < Zg
G3: stabiliser of z3, zg, z7 = {i}

.Z‘1<I2|

Lﬂcs <y 3 < Ts; To < Te; Tr < $8|
orbit 2: {z1, %2, 7,28}
constraints: 21 < To;21 < T7;21 < Ts
Gj: stabiliser of z3, 21 = {i}
z3 < Tg; T3 < Tp;T1 < To; L1 < Tr;
T1 < Tg

orbit 3: {4, 25}
constraints: 4 < Zs
Go: stabiliser of z3, 24
orbit 1: {zo, 6}
constraints: zg < Zg
G3: stabiliser of z3, x4, zo = {1}
|m3 < xa;x3 < T g < Ty To < a:6|
orbit 2: {z1,z7}
constraints: 1 < x7
Gs: stabiliser of z3, 4,21 = {i}
].T;), < Z4;T3 < T5;74 < Ts;21 < .T7|
orbit 3: {z2, x5}
constraints: zs < xg
Gj: stabiliser of 23, 4,22 = {i}
|.723 < xy;x3 < Ts; T4 < Ty To < ng

Note that although ten sets of constraints are derived above,
the 5th and 8th sets are identical.

6 How Many Sets Can There Be?

Puget showed that variable symmetry in a problem with an
allDifferent constraint on the affected variables can be bro-
ken by a linear number of binary < constraints. The ex-
amples above might suggest that the number of distinct sets
of symmetry-breaking constraints might be similarly limited.
However, it is not; the following example shows that there can
be exponentially many sets. K, X P is the general class of
which K3 x P is a small example. Under the original sym-
metry group, all the nodes form a single orbit, but at every
later stage, there are two possible orbits, one corresponding
to each clique, and hence two choices for the next constraints
to add. The following shows the first few levels.
Go: symmetry group of K., X P
orbit: {:coZ X1, T2y ooy Lam—1}
constraints: o < Z1;20 < Z2;...;T0 < Tam—1
"~ Gj: stabilizer of zg
orbit I: {z1,Z2, ..., Tm—1}
constraints: 1 < 2,21 < T3, ..., L1 < Tm—1
Gq: stabiliser of zg, 1
orbit 1: {z2, 3, ..., Tm—1}
constraints: ro < 3;To < Tgj ..., T2 < Tm—1
orbit 2: {a;m+2, T S , Toam— }
constraints: Tpm+42 < Tm43; Tm+2 < Tm+3;
<3 Tl < T2m—1
orbit 2: {afm+17 L2y eeeees : me—l}
constramts: Tyy4+1 < Tm42; Tmt1 < Tm42;
<5 Tmtl < Tam—1
Go: stabiliser of g, Tym+1
orbit 1: {z2, 3, ..., Tm—1}
constraints: zo < 3;To < Tgj...,To < Tm—1
orbit 2: {a?m+2, Top 3y eeenee , Tom—1}
constraints: T2 < Tm43; Tm42 < Tm43;
3 Tl < Toam—1

So in constructing a set of symmetry-breaking constraints,
we can flip backwards and forwards between the two cliques,
adding constraints between the variables of either clique.

At each point where there is a choice between two or-
bits, the first constraint resulting from either choice will never
arise if the other orbit is chosen instead. For instance, when
there is a choice between the orbits {z1, 2, ..., Zm—1} and
{Zmt1, Tmt2y oo , Tam—1}, We get a constraint 1 < z in
the first case, and £, 41 < Zm42 in the second. Since z; and
Zm+1 have the same stabiliser within the stabiliser of z¢, nei-
ther variable appears in any subsequent non-singleton orbit
along either branch, hence no further constraints involving
these variables can arise. Depending on the later choices,
some of the constraints added at this point may later be-
come redundant due to transitivity: for instance, if we choose
{z1, %2, ..., Tm—1} at this stage and {z2, x3, ..., Tm—1} at the
next, the constraints £; < 3, ...,21 < Tm,_1 are subsumed
by 21 < Z2,T2 < Z3;%2 < T4;..,T3 < Tm—1. But
the first constraint added at each stage will not become re-

‘000000000006000000.000000066056bé‘bﬁbi‘.“‘i.0‘.000006.‘06‘

dundant, and as already shown, it would never arise if the
alternative choice of orbit were made. Hence every set of
symmetry-breaking constraints, resulting from choosing be-
tween two orbits at each stage of the algorithm, is different
in at least one constraint from any other set resulting from
making different choices. There are m — 2 levels of bi-
nary choice between two orbits (the last choice is between
{Tm-2,Lm—1} and {T2m_2, Toam-1) and hence 2™ dif-
ferent sets of symmetry-breaking constraints can be derived.
(As already shown, K3 x P, has 2 distinct sets of symmetry-
breaking constraints.)

7 Which Constraints To Choose?

If there is more than one set of possible symmetry-breaking
constraints, which should we choose? This is not a question
that has hitherto been much considered. If users derive sym-
metry breaking constraints systematically, they are likely to
start from a lexicographic order based on some numbering
of the variables which reflects in some way the structure of
the problem, and find just one set of constraints. It is now
clear that there can be many distinct sets of symmetry break-
ing constraints, and choosing arbitrarily may not lead to the
most efficient way of solving the problem at hand.

A further complication is that the symmetry breaking con-
straints interact with the search strategy, so that neither can be
chosen independently. It can be expected that if the variable
ordering used during the search for solutions is incompatible
with the symmetry-breaking constraints, in some sense, find-
ing solutions can be delayed rather than made more efficient.
The aim in adding symmetry-breaking constraints to the CSP
is to forbid all but one solution from each symmetry equiva-
lence class; the variable ordering also induces an order on the
solutions in each equivalence class. If the only solution al-
lowed by the constraints appears late in the induced order of
symmetrically equivalent solutions, then search effort may be
wasted in considering partial solutions that could lead to com-
plete solutions to the original problem but are now excluded
by the symmetry-breaking constraints. In this way, adding
symmetry-breaking constraints could be counter-productive
if used with an incompatible variable ordering.

Since the procedure for deriving symmetry-breaking con-
straints in [Crawford et al., 1996] requires a variable order
to be specified (as does the procedure described earlier), it
is generally felt that the same order should be used for the
search, if a static variable order is to be used, or as a tie-
breaker if a dynamic order such a smallest domain is used.
In this section, the sets of symmetry-breaking constraints de-
rived earlier for the K3 x Pz problem are investigated, and
their interaction with a static order. Two questions of interest
are: is it possible to decide which symmetry-breaking con-
straints are best, and is it true that the variable order used to
derive the constraints should also be used for the search?

For each of the nine representative sets of symmetry-
breaking constraints in this problem, we can find a variable
order that would give that set. In the results given below,
these variable orders are used as static variable orders during
the search for all solutions. The variable orders found are,
of course, not unique; here, the lexicographically smallest

variable order has been chosen. Choosing a different vari-
able order might give a more efficient search. Nevertheless,
the results may give some indications of the answers to these
questions.

The sets of constraints as given earlier are:

o A:xg < x1;T0 < T2;%0 < Te;To < T7;To < T
1 < X9

e B:xg <1570 < T2;%0 < Te; To < T7;T0 < T8;
g < s

e C:xp <x1;T0 < T2;%0 < Te; To < X7;To < T8;
T7 < X8

o D:xg < x4;73 < Ts;%0 < Tg; T1 < T2

E:x3 < x4;73 < Ts;20 < Tg; Ta < Ty

Fras3 <zy;23 < x5;%0 < Ty 7 < T8

e Gizg <zy;23 <Ts5;71 < T23%1 < T7;T1 < XY

H:z3 < x4;23 < Z5;T4 < Ts5;T1 < T7

o Iiz3 < x4523 < T5;%4 < Ts;T2 < X8

Variable orders that would lead to the constraints A, for
instance, must have ¢ as the first variable, so that we choose
the first orbit ({xo, 71, T2, Ts, T7, L3 }), at the top level rather
than the second ({z3, Z4, =5 }), and xg rather than z1, Z2, s,
x7 or xg from the first orbit. It must then have x; before z,
T4, Ts, T7 OF Tg, S0 that we choose the first orbit as the second
level, and z; rather than z5. A possible order is o, Z1, T2,
T3, T4, Ts, Tg, L7, Tg, but many other orders would give
the same constraints, and many more would give equivalent
constraints.

Nine possible variable orders, giving the nine sets of
symmetry-breaking constraints, have been derived. These
have been used as static variable orders in the search for
graceful labellings of K3 x P3. Tables 1 to 4 show the re-
sults (using ILOG Solver 6.0). For space reasons, the vari-
able orders are given as lists of subscripts, so that 0, 1, 2, 3,
4,5, 6,7, 8 represents zo, T1, T2, T3, T4, L5, L6, L7, T8- Each
variable order is labelled A to I, according to the correspond-
ing set of symmetry breaking constraints. In Tables 1 and 3,
both allDifferent constraints have been treated as sets of bi-
nary # constraints; in Tables 2 and 4, bounds consistency has
been maintained on the allDifferent constraints on the edge
variables. (For this problem, bounds consistency is almost
as effective in pruning variable domains as generalized arc
consistency, and is much faster.) The final variable order in-
cluded in the tables, z3, x4, Ts, To, 1, T2, L6, L7, Tg, iS one
that a user might choose for this problem, since it reflects the
structure of the graph: the first three variables are the most
constrained (before adding symmetry-breaking constraints),
and it makes intuitive sense to instantiate all the variables in

Symmetry-breaking Constraints

Variable order A B C D E F G H I
0,1,2,3,4,5,6,7,8(A) | 3,434 885 12,904 |6,202 |4,939 |4,566 975 836 975
0,4,1,2,3,5,6,7,8(B) 273 273 353 797 377 495 323 873 | 1,797
0,7,1,2,3,4,5,6,8 (C) | 2,008 | 3,999 |2,074 | 7,991 |2,827 |7,133 169 169 456
3,0,1,2,4,5,6,7,8 (D) 41 294 36 294 256 | 1,296 41 36 | 1,240
3,0,4,1,2,5,6,7,8 (E) | 1,006 545 | 1,809 545 260 | 1,381 [1.006 |1,809 |1,753
3,0,7,1,2,4,5,6,8 (F) 20 | 1,450 20 | 1.450 716 |2,946 20 20 {1,879
3,1,0,2,4,5,6,7,8(G) 42 840 37 141 141 399 314 315 314
3,4,1,0,2,5,6,7,8 (H) | 3,336 | 2,087 | 6,398 34 26 116 34 231 [1,328
3,4,2,0,1,5,6,7,8() | 4,113 | 2,053 | 7,105 111 55 138 14 154 |1,462
3,4,5,0,1,2,6,7,8 5,018 | 2,989 | 8,436 | 1,581 | 1,493 |2,187 726 |1,519 (3,095

Table 1: Number of backtracks to find a graceful labelling of K 3 x P, treating the allDifferent constraint on the edge variables

as binary # constraints.

Symmetry-breaking Constraints

Variable order A B C D E F G H I
0,1,2,3,4,5,6,7,8(A) | 12 | 12 12 41 | 160 27 | 27 | 23 | 27
0,4,1,2,3,5,6,7,8(B) | 75| 75 54 323 | 155 215 | 117 | 309 |550
0,7,1,2,3,4,5,6,8(C) | 65 | 123 68 2,739 | 17 (2,309 | 8 | 86 | 53
3,0,1,2,4,5,6,7,8(D) | 16 | 134 15 134 | 112 306 | 16 | 15 |239
3,0,4,1,2,5,6,7,8(E) | 200 | 69 363 69 | 66 236 | 200 | 363 |384
3,0,7,1,2,4,5,6,8 (F) 9 | 560 9 560 | 362 723 | 99 9 | 576
3,1,0,2,4,5,6,7,8(G) | 42 | 840 37 48 | 48 152 | 75 | 60 | 75
3,4,1,0,2,5,6,7,8(H) | 733 | 316 | 1,339 14 | 11 51 14 | 100 |484
3,4,2,0,1,5,6,7,8() | 459 | 338 | 1,487 49 | 26 56 5| 66 |483
3,4,5,0,1,2,6,7,8 252 | 158 226 39 | 147 162 | 116 | 101 |589

Table 2: Number of backtracks to find a graceful labelling of K'3 x P;, maintaining bounds consistency on the allDifferent

constraint on the edge variables.

a clique before moving to another clique. (This variable or-
der would give rise to the symmetry-breaking constraints E,
if used for that purpose.)

There are several things that can be noticed from the tables.
The most obvious is that search effort does vary with both
variable order and symmetry-breaking constraints. How-
ever, it is difficult to discern any consistent pattern in any
of the tables. Significantly, there is no evidence that a set
of symmetry-breaking constraints does relatively better with
a variable order that could give rise to those constraints than
with another variable order. Tables 1 and 2 have been in-
cluded because one might expect that the link, if any, between
a set of symmetry breaking constraints and the corresponding
variable order would be stronger than when finding all solu-
tions, but it is still not apparent.

In Tables 3 and 4, bounds consistency affects the relative
ranking of the sets of constraints. Constraints D and G give
the best results for several variable orders in Table 3, i.e. for
finding all solutions with # constraints. However, if bounds
consistency is maintained, constraints A and B do much bet-
ter. Note that the first three sets of constraints force node 0 to
have the smallest label. In consequence, it must be labelled
0, but this is not easily discovered from the # constraints.

Eight of the nine sets of constraints form three overlapping
groups. Sets A, B and C are identical except for the final

constraint (x1 < z2; T4 < Zs5; 7 < Tsg respectively). For
most of the selected variable orders, A is better than B, which
is better than C; A is consistently better than C for all orders
in both tables.

Sets D, E, F also match except for the same constraints
(x1 < z2; T4 < ws; 7 < xg respectively). In this case,
bounds consistency changes the ranking order: in Table 3, D
and E are both better than F, and D is usually better than E;
however, with bounds consistency, D becomes worse than the
other two, and E and F are broadly similar in performance.

Finally, E, H and I are the same in ordering the node labels
of the middle clique, and have an additional constraint (zo <
Te; 1 < T7; T2 < xg respectively).With # constraints, E
is consistently better than H and I, and H is usually better
than I, except for the orders that have x 7 early, although these
are not good orders for any set of constraints. With bounds
consistency, I is better than E for all the orders; perhaps in
this case, the constraint x7 < zg allows useful inferences to
be made about the third clique, while node labels in the other
cliques are being assigned.

Overall, the picture is quite confusing. It is evidently not
possible to choose a best set of symmetry breaking constraints
without taking into account the constraint propagation that
will act on these constraints (and the others already in the
problem). If the allDifferent constraint is treated as a # con-

000000‘0600000066606606606666bb6b&66666‘6‘666000666‘6“6“6‘

Symmetry-breaking Constraints
Variable order A B C D E F G H I
0,1,2,3,4,5,6,7,8(A) | 124,694 | 140,890 |207,994 | 85478 |113,629 |136,843 | 82,323 138,530 [148,077
0,4,1,2,3,5,6,7,8 (B) | 125,103 | 139,348 | 210,131 | 77,245 | 103,295 |127,583 84,370 139,990 |149,995
0,7,1,2,3,4,5,6,8(C) | 238,390 | 354,736 | 336,589 | 351,703 | 225,775 401,824 |278,133 407,995 |297,546
3,0,1,2,4,5,6,7,8 (D) | 125,220 | 142,211 | 209,668 | 85,880 | 114,355 |137,805 82,494 139,432 |148,769
3,0,4,1,2,5,6,7,8(E) | 125,308 | 141,862 | 213,354 | 75,465 | 102,865 128,765 | 83,288 |136,571 |151,150
3,0,7,1,2,4,5,6,8(F) | 242,143 | 366,689 | 348,953 |363,602 |260,900 424596 |284,224 |420,820 (300,730
3,1,0,2,4,5,6,7,8(G) | 125,206 | 142180 | 209,742 | 86,076 | 114,552 137,983 | 82,664 |139,660 |[148,850
3,4,1,0,2,5,6,7,8 (H) | 124,264 | 141,597 | 213,233 | 75,552 | 102,639 128,646 | 83,189 |136,748 |150,260
3,4,2,0,1,5,6,7,8 (1) | 137,990 | 151,185 |222,969 | 84,106 | 113,097 135,150 | 87,162 |148,109 {153,809
3,4,5,0,1,2,6,7,8 141,992 | 140,712 | 228,760 | 70,263 | 97,132 | 124,893 | 82,980 |121,352 151,333

Table 3: Number of backtracks to find all graceful labellings of K3 x Ps, treating the allDifferent constraint on the edge
variables as binary # constraints.

Symmetry-breaking Constraints
Variable order A B C D E F G H I
0,1,2,3,4,5,6,7,8(A) | 13,026 | 14,477 [19,947 | 32,609 |32,145 |32,262 30,238 | 47,694 |21,582
0,4,1,2,3,5,6,7,8 (B) | 16,083 | 14,266 | 25,739 |30,908 |29,465 |27,398 31,789 47,458 (23,436
0,7,1,2,3,4,5,6,8(C) | 41,913 | 45394 | 60,349 | 78,571 |54,644 | 65372 |61,039 68,409 |36,745
3,0,1,2,4,5,6,7,8(D) | 12,803 | 14,045 | 19,530 | 33,797 |32,465 |32,702 30,938 | 48,923 |21,427
3,0,4,1,2,5,6,7,8 (E) | 14,382 | 12,953 | 21,556 | 33,904 |31,222 |30,938 33,964 50,975 (22,167
3,0,7,1,2,4,5,6,8(F) | 38,488 | 25,199 | 56,735 | 83,383 | 56,735 | 64,113 |62,637 58,455 |37,025
3,1,0,2,4,5,6,7,8(G) | 12,838 | 14,235 | 19,608 |33,707 | 32,547 |32,764 |31,004 48,959 21,268
3,4,1,0,2,5,6,7,8 (H) | 15,834 | 13,482 | 22,155 | 33,078 |32,217 |30,367 |33,729 50,372 {21,989
3,4,2,0,1,5,6,7,8 () | 12,375 | 13,799 | 19,618 | 37,231 | 34,895 |33,426 |35,283 58,496 |27,991
3,4,5,0,1,2,6,7,8 10,552 | 14,086 | 21,501 | 31,569 |28,741 |25,943 |31,478 | 36,322 20,880

Table 4: Number of backtracks to find all graceful labellings of K3 X P, maintaining bounds consistency on the allDifferent

constraint on the edge variables.

straint, sets D and G do well (for these variable orders), which
suggests that heterogeneous constraints, that involve different
parts of the problem, are a good choice. On the other hand,
if bounds consistency is maintained, constraints A and B do
better. We might conclude that constraints that allow strong
conclusions to be drawn (e.g. that node 0 must be labelled 0)
are a good choice, provided that the level of propagation does
allow the conclusion.

The tables also allow some comparison of variable orders
for this problem (although note that the variable orders pre-
sented here are relatively good ones; many orders that are
much worse than any of the orders in the tables can be found).
The best results overall, for finding all solutions, are from
the final variable order, x3, 4, T5, o, 1, L2, L6, L7, Lg. Lhis
was also the best performance found, out of many other vari-
able orders not shown in the tables, although a systematic
investigation has not been practicable. Again, this variable
order gives best results with constraints D if bounds consis-
tency is maintained; otherwise, constraints A are best. This
variable order is, however, rather poor for finding just one
solution. Similarly, of the variable orders selected for the ta-
bles, C and F are clearly much worse than others, at least for
finding all solutions. These both assign a value to z7 early
in the search, immediately after xo and before z;. Since x7
is not directly connected to ¢ and z;, this order could be

expected to lead to wasted search. Orders C and F do not
do better with constraints C and F respectively than they do
otherwise, so again there is little evidence here that a set of
symmetry breaking constraints should be used with a vari-
able order that would give rise to it. However, the link with
the variable ordering seems far from straightforward, at least
in this problem, and warrants further investigation.

8 Conclusions

The procedure described in [Puget, 2004] for devising sym-
metry breaking constraints when the symmetry acts only
on the variables and there is an allDifferent constraint on
the variables, has been extended to find all distinct sets of
symmetry-breaking constraints. It is shown, using graceful
graphs problems, that there can be exponentially many such
sets. This leads to the need to choose between them. The
choice is complicated by the fact that the search performance
resulting from choosing a set of such constraints is affected
by the search strategy. It has been recognised that if there is
a conflict between the symmetry-breaking constraints and the
variable order, then the search effort may increase rather than
decrease as a result of symmetry breaking. A plausible as-
sumption is that, since the choice of symmetry-breaking con-
straints requires choosing one variable rather than another,
the same choices should be reflected in the variable order.

Unfortunately, experiments with finding graceful labellings
of K3 x P53 do not support this assumption; the results do
not show a reduction in search effort from pairing a set of
symmetry breaking constraints with a compatible variable or-
der in this way. The best choice of symmetry breaking con-
straints for this problem depends on the level of constraint
propagation that will be maintained on all the constraints dur-
ing search, and also on the variable order. The results suggest
that heterogeneous constraints involving different parts of the
problem are best if the allDifferent constraint is treated as #
constraints, whereas if bounds consistency is maintained on
this constraint, a set of constraints that will allow constraint
propagation to set the value of one of the variables is better.

In some problems, although not the graceful graphs prob-
lems considered here, symmetry-breaking constraints allow
the derivation of implied constraints that can further reduce
search. Frisch, Jefferson and Miguel [Frisch et al., 2004]
suggest that when there is a choice between distinct sets of
symmetry-breaking constraints, the choice could be guided
by considering the implied constraints and their potential ef-
fect on the search.

The experiments reported here use static search variable or-
ders. Investigating the interaction between dynamic variable
ordering heuristics such as smallest domain and symmetry-
breaking constraints would be more complicated, and prob-
ably even more confusing. For graceful graphs problems,
smallest domain ordering has sometimes proved to be signif-
icantly worse than a static ordering. Nevertheless, there may
be problem classes where we want to combine symmetry-
breaking constraints with dynamic variable ordering. A pos-
sibility is to choose the symmetry-breaking constraints during
search: the first variable, say x(, can be determined before the
search starts, its orbit found and the appropriate symmetry-
breaking constraints imposed; after making an assignment
to g, the heuristic chooses the second variable, say x 1, and
symmetry breaking constraints are again imposed, and so on .

However, even if we confine ourselves to static variable
orders, further investigation is needed into the interaction be-
tween variable order and symmetry-breaking constraints and
how to choose between different sets of symmetry-breaking
constraints.

References

[Crawford et al., 1996] J. Crawford, M. Ginsberg, E. Luks,
and A. Roy. Symmetry-Breaking Predicates for Search
Problems. In Proceedings KR 96, pages 149—-159, Novem-
ber 1996.

[Frisch et al., 2004] A.M. Frisch, C. Jefferson, and
I. Miguel. Symmetry-breaking as a Prelude to Im-
plied Constraints: A Constraint Modelling Pattern. In
Proceedings of ECAI 2004, pages 171-175, 2004.

[Gallian, 2003] J. A. Gallian. A Dynamic Survey of Graph
Labeling. The Electronic Journal of Combinatorics,
(DS6), 2003.

!This was suggested by one of the reviewers.

[Petrie and Smith, 2003] K. E. Petrie and B. M. Smith. Sym-
metry Breaking in Graceful Graphs. Technical Report
APES-56-2003, APES Research Group, January 2003.

[Puget, 2004] J.-F. Puget. Breaking symmetries in all differ-
ent problems. In Proceedings of SymCon04, the 4th Inter-
national Workshop on Symmetry in Constraints, 2004.

L\ T\CAT' 05
J

