Preface

Symmetry has become a topic of significant interest in the constraint programming and related communities. Many
constraint satisfaction problems (CSPs) have symmetries in the variables, domains or constraints - or any combination
thereof. Each of these symmetries preserve satisfiability, so that when there is symmetry in a CSP, any assignment can
be transformed into an equivalent assignment without affecting whether or not it satisfies the constraints. Similarly,
applying such a transformation to a partial assignment does not affect whether or not it can be extended to an
assignment satisfying the constraints. For instance, in many CSPs some of the variables refer to entities which are
indistinguishable, and the values assigned to these variables can be interchanged in any solution.

Symmetry increases the combinatorial complexity of CSPs. In the presence of symmetry, a constraint solver
may waste a large amount of time considering symmetric but equivalent assignments or partial assignments. Hence,
dealing with symmetry is often crucial to the success of solving such CSPs efficiently.

~ As well as exploiting symmetry when solving CSPs, CSP solving techniques have been used to solve symmetry-
related problems. For example, they have been used to answer the question of whether a particular search state is
symmetrically equivalent to one already explored. As another example, they have been used to derive “generators”
of a symmetry group, which allow the symmetries to be represented effectively without the need to list them all
explicitly. Constraint programming techniques have the potential to improve on existing algorithms for solving these
and related group-theoretic problems.

SymCon’04 is the fourth workshop in the series, following the successful earlier workshops at CP 2001 in Paphos,
Cyprus, at CP 2002 in Ithaca, NY, USA, and at CP 2003 in Cork, Ireland. The papers in these proceedings present
research into many aspects of symmetry in CSPs and related disciplines. The number of papers shows that symmetry
is an active area of research in constraint programming, and it is hoped that they will stimulate further research. We
also hope that the workshop will foster a cross-discipline exchange of ideas. In order to encourage this, the workshop
includes a panel session on the methods being used to tackle symmetry in various disciplines related to constraints,
and the invited talk is on symmetry in integer programming.

We would like to thank all the authors who submitted papers; the invited speaker, Frangois Margot; the members
of the “Symmetry in related disciplines” panel; and the members of the Programme Committee. We also thank
Filippo Focacci, Chris Jefferson and Brendan McKay for their help in reviewing papers.

These proceedings can be found online at http://www.dis.uu.se/SymCon04/.
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Symmetry in not-equals binary constraint networks

Belaid Benhamou
Laboratoire des Sciences de I’Information et des Systémes (LSIS)
Centre de Mathématiques et d’Informatique
39, rue Joliot Curie - 13453 Marseille cedex 13, France.
Belaid.Benhamou @ cmi.univ-mrs.fr

Abstract

Symmetrical values of a CSP variable are in a sense
redundant. Their detection and removal will sim-
plify the problem search space. Many research
works on symmetry in CSP’s appeared recently.
Most of them use the global symmetries of the stud-
ied problem to prune isomorphic search sub-spaces
and less interest is given to local symmetry detec-
tion and exploitation. Local symmetry is very im-
portant for pruning the search space, but its detec-
tion is in general a hard task. In this paper we study
local symmetry in Not-equals constraint networks.
We show how this symmetry is detected efficiently
and how it is used to increase Not-equals CSP res-
olution efficiency. Experiments show that our pro-
posed approach is a considerable improvement for
solving hard graph coloring and pigeon-hole prob-
lems. Some Dimacs graph coloring benchmarks
had been solved efficiently.

1 Introduction

As far as we know the principle of symmetry is first intro-
duced by Krishnamurty[17] to improve resolution in propo-
sitional logic. Symmetry for boolean constraints is studied
in [2]. They showed that their exploitation is a real im-
provement for several automated deduction algorithms’ ef-
ficiency. The notion of interchangeability in CSP’s is in-
troduced in [8] and symmetry in CSPs is studied in [22;
1]. Since that, many research works on symmetry appeared.
For instance, the static approach used by James Crawford et
al. in [4] for propositional logic theories consists in adding
constraints expressing global symmetry of the problem. The
same technique is used by Masayuki Fujita et al. in [18] to
search for finite models of quasi-group problems.

Since a great number of constraints could be added, some
researchers proposed to add the constraints during the search.
In [13], authors add some conditional constraints which re-
move the symmetric of the partial interpretation in case of
backtrack (this technique is called SBDS). In [7; 6; 23], au-
thors proposed to use each subtree as a no-good to avoid ex-
ploration of some symmetric interpretations (this technique is
called SBDD) and more recently the GE-trees conceptual for
symmetry elimination is introduced in [24]. Other works on

Symmetry can be found in the working notes of SymCon01,
SymCon02 and SymCon03 CP workshops.

By removing statically all symmetric interpretations, Gilles
Dequen and Olivier Dubois proved the non existence of the
quasi-group QG2 of order 10 [5]. Finally in the same spirit,
Pedro Meseguer and Carme Torras proposed a heuristic to
remove symmetry as soon as possible in the search tree [20].

In this paper we deal with symmetry in Not-equals con-
straint networks. Not-equals constraint networks is a quite
expressive framework. In theory, there is no lost of general-
ity if we restrict our study to this framework, since each CSP
can be reduced to a Not-equals constraint network. That is,
the graph coloring problem is a particular Not-equals CSP
and is shown in [11] to be NP-complete, then a polynomial
reduction of each CSP to a not-equals CSP exists. A symme-
try search method in general CSPs was given in [1], but its
complexity is exponential in the worst case. Here we will
show how the symmetry conditions are simplified in Not-
equals constraint networks. We give a new sufficient condi-
tion of symmetry which leads to a linear complexity symme-
try search algorithm with respect to the CSP size. We show
how local symmetrical domain values are detected efficiently
and how their removal simplifies the search space of a Not-
equals constraint backtracking algorithm. This paper is orga-
nized as following :

Some CSP background is given in section 2. Section 3
discusses the notion of symmetry and shows how symmet-
rical values are detected efficiently in Not-equals constraint
networks. We show in section 4 how a simplified forward
checking method for Not-equals constraints takes advantage
of symmetrical values to reduce the search space. In section 5
we evaluate the proposed techniques by experimental results.
Section 6 compares our approache to other previous works
and section 8 gives a conclusion.

In this work, we consider only binary CSP’s, the CSP’s in-
volving only constraints between pairs of variables.

2 Background

A CSP involves a finite set V={vy,vs,...,v,} of variables,
a finite set D = {Dy, Ds,..., D,} of discrete domain values
in which D; is the domain associated with the variable ;5 d;
denotes the fact that the value d belongs to the domain D;, a
finite set C = {¢1, ca, ... ,Cm } Of constraints, and a finite set
R={Ry1, Ry, ..., Ry} of relations corresponding to the con-
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straints in C, R; represents the list of tuples form in which
the tuples of values satisfying the constraint ¢; are enumer-
ated. Thus, a CSP can be seen as a mathematical statement
P(V,D,C, R) as defined in [21] and [19].

A Not-equals constraint between two CSP variables v, and
v (notation v; # wy) is a constraint which forces them to
be instantiated to different values. A Not-equals constraint
network (notation NECSP) is a CSP whose constraints are
Not-equals constraints. We will see in the sequel that both
the graph coloring and the pigeon-hole problems can be rep-
resented in the framework of Not-equals constraint networks.

A value assignment is a mapping which specifies a value
for each variable. It satisfies a constraint if it gives a combina-
tion of values to variables that is permitted by the constraint;
otherwise it falsifies it. It satisfies a Not-equals constraint
if it gives different values to the involved variables. A con-
straint satisfaction problem is the task of finding one or all
value assignments for the constraint network such that all the
constraints are satisfied.

3 Symmetry

We consider here, symmetry between values of a same do-
main.

3.1 Symmetry in CSPs

We recall in this section some symmetry notions first intro-
duced in [1], and which we shall use to prove symmetry re-
sults in NECSPs. The main contribution in this work is not
the symmetry definition itself, but the simplification of the
symmetry conditions, the simplification of symmetry search
and exploitation in NECSPs which we shall introduce in the
sequel.

Definition 3.1 A permutation o of domain values
in a binary CSP P = (V,D,C,R) is defined as:
0 : UiepmDi —  Uiep,nDi, such that ¥Yi € [1,n]
andVd; € D;, O'(Cli)EDi.

The permutation o has no effect on the sets {V, D, C}
of the CSP P. However, it induces a permutation o; on
the tuples in each relation R;; € R and then a permuta-
tion og ' on the relations themselves. A symmetry of a
CSP P = (V, D, C, R) is a permutation of domain values that
leaves the CSP P invariant.

Definition 3.2 A domain value permutation o is a symmetry
of a binary CSPP = (V,D,C, R) iff VR;; € R, < d;,d; >€
tuples(Rij) =< o(d;),o(d;) >€ tuples(R;;)].

Remark 3.1 A symmetry of a CSP is a domain value permu-
tation o such that VR;; € R, og(R;;) = Ryj.

Example 3.1 (Pigeon-hole problem) The problem consists
in putting n pigeons in n-1 holes such that each hole holds
at most one pigeon. Take for instance 4 pigeons and 3 holes.
The pigeons are represented by the set of variables, the holes
by the domain values, as it is shown in the constraint graph
of figure 1, the constraint cig is given in its micro-structure

'Both o resp. o'r are natural generalizations of o to tuples resp.
relations.

Sform showing the permitted tuples in the relation Ry3. All the
constraints c;; are Not-equals constraints, they form a Not-
equals constraint network.

vl

a_R_q

cl2 cl3
cl4
N\
v2la b ¢ e \C b\a v3
c24 c34
a b c
v4

Figure 1: Pigeon-hole problem for 4 pigeons and 3 holes.

The permutation ¢ defined as: o(a;) = (b;), o(b;) = (ci),
o(ci) = (@), Vi € [1,4] keeps the pigeon-hole correspond-
ing CSP of figure 1 invariant. Thus, it is a symmetry of the
CSP.

Definition 3.3 Two domain values b; and c; for a CSP vari-
able v; € V are symmetrical (notation b; ~ c;) if there exists
a symmetry o of the CSP P such that o (b;) = ¢; oro(c;) = b;

Freuder in [9] defined the notion of Neighborhood In-
terchangeability (NI) as a sufficient condition to Full Inter-
changeability. As far as symmetry is concerned, two domain
values b; and ¢; of the CSP variable v; are Neighborhood In-
terchangeable iff there exists a symmetry o of the CSP, such
that o(b;) = ¢;, o(¢;) = b; and o is the identity mapping for
the other values.

Neighborhood Interchangeability is a particular symmetry
which permutes two domain values and which is the iden-
tity elsewhere. Choueiri and Noubir in [3] studied the notion
of Neighborhood Partial Interchangeability (NPI). Unfortu-
nately, using only such symmetries is not sufficient in practice
to solve hard symmetrical problems. The pigeonhole prob-
lem is a good example to demonstrate that point, it contains
a lot of symmetries but no local interchange-abilities. In ex-
ample 1, the domain values a3,b; and c; of the variable v;
are symmetrical but not Neighborhood Interchangeable. The
notion of symmetry is more general than the Neighborhood
Interchangeability, but symmetry detection is a harder prob-
lem. Using more general symmetry may be more useful in
practice if this symmetry is detected and exploited efficiently.

Now we will show how symmetry is involved in CSP con-
sistency. Let I be a value assignment of the CSP P, o a sym-
metry of the CSP P and I /o the value assignment obtained
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by substituting in I every domain value d; of the CSP variable
v; by o(d;), formally: I/o[v;] = o(I[v;]), Vi € [1,n]. Now,
we give a property that can be used to compute new solutions
from known ones using symmetry:

Proposition 3.1 1 is a solution of P if and only if I /o is a
solution of P.

Proof.  Suppose that [ is a solution of P and R;; is the
relation corresponding to a constraint cij € C. I is asolution
of the CSP, thus I satisfies c;j. In other words, there exists a
tuple ¢; € R;; such thatt; C I. As og(Rij) = Ryj (0 is
a symmetry), then 04(t1) = t2 € R;;. Thus, i3 € I/o (by
definition of I /o and the fact that ¢; € I). Therefore, I/o
satisfies c;5, and I /o is also a solution for the CSP P. A sim-
ilar proof can be given for the converse case by considering
the converse symmetry o~! (QED).

Now we give the main property which relates symmetry
and CSP consistency.

Theorem 3.1 If b; and c; are two symmetrical values of a
CSP variable v; € V then b; participates in a solution of the
CSP if and only if the value c; participates in a solution of the
CSP.

Proof.  The values b; and c¢; are symmetrical by hypoth-
esis, then there exists a symmetry o of the CSP P such that
o(b;) = ¢;. Suppose that b; appears in a solution I of the
CSP P, then I/o is a solution in which ¢; appears (proposi-
tion 3.1). In other words the solution I is mapped into I /o
using the mapping o.

We prove the converse by considering the converse sym-
metry o1, (QED).

The previous theorem states that symmetrical values with
a domain value d; € D; can be removed without affecting the
CSP consistency when d; is already shown not participating
in any solution of the CSP.

3.2 Symmetry in NECSPs

All the symmetry notions defined in the previous section (sec-
tion 3.1) for general CSPs are available for NECSPs. NEC-
SPs is a quite expressive framework, in theory there is no
matter to restrict our study to NECSPs, since each CSP can
be reduced to a NECSP. A symmetry detection algorithm in
binary CSPs is given in [1], but its complexity is exponential
(in the worst case) when the backtracking is not limited. Here
we shall show how the conditions of symmetry are simplified
in NECSPs and how symmetrical values are computed effi-
ciently a simpler algorithm. Now we give a new sufficient
condition of symmetry for NECSPs which leads to a linear
time complexity symmetry search algorithm. The following
property is the main key of this work, it is very simple, but
very useful for symmetry detection.

Theorem 3.2 Let a; and b; be two values of the domain D;
of a Not-equals constraint network P. If a; and b; appear in
the same domains of the not-instanciated variables, then they
are symmetrical.

Proof. Suppose that the values a; and b; appear in the same
domains of the CSP P. We shall show that under this condi-
tion these values are symmetrical. We have to prove that there

exists a symmetry o of P such that o(a;) = b; or o(b;) = aj.
To be a symmetry, the permutation o has to leave the CSP P
invariant. That is, the condition VR;; € R, or(R;j) = R;;
must be verified. Take the transposition (a;, b;)o(b;, a;) of
the values a; and b; in each domain Dy, € D as the per-
mutation o. To prove the first inclusion R;; C or(R;;),
we suppose that (a;,b;) € Ry and show that (a;,b;) €
or(Rij). It is equivalent to prove that (o(a;), o(b;)) € Rij,
since o is a bijective mapping, it is in fact a transposition
(0=0""). As (a;,b;) € R;j, then a; # bj;. This implies
that o(a;) # o(b;), since o is a bijective mapping. As
both a; and b; appear in the same domains we deduce that
(0(a;),0(b;)) € Rij. The same proof can be done to show
the second inclusion o(R;;) C R;;.

Example 3.2 The sets {a;,bi,c;}, « € [1,4] form four
classes of symmetrical values of the CSP of figure 1.

Symmetry search in NECSPs

Theorem 3.2 gives a very simple property for symmetry
search. Detecting the class of symmetrical values of a do-
main value d; € D; is equivalent to search the values which
appear exactly in the domains where d; appears.The symme-
try search procedure is sketched in figure 2.

procedure Symmetry(d; € D;, var cl(d;):class);
Input : a value d; € D;
Output : the class cl(d;) of symmetrical value of d;.
begin
cl(di):={d:}
for each a; € D;-{d;} do
if for each domain D), of a non-instanciated variable
we have
(d; € Dy, and a; € Dy,)
or (d; & Dy, and a; & Dy,)
then cl(d;):=cl(d;)U{a;}
end

Figure 2: The symmetry search algorithm in NECSPs

Let n be the number of variables of the NECSP, and d the
size of the largest domain. It is easy to see that the algorithm
can run at most d times the first loop and at most n times the
second one. It then computes the class cl(d;) of symmetrical
values with a complexity O(nd) in the worst case. The dif-
ferent classes of symmetrical values of the domain D; can be
computed with a complexity O(nd?) in the worst case. This
algorithm has a linear complexity w.r.t the NECSP size, we
use it to eliminate local symmetry at each node of the search
tree of a backtracking NECSP algorithm.

Below we show how a backtracking method for NECSPs
can be augmented with the advantage of symmetry.

4 Symmetry advantage in NECSPs

Now we are in the position to show how these symmetrical
values can be used to increase the efficiency of NECSP back-
tracking algorithms. Freuder and al in [9] uses interchange-
able values in the pre-processing phase of CSP resolution,
Haselbock in [15] gives a good use of interchangeability in
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the known filtering algorithm REVISE and adapted the back-
tracking algorithm to compute families of interchangeable so-
lutions. For efficiency reasons, we choose for our implemen-
tation a Simplified Forward Checking method to be the base-
line method that we want to improve by adding the property
of symmetry.

The forward checking principle [14] is based on filter-
ing non-instantiated variable domains considering instanti-
ated ones. When the current variable v; is to be instantiated
with a value d;, consistency checking takes place in a for-
ward direction, from the current variable to the future vari-
ables (non-instantiated variables having a constraint with the
current variable v;). The domains of future variables are fil-
tered such that all values which are not consistent with re-
spect to the current instantiation of v; are removed. In case
of NECSPs, the filtering is simplified and consists only in re-
moving the value d; from the domains of the future variables.
This leads to a Simplified Forward Checking (SFC) method
which we consider in our implementation. If as a result of
this filtering we obtain an empty current domain for a future
variable v;, forward checking stops the filtering and its effects
are undone, and a new instantiation is attempted for the vari-
able v;. If no consistent instantiation can be found for v;, the
method performs chronological backtracking to the variable
v;—1. Otherwise, v; had been instantiated with no contradic-
tion and then we choose the next variable to instantiate and
repeat the same process.

Choosing optimally the next variable to be instantiated is a
hard task. Several works have been done to contrive heuris-
tics for variable ordering. In practice, the one minimizing the
ratio:

oo 1 Dil
Degree(v;)

where v; is a non-instantiated variable, | D; | its domain size
and Degree(v;) the number of constraints of the initial CSP
in which v; is involved, is shown to be one of the most ef-
fective. We use it in the search to select the next variable
to be instantiated. In the sequel, this heuristic is denoted by
(DomDeg). It’s a well known heuristic in CSPs [10], there is
no need to give its code here.

Theorem 3.1 expresses an important property that we use
to prune search spaces of backtracking methods. Indeed if d;
participates in no solution of the CSP P then all values which
are symmetrical to d; do not. Thus, we prune the sub-space
which corresponds to their assignments. Formally we get the
following:

Corollary 4.1 If d; ~ d; and d; doesn’t participate in any
solution of P, then d; doesn’t participate in any solution.

The previous corollary is a direct consequence of theo-
rem 3.1. We can cut k-1 branches in the search tree if
there are k symmetrical domain values and one of them
has already been identified as not participating in any solu-
tion. If SymClass(d) denotes the class of the domain val-
ues which are symmetrical to d, then in the enumeration pro-
cess we consider only the value d, since the other values of
SymClass(d) are symmetrical with it.

Procedure SFC-sym(D, I, k);{I = [d1,d2, ..
var empty:boolean;
begin
if K = n then [dl,dz, 3B
else
begin
empty:=false;
for each v; € V, such that C;;, € C,v; €future(vy) do
if not(empty) and dj, € D; then
begin
D;i=D;-{dx};
if D;=0 then
begin
undo filtering effects;
symmetry(dx € Dj,SymClass(dy));
Dy=Dj, — SymClass(dy);
empty=true;
end
end
if not(empty) then
begin
Vk+1=next-variable(vy)
repeat
take di+1 € Di+1
Dyy1=Dry1 — dpa
I=[dy,da,...,dk,dy1];
SFC-sym(D, I,k + 1);
untill Dk+1 = @
end
end
end

- dil}

, di] is a solution, stop

Figure 3: The Simplified Forward Checking method aug-
mented by symmetry

4.1 Combining trivial symmetry with the detected
one

Some trivial symmetries can be exploitted without effort of
detection. All the values which form the intersection of the
domains of a Not-equals constraint network are trivially sym-
metrical.

Proposition 4.1 If P is an NECSP having n domains, then
all the values in T' = N}, D; are symmetrical.

Proof. The proofis trivial, since all the values in 7" appear in
the same domains, thus satisfy the condition of theorem 3.2.

This trivial symmetry is very important, since during the
search of solution (i.e instanciation) the non used values of
the subset 7" remain symmetrical at each node of the search
tree. We use only one of them and the other ones are re-
moved by symmetry. This is very useful in both graph col-
oring and pigeon-hole where all the variables have a same
domain. There is one domain D;={0, ..., c — 1} of ¢ values
and T'=D; in this case. If during the search all the first values
{0,...,mdn} of the ordered finite domain D; = {0,...,c—
1} (with 0 < mdn < ¢ — 1) are used in the partial instan-
tiation I, then the values of the part {mdn + 1,...,c — 1}
remain symmetrical. All the values of the domain D; are
trivially symmetrical before starting instantiation of variables
(mdn = 0).
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Such trivial symmetries are very useful but they disappear
as soon as the first variables are instantiated. The propaga-
tion process forces new values to be used, thus increases the
mdn and decreases the subset {mdn + 1,...,c— 1} of triv-
ial symmetrical values. This subset becomes empty when
mdn reaches the value ¢ — 1. On the other hand, the sub-
set {0,...,mdn} of the used values increases and become
quickly identical to the whole domain D;.

A lot of other symmetries exist between the values of the
part {0,...,mdn} which we detect by using the symme-
try procedure of figure 2. The trivial symmetry of the part
{mdn + 1,...,¢ — 1} and the one we detect on the part
{0,...,mdn} are independent, since they are defined on
two disjoint parts of the domain. Their combination is then
straight forward and if k is the number of detected symmet-
rical values then ¢ — mdn — 1 + k symmetry cuts can be
made when both kind of symmetry are associated to prune
the search space.

If D is the set of domains, I the partial instantiation, and %
the index of the current variable v, under instantiation, then
figure 3 gives the sketch of the SFC procedure augmented by
the (DomDeg) heuristic and the property of symmetry (no-
tation SFC-sym). The structure future(v;) represents the
set of non-instantiated variables remaining after the instan-
tiation of v; and next-variable a function which encodes the
(DomDeg) heuristic. In the sequel SFC will denote the SFC
method augmented by the DomDeg heuristic.

S Experiments

Now we shall investigate the performance improvement of
our search technique by experimental analysis. We test two
problems: the Graph coloring problem and the pigeon-hole
problem. The graph coloring problem consists in coloring
the vertices of a graph such that no two vertices which are
joined by an edge have the same color. The pigeon-hole
problem is defined in example 3.1. It is a particular graph
coloring problem where the associated graph of constraints
is a clique defined on the vertices representing the pigeons
and where the colors are the holes (see figure 1). These
are two problems which are trivially expressed as Not-equals
constraint networks. They are known to be hard problems
and are quite significant to show the symmetry behavior in
NECSP resolution. First, we will test and compare both the
simplified forward checking (SFC) and the simplified forward
checking augmented by symmetry (SFC-sym) on the random
graph coloring problems to show the symmetry gain. The
(SFC-sym) method is applied to tackle Dimacs graph color-
ing benchmarks and the pigeon-hole problem. The complex-
ity indicators are the number of nodes and time. The time
needed for computing symmetry is added to the total CPU
time given in seconds. The source codes are written in C
and compiled on a Pentium 4, 2.5 G HZ with 256 MB. For
efficiency reasons SFC and SFC-sym are implemented in an
iterative way.

5.1 Random graph coloring problems

Random graph coloring problems are generated with respect
to the following parameters: (1) n the number of vertices

(variables), (2) Cls the number of colors (domain values)
and (3) d the density which is a number between 0 and 1
expressed by the ratio : number of constraints (number of
edges in the constraint graph) to the number of all possible
constraints. The samples of each test are 100 randomly
generated instances and the measures are taken in average.

Pb SFC SFC-sym
Cls Nodes | Time | Cons || Nodes | Time | Cons
8 2667 0.0 0.0 9 0.0 0.0
9 48939 | 0.03 0.0 16 0.0 0.0
10 2263385 | 15.55 3.0 66 0.0 3.0
11 || 11551093 | 66.87 | 73.0 158 00| 73.0
12 ||- 643068 | 3.65: 99.0 59 00| 99.0
13 230 0.0 | 100.0 57 0.0 | 100.0

Table 1: Graph coloring instances with n=50 and d=0.5

SFC-sym
Cls Nodes | Time | Cons
13 69 0.0 0.0
14 481 0.0 0.0

15 7036 | 0.02 0.0
16 | 182447 | 3.02 0.0

17 | 1907019 | 26.92 | 44.0
18 | 289612 | 3.78 | 100.0
19 2407 0.0 | 100.0
20 240 0.0 | 100.0

Table 2: Graph coloring instances with n=100 and d=0.5

Table 1 gives the results of both SFC and SFC-sym meth-
ods on random graph coloring instances with n=50 and d=0.5.
The table gives for each method the number of colors of the
problem (Cls), the number of nodes, the time and the per-
centage of consistency (Cons). We can see that SFC-sym im-
proves drastically SFC and symmeiry is profitable to solve
random graph coloring problems in the hard region.

Random graph coloring instances in the transition phase
are known to be very hard problems. The method SFC can
not solve in reasonable time random graph coloring instances
in the hard region when the number of variables is greater
than 50. However SFC-sym can solve large scale instances
thanks to symmetry. Table 2 shows the results of SFC-sym on
instances with n=100. We can see that the hardest problem is
solved with only 26 seconds.

5.2 Dimacs graph coloring benchmarks

Table 3 shows the results of SFC-sym on some Dimacs graph
coloring benchmarks. We find for each problem the mini-
mal number of colors min that its corresponding graph needs
to be colored. This is done by proving the consistency of
the problem with min colors (denoted by yes on the column
cons?) and by proving the inconsistency of the problem when
using min — 1 colors (denoted by no on the column Cons?).
SFC-sym solved all most of the instances of the classes: mul-
sol, zeroin, fpsol and inithx, but we give just the results of
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Problem SFC-sym
Instance Colors | Nodes | Time | Cons?
mulsol.i.4.col 30 3454 0.11 no
mulsol.i.4.col 31 184 0.01 yes
mulsol.i.5.col 30 2597 0.08 no
mulsol.i.5.col 31 185 0.01 yes
zeroin.i.3.col 29 49 0.01 no
zeroin.i.3.col 30 205 0.01 yes
fpsol2.1.3.col 29 143213 | 3.68 no
fpsol2.i.3.col 30 450 0.3 yes
schooll.col 13 37529 | 3.12 no
schooll.col 14 111184 | 7.60 yes
schooll-nsh.col 13 63 0.01 no

schooll-nsh.col 14 734 0.02 yes

DSJ125.1.col 4 17 0.00 no
DSJ125.1.col 5 1197 0.01 yes
DSJR500.1.col 11 11 0.00 no
DSJR500.1.col 12 501 0.02 yes
1.Fullins-3.col 3 23 0.00 no
1.Fullins-3.col 4 29 0.00 yes
1.Fullins-4.col 4 10043 | 0.26 no
1.Fullins-4.col 5 92 0.00 yes
2.Fullins-3.col 4 39545 | 0.30 no
2.Fullins-3.col 5 51 0.00 yes

Table 3: Dimacs graph coloring benchmarks

some of them. The instances of the classes: school, DSJ,
DSIJR and Fullins shown in table 3 seem to be more important
(see the Dimacs web: http://mat.gsia.cmu.edu/COLORO02).
As we can see in table 3, SFC-sym solved them efficiently.

5.3 Instances of pigeon-hole problem

The pigeon-hole generator needs only the number of pigeon
as input.

Problem SFC-sym
Pigeons {| Nodes | Time
500 499 0.0
1000 999 1.0

1500 1499 4.0
2000 1999 | 11.0
2500 2499 | 20.0
3000 2999 | 34.0
3500 3499 | 59.0

Table 4: Pigeon-hole problem

The SFC method can not solve the pigeon-hole problem
when the number of pigeon is greater than 15 (many hours
time CPU). However, resolution complexity of this problem
is linear for SFC-sym. We can see in table 4 that the num-
ber of the nodes of the search tree is equal to the number of
pigeons minus one for each problem. That is, because all
the values (holes) at each node of the search tree are trivially
symmetrical, thus only one of them is tested. Time variation
is weakly quadratic w.r.t the number of pigeon, since all the
values are trivially symmetrical.

6 Some related works

e In [16] authors studied three classes of CSPs for which
symmetry is tractable. The value-Interchangeable CSPs
(ICSPs) class is in relation with our work. That is, when
all the variable domains of a NECSP are the same (as
in the graph coloring problem), it beccomes an ICSP.
For this particular case, the value symmetry elimination
technique used in [16] for the ICSP class seems to be
equivalent to the trivial symmetry elimination which we
described in section 4.1. But,in general NECSPs are not
ICSPs and the symmetries detected by the procedure of
figure 2 are not considered in the ICSP symmetry break-
ing.

In other hand Gent introduced in [12] a symmetry con-
straint to eliminate what he calls indistinguishable val-
ues. His approache works by addition of symmetry con-
straints rather than dynamic detection of symmetry. This
technique may be used to break some of the global and
the trivial symmetry described in section 4.1 such as the
one of the graph coloring problem for example. How-
ever, it does not deal with the local symmetries which
we detect by using the symmetry procedure of figure 2.
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8 Conclusion

We introduced a simple sufficient condition of symmetry
in NECSPs. We used this condition to provide a linear
time complexity symmetry detection method. Symmetrical
values of a given domain of a NECSP are computed effi-
ciently and a simplified forward checking algorithm for NEC-
SPs is adapted to exploit this information to prune isomor-
phic search sub-spaces. We have experimented the resulting
method on some important problems and showed the advan-
tage of reasoning by symmetry in NECSPs. Further investi-
gation will consist in extending the symmetry notion to val-
ues of different variables. Another investigation will consist
in trying to apply this work to some clique problems which
are related to both the CSP satisfaction and graph coloring
problems.

References

[1]1 B. Benhamou. Study of symmetry in constraint satis-
faction problems. In the working notes of the workshop
PPCP’94,1994.

[2] B. Benhamou and L. Sais. Theoretical study of
symmetries in propositional calculus and application.
Eleventh International Conference on Automated De-
duction, Saratoga Springs,NY, USA, 1992.

[3] Berthe Y. Choueiry and Guevara Noubir. On the com-
putation of local interchangeability in discreteconstraint
satisfaction problems. In Proc of AAAI/IAAI’98, pages
326-333, 1998.



Proc. SymCon’04

[4] James Crawford, Matthew L. Ginsberg, Eugene Luck,
and Amitabha Roy. Symmetry-breaking predicates for
search problems. In KR’96: Principles of Knowledge
Representation and Reasoning, pages 148—159. Morgan
Kaufmann, San Francisco, California, 1996.

[5] Olivier Dubois and Gilles Dequen. The non-existence of
(3,1,2)-conjugate orthogonal idempotent Latin square of
order 10. In 7th International Conference on Principles
and Practice of Constraint Programming, volume 2239
of LNCS, pages 108-121. Springer Verlag, 2001.

[6] T. Fahle, S. Schamberger, and M. Sellmann. Symme-
try breaking. In International conference on constraint
programming, volume 2239 of LNCS, pages 93-108.
Springer Verlag, 2001. :

[7]1 F. Focacci and M. Milano. Global cut framework for
removing symmetries. In International conference on
constraint programming, volume 2239 of LNCS, pages
77-82. Springer Verlag, 2001.

[8] E.C. Freuder. Eliminating interchangeable values in
constraints satisfaction problems. Proc AAAI-91, pages
227-233,1991.

[91 E.C.Freuder and W. Benson. Interchangeability prepro-
cessing can improve forward checking search. In proc.
ECAI 1992.

[10] D. Frost and R. Dechter. Look-ahead value ordering for
constraint satisfaction search. In Proceedings of IJCAI,
pages 301-306, 1995.

[11] M.R. Garey and D.S. Johnson. Computers and in-
tractability: A guide to the theory of np-completeness,
w.h. freeman. Technical report, 1979.

[12] 1. Gent. A symmetry breaking constraint for indistin-
guishable values. In SymCon, 2001.

[13] I.P. Gent, W. Harvey, and T. Kelsey. Groups and con-
straints: Symmetry breaking during search. In Interna-

tional conference on constraint programming, volume
2470 of LNCS, pages 415-430. Springer Verlag, 2002.

[14] R. M. Haralik and G. L. Elliot. Increasing tree search
efficiency for constraint satisfaction problems. Artificial
Intelligence 14, pages 263-313, 1980.

[15] A. Haselbock. Exploiting interchangeability in con-
straint satisfaction problems. In Proceedings of 1JCAI,
pages 282-287, 1993.

[16] P. Van Hentenryck, P. Flener, J. Pearson, and M. Argen.
Tractable symmetry breaking for csps with interchange-
able values. In IJCAI, pages 277-282,2003.

[17] B. Krishnamurty. Short proofs for tricky formulas. Acta
informatica, (22):253-275, 1985.

[18] J. Slaney M. Fujita and F. Bennett. Automatic gener-

ation of some results in finite algebra. In proceedings
of the 13th Internationnal Joint Conference on Artificial
Intelligence, Chambery, France, pages 52-57, 1993.

[19] A.K.Mackworth. Consistency in networks of relations.
Artificial Intelligence 8, pages 99-118, 1977.

[20] Pedro Meseguer and Carme Torras. Solving strategies
for highly symmetric csps. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 400-405. Morgan Kaufmann, 1999,

[21] U. Montanari. Networks of constraints : Fundamental
properties and applications to picture processing. Infor-
mation Science 7, pages 95-132, 1974.

[22] J.F. Puget. On the satisfiability of symmetrical con-
strained satisfaction problems. In ISMIS, 1993.

[23] J.E Puget. Symmetry breaking revisited. In Interna-
tional conference on constraint programming, volume
24770 of LNCS, pages 446—461. Springer Verlag, 2001.

[24] Colva M. Rouney-Dougal, Ian P. Gent, Tom Kesley, and '
steve A. Linton. Tractable symmetry breaking using re-
stricted search trees. In proceedings of ECAI-04 (to ap-
pear), 1994,



Proc. SymCon’04

Combining Branch&Bound and SBDD to solve Soft CSPs*

Stefano Bistarellit
Dipartimento di Scienze
Universita di Chieti-Pescara, Italy
bista@sci.unich.it
Istituto di Informatica e Telematica, C.N.R.
Pisa, Italy
stefano.bistarelli @iit.cnr.it

Abstract

As constraint processing applications are becoming
more widespread in areas such as electronic com-
merce, configuration, etc., it is becoming increas-
ingly important that we can reason about prefer-
ences as efficiently as possible. In this paper we
extend some existing results dealing with symmetry
in the semiring framework for soft constraints. In
particular we extend existing definitions of symme-
try to partial instantiations. We also present Soft-
SBDD, a generalization of Symmetry Breaking via
Dominance Detection, and present theoretical re-
sults demonstrating that symmetry breaking in soft
constraint satisfaction problems improves the effi-
ciency of search.

1 Introduction

Exploiting symmetry in constraint satisfaction problems
has become a very popular topic of research in recent
times [Backofen and Will, 1999; Benhamou, 1994; Flener et
al., 2002; Gent and Smith, 2000; McDonald and Smith, 2002;
Puget, 2002; Fahle et al., 2001; Focacci and Milano, 2001].
The existence of symmetry in a problem has the effect of ar-
tificially increasing the size of the search space that is ex-
plored by search algorithms. Therefore, a typical approach is
to break the symmetries in the problem so that only unique
solutions are returned (i.e. that only one exemplar of each
symmetric equivalence class of solutions is returned). The
complete set of solutions can be trivially computed using the
symmetry in the problem. The significant advantage is that
not only do we return fewer solutions, but we also reduce the
search effort required to find these solutions by eliminating
symmetric branches of the search tree.

Another significant topic of research in the constraint pro-
cessing community is the ability to reason about prefer-

*This work has received support from Enterprise Ireland un-
der their Basic Research Grant Scheme (Grant Number SC/02/289)
and their International Collaboration Programme (Grant Number
1C/2003/88). It has also received support from Science Foundation
ITreland (Grant Number 00/P1.1/C075).

tPart of this research was carried out while this author was vis-
iting the Cork Constraint Computation Centre, University College
Cork, Ireland.

Barry O’Sullivan
Cork Constraint Computation Centre
Department of Computer Science
University College Cork
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-ences [Bistarelli et al., 1999; Junker, 2001]. It has been shown

how preferences can be modeled as constraints [Bistarelli er
al., 1997; Domshlak er al., 2003]. As constraint processing
applications are becoming more widespread in areas such as
electronic commerce, configuration, etc., it is becoming in-
creasingly important that we can reason about preferences in
as efficient a manner as possible. One obvious avenue to be
explored here are notions of symmetry in preferences. For
example, we might seek to find a “diverse” set of solutions to
a soft CSP, where diversity might be interpreted as the pre-
sentation of a set of solutions which are members of different
symmetric equivalence classes.

In this paper we extend the approach to dealing
with symmetry in the semiring framework for soft con-
straints [Bistarelli et al., 1997; 2002; Bistarelli, 2004] pre-
sented in [Bistarelli et al., 2003b], giving new important re-
sults. In particular we extend existing definitions of symme-
try to partial instantiations. We present Soft-SBDD, a gen-
eralization of Symmetry Breaking via Dominance Detection,
and present theoretical results demonstrating that symmetry
breaking in soft constraint satisfaction problems improves the
efficiency of search.

The remainder of the paper is structured as follows. Sec-
tion 2 presents a review of soft constraints and of symmetry
breaking in crisp and soft CSPs. We present the new theo-
retical results of our approach to symmetry breaking in soft
CSPs in Section 3. Theoretically we demonstrate the utility of
symmetry breaking in SCSPs in Section 4. Some concluding
remarks are made in Section 5.

2 Background

Before recalling our approach to dealing with symmetry in
soft CSPs [Bistarelli et al., 2003b], we present a review of
the state-of-the-art in symmetry breaking (Section 2.1) and in
soft constraints (Section 2.2).

2.1 Symmetry Breaking

There is significant interest within the constraint program-
ming community in exploiting symmetry when solving con-
straint satisfaction problems. As a consequence, a grow-
ing number of techniques are being reported in the litera-
ture. Benhamou [Benhamou, 1994] presented an early anal-
ysis. of symmetry-breaking and placed it in the context of
Freuder’s work on interchangeability, a special case of sym-
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metry [Freuder, 1991].

A common approach to symmetry breaking involves care-
fully modeling the problem so that symmetries have been
removed. For example, Crawford et al. [Crawford et al.,
1996] have demonstrated how constraints can be added to the
model in order to break symmetries. Puget [Puget, 1993] has
presented a formal approach to symmetry breaking that in-
volves the addition of ordering constraints to break symme-
tries. Flener et al. [Flener et al., 2002] adopt a similar ap-
proach by adding ordering constraints to break symmetries in
matrix models. Flener er al. [Flener et al., 2002] also remind
us that symmetry detection is graph-isomorphism complete in
the general case, pointing to the work of Crawford [Crawford,
1992].

Brown et al. [Brown et al., 1988] have presented a mod-
ified backtracking algorithm that breaks symmetry by prun-
ing branches of the search tree dynamically. This is done by
ensuring that only one solution from each symmetric equiv-
alence class is computed. Similarly, a general method for
eliminating symmetries, known as symmetry breaking during
search (SBDS), has been proposed by Gent and Smith [Gent
and Smith, 2000]. The SBDS approach is based on earlier
work by Backofen and Will [Backofen and Will, 1999]. Both
of these methods can be regarded as examples of a class of
approaches to handling symmetries that involve the addition
of constraints during search to avoid symmetrical states in the
search space. An implementation of SDBS based on the GAP
computational abstract algebra system has been presented by
Gent et al. [Gent et al., 2002].

Meseguer and Torras [Meseguer and Torras, 2001] have
reported the use of search ordering heuristics to avoid sym-
metries during search. However, the method is less general
than SBDS [Gent and Smith, 2000].

The notion of partial symmetry breaking has been explored
by McDonald and Smith [McDonald and Smith, 2002]. They
show that there is a break-even point to be considered when
breaking symmetries during search; there is a point where the
benefit in reducing search from removing more symmetries
is outweighed by the extra overhead incurred. By breaking
a subset of the possible symmetries in a problem, rather than
breaking all of them, significant savings in runtime can be
accomplished. It is worth noting that most static symmetry-
breaking schemes (e.g. those of Flener et al. [Flener et al.,
2002]) are partial.

Finally, symmetry breaking based on nogood recording
methods have been presented by Fahle et al. [Fahle et al.,
2001] and Focacci and Milano [Focacci and Milano, 2001].
The approach presented by the former is known as symmetry-
breaking via dominance detection (SBDD) and it has been
shown to compare well with SBDS; the latter approach is
known as the global cut framework. Puget has presented an
improvement on these approaches by using an auxiliary CSP
for performing dominance checks based on nogood record-
ing [Puget, 2002]. ;

Recently, inspired by the development of the global cut
framework/SBDD, Focacci and Shaw showed that dominance
detection cannot only be used to prune under symmetric dom-
inance, but under any dominance relation, especially under
dominance of objective cost (they used this idea to exploit
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local search in a complete solver for the TSP with time win-
dows) [Focacci and Shaw, 2002].

However, dominance has also been exploited in other con-
texts. For example, the pure literal rule used in SAT solvers
can be regarded as a form of dominance exploitation.

2.2 Soft CSPs

Several formalizations of the concept of soft constraints are
currently available. In the following, we refer to the one based
on c-semirings [Bistarelli, 2001; Bistarelli et al., 1995; 1997;
20021, which can be shown to generalize and express many
of the others [Bistarelli e al., 1999]. A soft constraint may be
seen as a constraint where each instantiations of its variables
has an associated value from a partially ordered set which
can be interpreted as a set of preference values. Combining
constraints will then have to take into account such additional
values, and thus the formalism has also to provide suitable
operations for combination (x) and comparison (+) of tuples
of values and constraints. This is why this formalization is
based on the concept of c-semiring, which is just a set plus
two operations.

Semirings. A semiring is a tuple (4, +, x, 0, 1) such that:
1. Aisasetand 0,1 € A; 2. + is commutative, associa-
tive and O is its unit element; 3. X is associative, distributes
over +, 1 is its unit element and O is its absorbing element.
A c-semiring is a semiring (A, +, X, 0, 1) such that: + is
idempotent, 1 is its absorbing element and X is commutative.
Let us consider the relation <g over A such that a <g b iff
a + b = b. Then it is possible to prove that (see [Bistarelli e
al., 1997]): 1. <g is a partial order; 2. + and x are monotone
on <g; 3. 0 is its minimum and 1 its maximum; 4. (4, <g)
is a complete lattice and, for all a,b € A, a + b = lub(a, b)
(where lub is the least upper bound). Moreover, if X is idem-
potent, then: + distributes over x; (A, <g) is a complete
distributive lattice and X its glb (greatest lower bound). In-
formally, the relation <g gives us a way to compare semiring
values and constraints. In fact, when we have a <g b, we
will say that b is better than a. In the following, when the
semiring will be clear from the context, « <g b will be often
indicated by a < b.
Constraint Problems. Given a semiring S =
(A,4,x%,0,1) and an ordered set of variables V over
a finite domain D, a constraint is a function which, given an
assignment 7 : V' — D of the variables, returns a value of
the semiring. By using this notation we define € = n — A
as the set of all possible constraints that can be built starting
from S, D and V.

Note that in this functional formulation, each constraint is
a function (as defined in [Bistarelli et al., 2002]) and not a
pair (as defined in [Bistarelli et al., 1995; 1997]). Such a
function involves all the variables in V, but it depends on the
assignment of only a finite subset of them. So, for instance,
a binary constraint c, , over variables x and y, is a function
Czy : V — D — A, butit depends only on the assignment of
variables {z,y} C V. We call this subset the support of the
constraint. More formally, consider a constraint ¢ € C. We
define its support as supp(c) = {v € V' | In, dy, da.cnlv =
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di1] # cnlv := dg]}, where

nfv = djv/ = {d

'

ifv="1,
otherwise.

Note that cn[v := d;] means ¢y’ where 7’ is 1) modified with
the assignment v := dj (that is the operator [ ] has precedence
over application). Note also that cn is the application of a
constraint function ¢ : V.— D — Ato a functionn : D —
A; what we obtain, is a semiring value cn = a.

A soft constraint satisfaction problem is a pair (C, con)
where con C V and C is a set of constraints: con is
the set of variables of interest for the constraint set C,
which may concern also variables not in con. Note that
a classical CSP is a SCSP where the chosen c-semiring is:
Scsp ({false,true}, V, A, false,true). Fuzzy CSPs
[Bowen et al., 1992; Schiex, 1992] can instead be mod-
eled in the SCSP framework by choosing the c-semiring
Srcsp = ([0,1], maz, min, 0, 1). Many other “soft” CSPs

(Probabilistic, weighted, ...) can be modeled by using a

suitable semiring structure (Sprop = ([0, 1], maz, x,0, 1),
Sweight = (fR, man, +, +0o, 0>, cos )

Figure 1 shows the graph representation of a fuzzy CSP.
Variables and constraints are represented respectively by
nodes and by undirected (unary for c¢; and c3 and binary for
cg) arcs, and semiring values are written to the right of the
corresponding tuples. The variables of interest (that is the set
con) are represented with a double circle. Here we assume
that the domain D of the variables contains only elements a
and b and c.

(a) = 0.9
(b) — 0.1

N—) 0.9
@

(a) = 0.9

(b) — 0.5
(c) — 0.5

€3
O,

{(a,a) — 0.8
{a,b) — 0.2
{(a,c) = 0.2
(b,a) =+ 0

(b,b) = 0

(b,c) = 0.1
{c,a) = 0.8
(e, b) = 0.2
{e,e) = 0.2

c2

Figure 1: A fuzzy CSP.

Combining and projecting soft constraints. Given the set
@, the combination function ® : € x € — C is defined as
(c1 ® c2)n = c1m X5 con. Informally, combining two con-
straints means building a new constraint whose support in-
volves all the variables of the original ones, and which as-
sociates with each tuple of domain values for such variables
a semiring element which is obtained by multiplying the el-
ements associated by the original constraints to the appro-
priate sub-tuples. It is easy to verify that supp(c; ® c2) C
supp(c1) U supp(ca).

Given a constraint ¢ € € and a variable v € V, the projec-
tion of ¢ over V' — {v}, written ¢ {}(/_(,y) is the constraint
¢ s.t. 'n =3 4cpcnlv := d]. Informally, projecting means
eliminating some variables from the support. This is done by
associating with each tuple over the remaining variables a se-
miring element which is the sum of the elements associated
by the original constraint to all the extensions of this tuple
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over the eliminated variables. In short, combination is per-
formed via the multiplicative operation of the semiring, and
projection via the additive one.

Solutions. A solution of an SCSP P = (C, con) is the con-
straint Sol(P) = (@) C) Ycon- That is, we combine all con-
straints, and then project over the variables in con. In this
way we get the constraint with support (not greater than) con
which is “induced” by the entire SCSP. Note that when all
the variables are of interest we do not need to perform any
projection.

For example, the solution of the fuzzy CSP of Figure 1 as-
sociates a semiring element to every domain value of variable
z. Such an element is obtained by first combining all the con-
straints together. For instance, for the tuple (a,a) (that is,
T = y = a), we have to compute the minimum between 0.9
(which is the value assigned to = a in constraint ¢;), 0.8
(which is the value assigned to (z = a,y = a) in ¢3) and
0.9 (which is the value for y = a in c3). Hence, the result-
ing value for this tuple is 0.8. We can do the same work for
tuple (a,b) — 0.2, {(a,c) — 0.2, (b,a) — 0, (b,b) — 0,
(b,c) — 0.1, {c,a) — 0.8, {¢,b) — 0.2 and (c,c) — 0.2.
The obtained tuples are then projected over variable x, ob-
taining the solution {a) — 0.8, (b} — 0.1 and {(c) — 0.8.

When solving a crisp CSP we refer only to either finding
one solution or finding all solutions. In the context of Soft
CSP, solving can assume several meanings. Specifically, de-
pending on the application and context, we may want to find:

1. all best solutions;
2.

3. all best solutions amongst all solutions whose semiring
value is greater than a given bound o

one from amongst all best solutions;

one best solution from amongst all solutions whose se-
miring value is greater than a given bound o

5. all best solutions, given that we know their semiring
level o

6. one best solution, given that we know their semiring
level o

Mapping the solution process for crisp CSPs into the above
classification results in the two last categories (using true as
the threshold level a). In Section 4 we will study how remov-
ing symmetries in each of the above categories of problems
affects search.

2.3 Symmetry in Soft CSPs

Using an approach similar to [Benhamou, 1994], in [Bistarelli
et al., 2003b] we defined two notions of semantic symmetry:
symmetry for satisfiability and symmetry for all solutions.

Informally, two domain values a and b are symmetrical for
satisfiability if whenever the assignment v := a (v := b)
leads to a solution with semiring value «, we can also ob-
tain a solution with the same value « using the assignment
v := b (v := a), i.e. we say that b and a are symmetrical for
satisfiability (a = b) if and only if

Va,ﬂn,n':@C’n[U =al=a < ®C77'[v =0 =«
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When we want to indicate that a and b are symmetrical for
satisfiability via n and 7y’ we will write @ ~™7 b,

Informally, two domain values a and b are instead symmet-
rical for all solutions (w.r.t. the constraints C) if whenever we
have the assignment 7[v := a] with semiring value o, there is
also an assignment 7[v := b] with the same semiring value,
where n'[v := b] = ¢(n[v := a]) (for some bijective mapping
), and vice versa. Therefore, we say that b and a are sym-
metrical (w.r.t. the constraints C) for all solutions (a ~ b) if
and only if

3¢’7’/, 77// .
Vi : ¢(nfv = a]) =7'[v:=1]
A ¢(nfv := b)) = n"[v = d] ;
A @ Cilo = ol = @ oty = o)
A ® Cnlv:=b] = ® Co(nlv :=b)).

When we want to indicate that a and b are symmetrical for all
solu;ions via the specific symmetry function ¢ we will write
a~%b.

Clearly symmetry for all solutions implies symmetry for
satisfiability [Bistarelli et al., 2003b].

Threshold Symmetries

Symmetries in SCSPs are rarer than in classical CSPs. For
this reason (using a notion of threshold similar to that defined
by Bistarelli et al. [Bistarelli et al., 2003a]) in [Bistarelli et
al., 2003b] we defined an approximate notion of symmetry.
We say that b and a are symmetrical for satisfiability (a ~q
b) if and only if

Va > a,3n,n’ :
®C’n[1} =) =& = ®C’7]’[v i=hl=a

When we want to indicate that  and b are , symmetrical for

satisfiability via 7 and 1’ we will write @ zg”f b. Informally,
two domain values a and b are ,symmetrical for satisfiability
if whenever the assignment v := a (v := b) leads to a solution
with value & > a, then, there is also a way to obtain a solution
with the same value & using the assignment v := b (v := a).

We say that b and a are ,symmetrical for all solutions
(a ~4 b) if and only if

¢ := a]) = n'fv := Y

A d(n[v :=b]) = n"[v = d]
/\®C7)[v =a]=a
A Q) Chnlw = al) =
A ®Cn[v i=b| =o
A ®C’¢(7}[v = h]) = o,

When we want to indicate that ¢ and b are _symmetrical for
all solutions via the mapping ¢ we will write a ~¢ b. In-
formally, two domain values a and b are _symmetrical for

QI
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all solutions if whenever the assignment n[v := a] leads to
a solution whose semiring value is o/ > «, there is also
a solution 7’[v := b] with the same semiring value, where
n'[v := b] = ¢(nfv := a]) (for some bijective mapping ¢),
and vice versa.

We proved [Bistarelli et al., 2003b] that the number of
symmetries increases when we increase the threshold level.
By using that result we also easily have!:

Corollary 1 Given two domain elements a and b and a
threshold «, then,

o ifa=x b thena =, b;

o ifa~b, thena~,b.

3 Extending Symmetry for Soft CSPs

All of the previous definitions of symmetry in terms of a sin-
gle variable can be easily extended to assignments of more
than a single variable. This notion will be useful in Section 4
where we will show that symmetry breaking is indeed very
useful in solving soft CSPs.

Note that the semiring projection operator can also be used
to compute the semiring value associated with partial instan-
tiations. If we have a partial instantiation ' : V/ — D, and a
constraint ¢ s.t. V' C supp(c), the semiring value associated
with ¢n’ is computed by first projecting ¢ over the variables
V' and then computing the semiring value of the resultant
constraint. Thatis ¢y’ = ¢ Jy 7/ 2.

Definition 1 (Symmetry for Partial Instantiations)
Consider two partial assignments 1y and 1, over the same
set of variables V' C V and the set of constraints C':

® we say that 11 and 7, are symmetrical for satisfiability
(m = n2) if and only if

Va, 3n,n' ®C’7][n1] =gy = ®C’n'[772] =

e we say that 1, and ns are symmetrical for all solutions
(w.r.t. the constraints C) (1; =~ 1) if and only if

3¢’nl, 7’// .
v 2 ¢(nlm]) = n'[n2]
A ¢(nna]) = 1" [m]

A @) Clm] = Q) Co(nlm))
A ) Crlna] = &) Ch(nlm)).

Since finding the mapping ¢ is one of the most important
and difficult steps in order to exploit symmetry, it could be
useful to give some equivalent (sometimes easier) conditions
to check.

'Proofs for all theorems can be found in [Bistarelli and
O’Sullivan, 2004].

*The definition of how to compute semiring values for partial in-
stantiations was not defined in [Bistarelli ef al., 1997; 2002]. How-
ever, this is one of the most natural ways to compute them.
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Proposition 1 Symmetry for all solutions (n1 ~ 13) (equa-
tion 1) holds iff equation 2 holds iff equation 3 holds:

31,70 M
v = d1(n[m)) = n'[n2]
A ¢1(nlm]) = n"[m]
A ® Cnlm] = ® Cé1(nlm])

A Q) Clna] = Q) C (nlma]);

s,V : Q) Clm] = Q) Ca(nlm])re] A @)

&) Cnlna] = Q) Cpa(nna]) [m;

s,V : Q) Cnlm] = @) Cs(m)[me] A 3)

Q) Clna] = @) Cps () m;

We can prove some interesting properties when
adding/removing assignments to two partial instantiations 7;
and 72.

Theorem 1 (Extended symmetry for satisfiability) Given
two partial instantiations n1,m2 over the same set of
variables V. C V, and a variable v € V — V, we have

mU{v := a} & U := b} <= gy o= o=t g

Theorem 2 (Extended symmetry for all solutions) Given
two partial instantiations 11,12 over the same set of variables
V C V, and a variable v € V — V. If ¢ is decomposable’
we have

m = ny = mU{v:i=a}=?pUg({v:=a}).

Notice that threshold symmetries can also be defined over
partial instantiations in a manner similar to Definition 1. Re-
lating thresholds and symmetries over partial instantiations
leads to some interesting theorems that will be used to prune
the search space in Section 4.

Corollary 2 (Extended ,symmetries for satisfiability)
Given two partial instantiations 11,m2 over the same set of
variables V. C V, and a variable v € V — V, we have

{mU{v:=a}} ~27 {nyU{v:=0b}}
= m %Z[U::a]:ﬂll'”::b] 2.
and

mdn = nU{v=a} > nUe({v:=a}).

Theorem 3 (Symmetries and SCSP solution levels (1))
Given a constraints problem over the constraint set C' and
given two partial instantiations 11,72 over the same set of
variables V. C V s.t. Cm1 < o, and Cne < « then we have
N1 R N2 and M ~q Mo

3A mapping ¢y : D — D is decomposable if any ¢(V —
D) — (V — D) is defined as the composition of several ¢,
with v1,...,%i,...,0n € Vsit. ¢(v1 := @1,...,Un 1= an) =

¢U1 (al)a veey ¢”n (an)'
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Corollary 3 Given a constraints problem over the constraint
set C. If for all n we have Q Cn < o, then for any m1,m2
over the same set of variables V- C 'V we have 01 ~q 12 and
m =a 2.

Theorem 4 (Symmetries and SCSP solutions levels (2))
Given two partial instantiations 11,12 over the same set of
variables V C V, and a variable v € V — V, we have

Va;, (mUv:=a;) ~q (mUd(v:=a;)) = 1 ~a M2

The previous theorem proves to be very important in the next
section where it will be used to cut computation branches dur-
ing search.

4 Exploiting Symmetry Breaking in
Branch&Bound

In this section we show how symmetry breaking can im-
prove the amount of pruning performed by a classical
Branch&Bound algorithm. In particular, we will define Soft-
SBDD extending the classical definition [Fahle et al., 2001].

4.1 Soft-SBDD

SBDD uses the notion of dominance amongst partial instan-
tiations of variables. Using our notation we can say that a
partial instantiation 7, is dominated by a partial instantiation
12 if 71 C 1o (thatis if 772 extends the instantiation 77;). When
given a symmetry ¢, the dominance relation can be extended,
by noting that if 7; is dominated by 75 (71 C 7)2) and 73 is
symmetric with 73 (13 = ¢(7)2)), then 7 is dominated under
the symmetry ¢ by 7s.

More precisely, we can define two partial orders on par-
tial instantiations, based on the notions of symmetry for sat-
isfiability (=) and symmetry for all solutions (=) defined in
Section 3.

Definition 2 (Dominance under symmetry) Consider
three partial assignnents 11,72, M3;

e we say that n; is dominated under symmetry for satis-
fiability by n3 (m1 S n3) if and only if m C np and
N2 =~ N3,

e we say that 1, is dominated under symmetry for all solu-
tions by n3 (m S ns) ifand only if n1 C mo and na =~ n3;

e we say that 1 is qodominated under symmetry for sat-
isfiability by 13 (M Se 13) if and only if )1 C 12 and
72 Na UES

e we say that 1y is qdominated under symmetry for all
solutions by 13 (m1 Sa 03) if and only if m C 1o and
2 =a M35

We can easily show that 5, <, Saipha and Saipha are par-

tial orders.

Theorem 5 3, <, Saipha and Saipha are partial orders.

The nodes in the search tree can be represented as partial
instantiations. At each step SBDD checks if there exists an
already visited node 7’ s.t. 7 < 77/, i.e. we use the thresh-
old definition of symmetry. If this is the case the algorithm
backtracks and prunes all the branches rooted at 7).



Proc. SymCon’04

If we want to use SBDD to solve Soft CSPs, we have to
modify it in order to be able to perform pruning with respect
a threshold .. We will refer to this modified version of SBDD
as Soft-SBDD.

Using Soft-SBDD, a node of the search space can be rep-
resented by partial instantiations plus the semiring value for
each instantiation. As in SBDD, Soft-SBDD checks at each
step if there exists an already visited node 7’ s.t. n < 5. If
this is the case the algorithm backtracks and prunes all the
branches rooted at 7.

Moreover, when a complete assignment 7’ is found, with
associated semiring value c, this is used as a bound. For each
new visited node 7, we check if 7 <, 1. When the result of
this check is positive, the algorithm can backtrack and prune
all the branches rooted at 7. )

We now consider an example to show that symmetry break-
ing can prune branches of the search tree that are not pruned
by a Branch&Bound algorithm.

Example 1 Consider an SCSP over the semiring Sweight =
(R, min, +, +00,0) with variables V = {z,y, 2z}, each with
the same domain D = {a, b, c}, there are the following unary
and binary constraints, C' = {c,, ¢y, ¢;, ¢y }, defined as fol-
lows:

¢ = {{a) = 4,(b) — 5,(c) — 4}

¢y ={(a) — 3,(b) — 3, {c) — 10};

¢z ={(a) = 6,(b) — 8,(c) — 5}

cyz = {(a,a) — 0, (a,b) — 0, (a,c) — 0,
(b,a) — o0, {b,b) — o0, (b,c) — 0,
(c,a) — 0,{c,b) — 0,{c,c) — 0}

We assume that there are other constraints in the problem giv-
ing the following symmetry ¢ s.t. {z := a,y = a} ~j
{z := a,y := b}. Let’s also assume that we will use a vari-
able ordering heuristic that considers the variables in the or-
der z, y, and z. Domain elements are selected in the order
a, b, and ¢. Assume also that the estimate of the cost of a
partial instantiation is the minimum of the sum of the com-
plete assignment using the projection operator defined at the
beginning of Section 3. We are seeking all best solutions.

Let’s consider the situation once we have reached the state
represented in Figure 2. In the figure, the grey nodes repre-
sent fully explored branches, while the white ones are nodes
yet to be fully explored. The search at this point has found
three complete instantiations {z := a,y := a,z = a},
{z = a,y = a0,z := b} and {z = a,y = a,2 := ¢}
with associated semiring levels 13, 15 and 12, respectively.
Therefore, at this stage, 12 is the current bound used by the
Branch&Bound algorithm to prune branches of the search
tree.

Suppose we now backtrack and make the instantiation
y := b leading to the state represented by the partial assign-
ment {z := a,y := b}. The approximation computed for this
instantiation by the Branch&Bound algorithm for this node is
12 (computed by summing the cost for the two instantiated
constraints ¢; = a — 4 and ¢, = b — 3 and the best possi-
ble value for z which has cost 5). Since the approximation is
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Figure 2: Search tree after some steps.

not worse than the actual bound (remember we are minimiz-
ing and trying to find all best solutions, we cannot prune this
branch at this stage.

However, if we use SBDD, we can check if the current
node is dominated by some of the nodes that have already
been expanded (that is we have to check if there exists a (par-
tial) instantiation 7 s.t. {z := a,y := b} < 7. This is what
classical SBDD does.

In our case, since we have a bound (12) we can use it in
order to perform more pruning. To do that we have to check
if there exists a (partial) instantiation 7 s.t. {z := a,y =
b} Si2 1. By hypothesis we have a symmetry ¢ with {z :=
a,y = b} Si2 {2 := a,y := a}. Since the node {z :=
a,y := b} Ji12 {z := a,y := a} is completely explored,
we can prune node {z := a,y := b} because we are sure
that all the nodes in this branch represent either a solution
with semiring level worse than 12 or a solution with semiring
level 12, symmetric to {z := a,y := a,z := ¢} (and easily
computed from ¢({z := a,y := a, z := c})).

At the next step, when instantiating 7 := ¢ we move to the
state {z := a,y := c}. Since the approximation of the cost of
this branch is 19 and since 19 > 12, we can prune this node
using Branch&Bound. A

Therefore, this example shows how the pruning of
Branch&Bound can be improved by using SBDD. Notice that
SBDD and Branch&Bound have two different partial orders
for pruning. Soft-SBDD uses <, while Branch&Bound uses
the T order induced by the semiring order <. Both par-
tial orders rely on the fact that instantiating more variables
leads to a solution which is no better from the perspective of
consistency; for SBDD this is due to its definition, and for
Branch&Bound from the fact that constraints are monotonic
(the more variables we instantiate, the more constraints are
defined, and the worse will be their combination).

Using Soft-SBDD, we combine together Branch&Bound
and symmetry breaking. We will see in the following how
using S, will prune more than classic Branch&Bound.
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However, even if we have a perfect heuristic for
Branch&Bound, i.e. a heuristic that would compute the true
best semiring value for a given search tree node, does it per-
form better than Soft-SBDD? We can prove the following:

Theorem 6 Branch&Bound with a “perfect” heuristic can-
not prune all of the branches pruned by a “perfect” Soft-
SBDD.

We can also prove something stronger. In Figure 2 the
branch {z := a,y := c} is pruned by Branch&Bound be-
cause the current estimated cost was worse than the bound.
However, can that node be removed by symmetry?

In general the answer to this question is no. Finding sym-
metry functions in a problem is fact one of the main draw-
backs of applying symmetry breaking. We usually need to
have a deep understanding of the problem in order to iden-
tify all its symmetries. However, if all the symmetries of a
problem were known, Soft-SBDD could perform better than
classical Branch&Bound.

Theorem 7 If all the ,symmetries of a problem are known,
Soft-SBDD can prune more than a classical Branch&Bound.

Example 2 As an example consider Figure 3. Node {z :=
a,y := c} has been extended to {z := a,y := ¢,z := a},
{z := a,y := ¢,z := b} and {z := a,y := ¢,z := a},
with the associated cost of 20, 22 and 19. By definition of
oSymmetry we have: {z 1= a,y = a,z = ¢} > {& =
a,y = ¢,z = a}, {z = a,y = a,z 1= ¢} >~ {z =
a,y = ¢z = b}, {z := a,y := a,z 1= ¢} ~13 {T:
a,y = ¢,z := c} *. By using the results of Theorem 4, we
can also say that {z := a,y := a} ~15 {z := a,y := ¢}, so,
in the case where we know all the symmetries in a problem,
we can prune at node {z := a,y := c} using Soft-SBDD,
because {z := a,y := ¢} S12 {z :=a,y :=a}. A

Figure 3: Soft-SBDD can perform better than B&B.

*In fact, the definition of oSymmetry takes into account the se-
miring level of the solution. If the solution is worse than 12, they
are by definition , ,symmetric.

4.2 Applying Soft Symmetry Breaking

Symmetry breaking is used to remove symmetrical instan-
tiations in order to reduce the search space. Many of the
methodologies described in Section 2.1 remove solutions
symmetric to those already found (we will call this symmetry
breaking on success). Others, instead, remove branches of
the search tree corresponding to non-solutions already found
(we will call this symmetry breaking on failure).

In the following we will consider each of the six optimiza-
tion problems in SCSPs (see end of Section 2.2) and we will
indicate how symmetry breaking can be used to reduce the
size of the search space in each case. We will also highlight

- when the amount of pruning performed by Soft-SBDD (that
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can be seen as symmetry breaking plus Branch&Bound) im-
proves that of the classic Branch&Bound algorithm, that can
be used to solve an SCSP.

Proposition 2 When looking for one best solution, given that
we know its semiring level o, soft symmetry breaking per-
Jorms more pruning than classic Branch&Bound due to sym-
metry breaking on failure only.

Essentially, if we know the semiring level of the best so-
lution, once we have found it we are done. However, as we
search we find solutions below the desired threshold. The
symmetric equivalents of these solutions can be pruned using
symmetry breaking, thus reducing the amount of redundant
work that Branch&Bound has to perform.

Proposition 3 When looking for one best solution from
amongst all solutions greater than a given bound o, soft
symmetry breaking performs more pruning than classic
Branch&Bound due to both symmetry breaking on success
and failure.

Since the best semiring level of the solution is unknown we
have to explore the entire search space to decide if the best
solution that has been found to date is the best one. Sym-
metry breaking on success can be used to exclude from the
search space equivalent solutions that we do not want to col-
lect. However, such pruning will usually be quite weak in
comparison to the pruning that can be performed by symme-
try on failure.

Proposition 4 When looking for one solution among all best
solutions, soft symmetry breaking performs more pruning
than classic Branch&Bound due to both symmetry breaking
on success and failure.

In this case an approximation of the semiring level of the
best solution is not known. This implies that it is not possible
to perform initial symmetry breaking on failure. However,
as soon as we have found a solution with semiring level «
we can use this threshold to perform symmetry breaking on
success and failure.

Proposition 5 When looking for all best solutions, either
with or without specified bounds on the semiring level,
soft symmetry breaking performs more pruning than classic
Branch&Bound due to both symmetry breaking on success
and failure.
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If we wish to find all the best solutions, symmetry breaking
on success becomes more useful. It is important to notice
that in this, and all the previous cases, symmetry breaking
on failure is much more useful whenever the heuristic used
in Branch&Bound is not perfect. In the theoretical case of
dealing with a perfect heuristic, symmetry breaking on failure
is not useful, but, when all the solutions are needed, symmetry
breaking on success remains useful.

5 Conclusions and Future Work

While symmetry breaking has been studied widely in the con-
text of crisp constraint satisfaction, it has received very little
attention in the context of soft constraints. We make contri-
butions to this topic in this paper.

One of the most powerful techniques used in symmetry
breaking is based on dominance detection. In this paper we
have extended an existing approach to symmetry breaking
for soft constraints in order to exploit dominance amongst
partial instantiations. This provides a basis for a generaliza-
tion of Symmetry Breaking via Dominance Detection for soft
constraint satisfaction problems called Soft-SBDD, which we
have theoretically shown to be beneficial when solving soft
CSPs.

Soft-SBDD provides a basis for exploiting symmetry
amongst preferences, which has applications in a num-
ber of fields such as preference-based configuration and e-
commerce. As part of our future work we plan to implement
Soft-SBDD in the context of a branch & bound solver, fol-
lowing the approach of [Gent et al., 2002; 2003] in order to
fully evaluate it on real-world problems.
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Abstract

Both model checking and constraint processing in-
volve the searching of graphs: in model checking to
establish the truth of a temporal logic formula; in
constraint processing to determine whether or not
solutions to a problem exist which satisfy a set of
constraints. In both fields, the presence of symme-
try in the model or problem can result in redun-
dant search over equivalent areas of the graph or
search space. Recently there has been much inter-
est in symmetry reduction in model checking, and
symmetry breaking in constraint satisfaction prob-
lems (CSPs). The n-queens problem is a CSP to
which symmetry breaking has been applied. To
illustrate the approaches to exploiting symmetry
in both model checking and CSPs we show how
the n-queens problem can be solved using model
checking, and how symmetry reduction can be used
to make larger instances of the problem tractable.
Through this example we highlight the similarities
and differences between the approaches.

1 Introduction

Searching for all solutions of a constraint satisfaction prob-
lem (CSP) can take a prohibitively long time due to symme-
try inherent in the problem [14]. Most of the search effort is
dedicated to exploring variable assignments which are sym-
metrically equivalent to previous assignments, and are thus
redundant. Similarly in model checking, the state space of a
model may be intractably large, but consist of many symmet-
rically equivalent components which are indistinguishable in
terms of the global behaviour of the system being modelled
[71.

Recently there has been much research into symmetry
breaking in constraint processing—adding constraints to a
problem either before or during search to avoid the ex-
ploration of symmetrically equivalent assignments [12; 13;
14]. The goal of this approach is to quickly obtain only a sub-
set of all solutions to the problem; the set of all solutions is
obtained from this subset by applying symmetries. Similarly
in model checking there has been significant interest in sym-
metry reduction [7; 10; 19]. If symmetries of a model can be
identified then they can be exploited during model checking
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to construct a guotient model. The quotient model is generally
smaller than the original model, but they are behaviourally
equivalent in the sense that they satisfy the same set of (sym-
metrically invariant) properties. Thus model checking can be
performed over the smaller quotient model.

The similarity between model checking and constraint pro-
cessing has been investigated, and constraints technology has
been applied to model checking problems [9; 11]. Model
checking has been used to solve the rehearsal problem [16],
generally accepted as a constraint satisfaction problem [21].
In this paper we illustrate the relationship between symme-
try breaking in constraint programming and symmetry reduc-
tion in model checking, using the n-queens problem as a case
study. We do not suggest that model checking is more suitable
than constraints technology for solving this problem—we use
the example as a way to demonstrate the theory of symmetry
in model checking to the constraint programming community.

1.1 Overview of results

We present the n-queens problem using the Promela mod-
elling language, and show how the SPIN model checker [17]
can be used to find all solutions. We then show how symme-
try reduction can be applied to ensure that only symmetrically
distinct solutions are found. Through this example we show
that model checking over a quotient Kripke structure is sim-
ilar both to the method of symmetry breaking during search
[13], and to the approach of finding the smallest solution in
each equivalence class under an appropriate ordering [4] in
constraint processing.

For all verification runs we used a PC with a 2.4GHz In-
tel Xenon processor, 3Gb of available main memory, running
Linux (2.4.18), with SPIN version 4.0.7.

2 Preliminaries

We give a brief description of model checking in section 2.1,
and of the SPIN model checker and the Promela modelling
language in section 2.2. For a thorough introduction to model
checking see e.g. [6], and for the definitive reference on SPIN
and Promela see [17].

2.1 Model checking, Kripke structures and
temporal logic
Model checking is a technique whereby temporal logic prop-

erties of a system can be checked by building an abstract
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model of the system and checking whether the model satisfies
the properties. The model is constructed using a specification
language, and checked using an automatic model checker.
Failure of the model to satisfy a property of the system indi-
cates either that the model does not accurately reflect the be-
haviour of the system, that the property has been inaccurately
specified in temporal logic, or that there is an error (bug) in
the original system. Examination of counter-examples pro-
vided by the model checker enable the user to either refine
the model, refine the property, or, more importantly, to debug
the original system.

To reason about a model, we refer to its underlying Kripke
structure, which is defined over a set of atomic propositions.
Atomic propositions are logical statements representing the
values of variables in the model.

A

Definition1 Let AP be a set of atomic propositions.
Kripke structure M over AP is a quadruple M
(S, R, L, so) where:

e S is a non-empty, finite set of states,

e R C S x S is atotal transition relation, that is for each
s € S there exists t € S such that (s,t) € R,

o L : S — 24F is a mapping that labels each state in S
with the set of atomic propositions true in that state,

e sg € S isan initial state.

In model checking, properties of models are usually specified
in the temporal logic CTL*, or in one of its sub logics, LTL
(linear temporal logic) or CTL (computation tree logic). In
this paper we make use the SPIN model checker, which al-
lows verification of LTL properties. The properties we are
interested in use the operators O (always), and < (eventu-
ally). For further details on temporal logic see e.g. chapter 3
of [6].

2.2 Promela and SPIN

Promela is the specification language for the SPIN model
checker [17]. Although similar in syntax to the C program-
ming language, Promela includes constructs to specify non-
determinism and concurrency in a model, but not many of the
advanced features of the C language such as memory man-
agement functions. SPIN is a bespoke model checker for the
Promela language. Given a Promela model and a temporal
logic formula, SPIN attempts to show that the model does not
satisfy the formula by finding a counter example path through
the model which violates the formula. In SpiN, LTL proper-
ties are converted into Biichi automata [23], expressed in the
form of never-claims. A never-claim can be thought of as an
additional process which makes a transition every time one
of the other process in the model has made a transition. If no
such transition is possible (if the current path cannot possibly
lead to an error for example) the current path is blocked, and
the search backtracks.

Usually when'a single error is found, model checking ter-
minates so that the error can be resolved. In the approach we
use here, we require all errors to be reported before model
checking terminates. Conveniently SPIN provides an option
which supports this and provides a separate counterexample
for each error.
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3 Symmetry in CSPs

A symmetry « for a constraint problem C is a function that
maps any assignment A which is a solution of C to a sym-
metric assignment a(A) which is also a solution of C' [1].
The set of all symmetries for a problem C forms a group,
which partitions the set of all possible variable assignments
into equivalence classes. In any class, either every assign-
ment is a solution, or none is.

According to Gent and Smith [14], the three aims for a
symmetry-exclusion method are:

e to guarantee that we never allow search to find two sym-
metrically equivalent solutions,

e to respect heuristic choice as much as possible, and
e to allow arbitrary forms of symmetry.

One approach to symmetry breaking in CSPs involves adding
symmetry breaking constraints to the CSP before search, con-
verting it into a less symmetric (ideally asymmetric) problem
[8; 20]. Another approach, known as symmetry breaking dur-
ing search (SBDS) involves adding symmetry breaking con-
straints to the problem as the search proceeds, by detecting
symmetries which remain unbroken when the search tries a
fresh branch on backtracking [13; 14]. A third approach [4]
defines an ordering on the set of assignments and finds only
the smallest solution in each equivalence class under this or-
dering.

4 Symmetry in model checking

While there are several approaches to symmetry breaking in
CSPs, the vast majority of work on symmetry reduction in
model checking centres around one approach. This approach
uses symmetries of a Kripke structure to automatically con-
struct a quotient structure.

Let M = (S,R, L, so) be a Kripke structure. An auto-
morphism of M is a bijection « : S — S which satisfies the
following condition:

Vs,t €S, (s,t) € R= (a(s),a(t)) € R.

In a model of a concurrent system with many replicated pro-
cesses, Kripke structure automorphisms may involve the per-
mutation of process identifiers throughout all states of the
model. On the other hand, a model may include a data struc-
ture which has geometrical symmetry. In this case Kripke
structure automorphisms involve applying the geometrical
symmetries throughout all states of the model. All Kripke
structure automorphisms arising in this paper are geometri-
cal.

The set of all automorphisms of the Kripke structure M
forms a group under composition of mappings. This group
is denoted Aut(M). A subgroup G of Aut(M) induces an
equivalence relation =g on the states of M by the rule

s=gte s=a(t) forsome a € G.

The equivalence class under =g of a state s € S, denoted
[s], is called the orbit of s under the action of G. The orbits
can be used to construct a quotient Kripke structure Mg as
follows:
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Definition 2 The quotient Kripke structure Mg of M with
respect to G is a quadruple Mg (Sa,Ra, La,[s0])
Where:
o Sg = {[s] : s € S} (the set of orbits of S under the
action of G),

* Rg ={([s],[t]) : (s,%) € R},

o Lg([s]) = L(rep([s])) (where rep([s]) is a unique rep-
resentative of [s]),

e [so] € Sg (the orbit of the initial state sg € S).

In general Mg is a smaller structure than M, but Mg and
M are equivalent in the sense that they satisfy the same set of
logic properties which are invariant under the group G (that
is, properties which are “symmetric” with respect to G). For
a proof of the following theorem, together with a description
of the temporal logic CTL*, and sub logics LTL and CTL, see
[6].

Algorithm 1 Algorithm to construct a quotient Kripke struc-
ture
reached := {rep(so)}
unexplored := {rep(so)}
while unezplored # ) do
remove a state s from unexplored
for all successor states ¢ of s do
if rep(q) is not in reached then
append rep(q) to reached
append rep(q) to unexplored
end if
end for
end while

Theorem 1 Let M be a Kripke structure, G be a subgroup of
of Aut(M) and f be a CTL* formula. If G is an invariance
group for all the atomic propositions p occurring in f, then

M,;sk=fe Mg, slE=f

where Mg is the quotient structure corresponding to M.

Thus by choosing a suitable symmetry group G, model
checking can be performed over Mg instead of M, often
resulting in considerable savings in memory and verification
time [7].

Of course it must be possible to construct the structure Mg
without first constructing M. Assuming that symmetries of
the model are known in advance, this construction can be
achieved using algorithm 1, adapted from [19].

S The n-queens problem

The n-queens problem [2] is as follows: “Given ann x n
board of squares, place n-queens on the board so that no
queen can attack any other queen”. The problem is a gener-
alisation of the 8-queens problem (the case where n = 8). A
solution to the problem is a configuration of the board which
satisfies the requirement that no two queens can attack one
another. Figure 1 shows two solutions to the 4-queens prob-
lem. Figure 3 on the other hand shows two configurations of
the 4-queens problem which are not solutions.
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Figure 1: Symmetric solutions to the 4 queens problem.

5.1 Representing n-queens as a CSP

The standard formulation of n-queens as a constraint satis-
faction problem uses n variables, q1,¢s,...,qn, Where the
position of the queen on row ¢ of the board is represented
by g;. The domain of each of the variables ¢, qa, . .., ¢, is
{1,2,...,n}. Foralli,j = 1,2,...,n, i # §, the following
constraints ensure that no queen can attack any other:

&G # g 1)
G+i # g+j )
G—1 # q—7J 3)

Constraint 1 ensures that the positions of queens in different
rows must be different, so that queens cannot attack one an-
other by moving vertically on the board. The requirement that
no two queens can appear on the same diagonal is specified
by constraints 2 and 3. No constraint is required to ensure that
only one queen appears on each row: formulating the prob-
lem using one variable per row means that this requirement is
implicitly satisfied.

5.2 Representing n-queens in Promela

We follow an approach similar to the one presented in [16] for
solving a constraint satisfaction problem using model check-
ing. Recall from section 2.1 that model checking is useful for
finding errors in models of systems. To find all solutions to a
CSP using model checking we write a model of the problem,
and assert that no solutions to the problem exist. The model
checker then regards a solution as an error, and reports it.

The approach involves first writing a verification model
which non-deterministically assigns values to each variable in
the problem, so that the state space of the model includes all
possible assignments to variables. A temporal logic formula
asserting that the constraints of the problem are not satisfied
in any state of the model must then be specified. Finally the
model checker must be instructed to verify the formula, re-
porting all errors paths. All solutions to the problem will thus
be reported as errors by the model checker.

Our model of the n-queens problem uses a byte array of
length n, indexed from O to n — 1. Each entry of this array
represents a row of the board, and is set to u (unassigned) if
no queen has been placed on that row. Setting entry 7 — 1 to
the value ¢ — 1 implies that a queen has been placed at row j,
column ¢ (1 < 4,j < n). Here is the Promela code for our
model with n = 4:

fdefine u 255
byte g[4]=u;
bit result=0;
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init {
do
: result==1 -> skip
: else —>
atomic { if

:: q[0]==u —>
if :: g[0]=0 :: gq[0]=1 :: g[0]=2 :: g[0]=3 fi

: g[l]==u && g[0]'!=u ->
if :: q[l]=0 :: g[l]=1 :: g[1]=2 :: g[l]=3 fi;
diagscheck (1, result);
alldifferentcheck(l,result)

: q[2]==u && g[1l]!=u && q[0]!=u —>
if :: g[2]=0 :: g[2]=1 :: g[2]=2 :: q[2]=3 fi;
diagscheck (2,result);
alldifferentcheck (2, result)

: g[3]==u && q[2]!=u && q[l]!=u && q[0]!=u —>
if :: q[3]=0 .:: gq[3]=1 :: q[3]=2 :: q[3]=3 fi;
diagscheck (3,result);
alldifferentcheck (3, result)

£i 1}
od

The keyword atomic ensures that the code enclosed in the
following curly braces is treated as one step, so that a single
state change occurs on execution of the enclosed block. The
do :: Seg od construct causes the code segment Seg to be
unconditionally repeated, and the construct if Seg; . ... .:
Seg,.. fi allows one of the code segments Seg; to be executed
nondeterministically if it is executable (1 < 7 < m, m > 0).

To make the problem tractable our code uses two simple
optimisations. The rows are assigned in order: g[j] cannot be
set until g[k] has been set for all k < j (0 < j < n). This is
achieved by the boolean guards of the form

ql[jl==u && g[j-1]!=u && ... && q[0]!=u

This optimisation ensures that there is exactly one path
through the Kripke structure leading to each total variable
assignment—without this optimisation there would be mul-
tiple paths to each solution as illustrated by figure 2, so the
model checker would report the same solution many times.
Note that the rows could be assigned in any fixed order.

The second optimisation is that on assigning each variable,
a check is made to see whether or not the partial assign-
ment satisfies the diagonal constraints and the column con-
straint. This optimisation makes use of two functions, di-
agscheck(k,result) and alldifferentcheck(k,result). The func-
tion diagscheck(k,result) sets result to 1 if the assignment just
made to row k breaks the diagonal constraints. This forces the
search to backtrack if a partial assignment cannot be a solu-
tion. The function alldifferentcheck(k, result) works similarly
for the column constraint. This optimisation dramatically re-
duces the state space of the model.

The following LTL formula is used to find solutions to the
problem:

v

- (o (D(ﬁnished A alldifferent A updiag A downdiag)))

Here alldifferent, updiag and downdiag correspond to con-
straints 1, 2 and 3 in section 5.1 respectively. The proposition
finished is used to ensure that only total assignments are con-
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ql0]=2 ql0]=2
q[1]=0 qll]1=0
ql2]=3 ql2]=u
ql[3]=u ql3]=1

Figure 2: Two paths to the same solution. Our model ensures
that only the left hand path is explored.

sidered as solutions.

alldifferent = A\ (qfé] # qlj])

ii

N (alil+i# als] + )
05¥¥g<n

A (i) —i# i) - 9)
Ogi'i;,g'fn

N (alil # )

0<i<n

updiag

downdiag

finished

Recall from section 5.1 that in modelling the problem using
one variable for each row we eliminate the need for a con-
straint specifying that there should be no more than one queen
on each row. In English, the above LTL formula asserts that
“at every state in the model, for all paths, it is not true that
the constraints eventually always hold”. A violation of this
property clearly must be a solution to the problem. The O
operator is necessary to ensure that duplicates of solutions
are not reported, due to the way SPIN verifies LTL formulae.!

We have written a PERL script which generates a Promela
model and never claim for the n-queens problem, given n >
0. The code for this script is available on our website [5]. Ta-
ble 1 shows the number of solutions to the n-queens problem
found by our setup for n < 10, along with the time and mem-
ory requirements. For n < 9, all solutions are found. It was
not possible to find any solutions for n = 10 before available
main memory was exhausted.? This shows that although the

'In SpIN all finite paths are extended to infinite paths by the cre-
ation of a loop from a final state to itself. As we have asked the
model checker to report all errors, without the O operator a dif-
ferent error would be reported depending on how many times this
loop is executed, thus the same solution would be returned multiple
times.

2We could use the minimised automaton method of SPIN [17] to
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Table 1: Verification results for the n-queens Promela model
without symmetry reduction

n | solutions states time memory
found searched (Mb)

4 2 332 0.01s 2.3

5 10 875 0.01s 23

6 4 14,850 0.05s 2.7

7 40 121,282 041s 6.4

8 92 111 x 105 | 4.50s 43.9

9 352 1.12x 107 | 1m47s 428.3

10 0 7.70 x 10" | 4m31s | 3039.0

problem can in principle be solved using model checking, it
is not an effective approach.

6 Symmetry in the n-queens problem

Consider the solution to the 4-queens problem shown on the
left in figure 1. Observe that flipping the board through the
vertical axis results in the solution shown on the right. These
solutions are said to be symmetric, the symmetry being reflec-
tion through the vertical axis.

In general there are 8 symmetries of the n-queens problem
for any n. Geometrically these symmetries are: the identity,
rotation by 90°, 180° and 270°, reflection through the ver-
tical axis, and reflection through the vertical axis combined
with rotation through 90°, 180° or 270°. These symmetries
form a group (called the dihedral group of order 8) that pre-
serves solutions to the n-queens problem. The solution pre-
serving property is illustrated by both figure 1 which shows
symmetric solutions, and figure 3 which shows two symmet-
ric assignments which are not solutions.

Symmetry in the 8-queens problem was investigated as
early as 1874 by Glaisher [15].

Figure 3: Symmetric configurations of the 4 queens problem
which are not solutions.

6.1 Symmetry breaking in the CSP approach

The n-queens problem has been used as an example by vari-
ous authors investigating symmetry in constraint processing
[4; 14]. Three methods of symmetry breaking which have
been used are symmetry breaking before search, symmetry

try to verify larger configuration. This method trades memory for
time. While it can handle extremely large state spaces, verification
can be very slow.
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breaking during search, and symmetry breaking by assign-
ment ordering. We briefly summarise the advantages and
disadvantages of these techniques for the n-queens problem.

Symmetry breaking before search

It is possible to add symmetry breaking constraints
to a CSP representation of the n-queens problem

before search to reduce the number of symmet-
rically equivalent solutions that are reported [14;
22]. For example, to eliminate 180° rotational Symme-

try we could add constraints in the following manner
[14]:

*q<n+l-g,
o ifgy=n+1—gpthenge <n+1—g,_1

cifgp=n+l-grandge=n+1—g,
thengs <n+1—gp_2

etc. This method requires a large number of constraints to
be added to the problem if all symmetries are to be broken.
Breaking all symmetries in practice can prove difficult [22],
and symmetry breaking constraints do not always work
well with variable ordering heuristics, especially if only one
solution is required [14].

Symmetry breaking during search

In [14], the method of symmetry breaking during search is
applied to the n-queens problem, using ILOG Solver. Seven
functions are written, one for each non-trivial symmetry of
the problem. Run time is shown to be cut by up to 75%, and
the number of backtracks is greatly reduced as n increases.
All symmetry of the problem is exploited, so that all the
solutions found are symmetrically distinct. Since the number
of symmetries of the problem is small, and does not change
as n increases, the SBDS approach is very effective when
applied to the n-queens problem [14].

Symmetry breaking by assignment ordering

A symmetric backtracking algorithm with symmetry is
presented in [4]. Given a symmetry group, the algorithm
works by imposing an ordering on variable assignments, and
uses a function, Symtest, to check for each partial assignment
whether or not it is equivalent to a smaller one using the
Symmetry group.

Experimental results using the n-queens problem show that
for n < 6 the overhead of symmetry computations means
the algorithm using symmetry takes longer than one without
symmetry, but for larger values of n the algorithm with sym-
metry is 2.6 times faster than without. The algorithm with
symmetry could also handle cases of the problem which were
not tractable without symmetry.

6.2 Symmetry reduction in the model checking
approach
We show how the approach to symmetry reduction using

quotient structures can be applied to the Promela model
described in section 5.2. Definition 2 of a quotient Kripke
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structure, and algorithm 1 for constructing a quotient Kripke
structure, both make use of a function rep which, given a
state s, computes a unique representative from the equiv-
alence class [s] such that for all t € [s], rep(t) = rep(s).
It would be possible to modify the SPIN search algorithm
to store a unique representative of each state, and this is
done in [3] for total symmetries. However, such a modi-
fication to SPIN would be quite tricky, and would tie the
symmetry reduction technique to the current version of

the model checker. For this reason we alter our model
so that once a state has been reached, but before SPIN

has stored the state, the state is canonicalised, i.e. it is
converted into a unique representative from its equivalence
class. This has exactly the same effect as altering the
SPIN search' according to algorithm 1. The Promela code
for the symmetry reduced model is the same as that given
in section 5.2, with a call to the function rep added as follows:

init {
do
:: result==1 -> skip
: else —>
atomic { if
: g[0]l==u —>
f£iz
rep() }
od

}

The function rep applies each symmetry of the problem to
the array ¢ in turn, and selects (as a representative) the as-
signment which is smallest using the natural lexicographical
ordering on the array. This is similar to the approach used
in [4] of assigning an ordering on assignments and returning
only the smallest solution in each equivalence class under
this ordering. Here is an excerpt of the Promela code:

inline rep() {
d_step {
copy (g, min); wipe(temp); r90(q, temp);
if
: lt (temp,min) -> copy(temp,min) :: else -> skip
£fi;
wipe (temp); r180(qg, temp);

if

: 1t (temp,min) -> copy(temp,min) ::
fi;
wipe (temp); r270(qg, temp);

else -> skip

copy (min, q) ;
}

As can be seen from the code, there is a function for each
symmetry in the problem. The function r90(a,b), which turns
b into a configuration of a rotated through 90°, is imple-
mented (for the case n = 4) as follows:

inline r90(a,b) {

if

: a[0]==u

:: else b[a[0]]=n-1
fi;
if

1 all]l==u

:: else bl[a[l]]=n-2
£i;

if
:: al[2)]==u
: else b[a[2]]=n-3
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Table 2: Verification results for the n-queens problem with
symmetry reduction

n | solutions states time memory
found searched (Mb)
4 1 137 0.01s 2.3
5 2 742 0.01s 2.3
6 1 4,901 0.01s 2.4
7 6 37,994 0.18s 3.5
8 12 337,070 1.61s 14.5
9 46 3.35 x 10° 23.06 s 129.1
10 92 3.70x 107 | 17m20s | 1478.7
11 46 6.93x107 | 6m33s 3039.0
fi;
if
1 al[3]==u
: else bla[3]]=n-4
£i7

}

The others functions are defined in a similar way. The func-
tion copy(a,b) makes copies the array a into the array b. This
has been implemented since Promela does not support the op-
eration of assigning one array to another. Similarly, wipe(a)
sets each element of the array a to zero. The function /#(a,b)
returns true if array a is lexicographically smaller than array
b.

Providing a function for each nontrivial symmetry of the
problem is similar to the way SBDS is applied to the problem
in [14].

q[0]=1 q[0]=u
q[1]=3 | ~ | all]=0
ql[2]=0 ql2]=3
q[3]=u q3]1=1

Figure 4: These assignments are symmetrically equivalent,
but the one on the right is not reachable in the original model.

An important point to note is that our model is only par-
tially symmetric. We assign values to the array positions
q[0],¢[1],-..,¢[n — 1] in a fixed order, and so the configura-
tion shown on the left in figure 4 is a reachable configuration,
but the one on the right is not. However, the two configura-
tions are symmetrically equivalent. This means that the origi-
nal model is not closed under the symmetries of the problem:
given a state and a symmetry it may be that the state resulting
from applying the symmetry is not a reachable state of the
model. The work of Emerson and Trefler [10] on rough sym-
metry in model checking ensures that in this case the quotient
model obtained by applying symmetries of the problem is still
behaviourally equivalent to the original model for symmetric
properties even though the symmetry is only partial. The jus-
tification for this is that each variable g[¢] (0 < ¢ < n) can be
seen as a prioritised process which assigns itself a value, such
that process g[4] is blocked until process g[j] has assigned it-
self a value for each j < i. For more details of symmetry in
prioritised systems see [10].



Proc. SymCon’04

We have extended our PERL script to allow the inclusion of
symmetry reduction in the generated Promela model. Table 2
shows the number of solutions to the n-queens problem found
by our model using symmetry reduction for n < 11, along
with the time and memory requirements. Since all symme-
tries of the problem have been exploited, only symmetrically
distinct solutions are returned. For n < 10, all symmetri-
cally distinct solutions are found. Despite the overhead of the
rep function, using symmetry reduction is always at least as
fast as not using it. For the case n = 8, using symmetry re-
duces the number of explored states by a factor of more than
3, and search is 4.7 times faster. We were also able to find all
(symmetrically distinct) solutions for the case n = 10, which
was not possible without exploiting symmetry. For the case
n = 11, it was possible to find 46 of the 341 symmetrically
distinct solutions before memory was exhausted.

Recall from section 6.1 the three aims of a symmetry ex-
clusion method proposed by Gent and Smith [14]. We have
demonstrated that symmetry reduction using quotient struc-
tures fulfills the first and last of these aims—this approach
has avoided finding symmetrically equivalent solutions, and
we could deal with different forms of symmetry in other prob-
lems by coding the rep function differently. In fact it would be
possible to automatically generate the rep function given gen-
erators of a symmetry group, using a similar approach to [4].
The second aim, that heuristic choice should be represented,
is not applicable in this situation since search heuristics are
not usually used in model checking (this is one of the rea-
sons that model checking performs so poorly in solving the
n-queens problem). Although symmetry reduction has made
larger instances of the problem tractable, the largest instance
we can handle using model checking is still much smaller
than the largest instances successfully handled by other ap-
proaches [4; 14].

7 Related work

Symmetry reduction using SPIN is applied to a model of the
game Tic Tac Toe in [18]. The symmetries of this model are
the same as the rotation and reflection symmetries of the 7-
queens problem. Symmetry reduction is implemented in a
way similar to our approach, by incorporating a canonicali-
sation function into the model rather than changing the SPIN
model checker. In [16], model checking with SPIN is used
to solve the rehearsal problem, a constraint satisfaction prob-
lem. Symmetry is exploited in the model by adding addi-
tional constraints rather than by building a quotient structure
of unique representatives. This is analogous to the technique
of symmetry reduction before search in CSPs, discussed in
section 6.1

In order to exploit the partial symmetry in our Promela
verification model we use the results of Emerson and Tre-
fler [10] on systems of identical processes which are “nearly”
symmetric. Emerson and Trefler have also worked on the
problem of exploiting symmetry at the source code level,
translating a symmetric program into a reduced program be-
Jore model checking, then model checking the reduced pro-
gram. It would be interesting to compare this with the
approach of converting a symmetric CSP into an asym-
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metric one before search to avoid duplicate solutions [20;
8.

8 Conclusions and future work

We have presented a Promela verification model to find all
solutions of the n-queens problem, and have applied sym-
metry reduction techniques to speed up search, and to make
larger instances of the problem tractable. We have also sum-
marised approaches to symmetry breaking for this problem
in constraint processing. Through this example it is clear
that symmetry reduction in model checking shares similar-
ities with SBDS in constraint programming, in that func-
tions must be provided for each nontrivial symmetry in the
problem, and these functions are used during search to avoid
the exploration of symmetrically equivalent portions of the
search space. The method of symmetry breaking by assign-
ment ordering [4], which returns only the smallest solution
in each equivalence class under a defined ordering, is also
similar to symmetry reduction using quotient structures. The
states of a quotient structure consist of a unique representa-
tive from each equivalence class of the original structure un-
der the symmetry group, and we have followed the common
approach of using the lexicographically smallest state from
each class as a representative [3].

In this paper we have concentrated on the concepts of
symmetry reduction and symmetry breaking rather than on
the theoretical details. However, we intend to formalise our
observations at a theoretical level, and try to establish ex-
actly what the correspondence is between symmetry break-
ing in constraint processing and symmetry reduction in model
checking.

It would be possible to apply the approach of symmetry
breaking before search to our verification model. Although
this technique has been used in model checking for specific
examples [16], to our knowledge applying this idea to model
checking has not been studied for arbitrary forms of symme-
try. Emerson and Trefler [10] have investigated symmetry re-
duction at the source code level for fully symmetric systems.
We intend to investigate this further.

One of the reasons that model checking performs so poorly
in solving constraint satisfaction problems is that it stores the
entire search space in main memory. This is because Kripke
structures typically have cycles leading back to old states.
However, in our formulation of this problem it is clear that
the underlying Kripke structure is a tree (apart from the stut-
tering extension of final states), so it would be possible to use
stateless search to find solutions. Although a stateless varia-
tion of the SPIN search algorithm is discussed in [17], it is not
currently implemented in SPIN.

An important problem in using symmetry with model
checking and constraint processing is symmetry detection,
that is determining symmetries of a models or problems from
their specifications. The challenge is to allow symmetry to
be exploited without requiring knowledge of group theory on
the part of the modeller. Ip and Dill proposed a new data type
called scalarset which makes the specification and detection
of symmetries trivial for models of concurrent systems [19].
It would be interesting to try to apply the notion of a scalarset
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to constraint satisfaction problems as a way to specify prob-
lem symmetries easily.
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Abstract

Conditional symmetry arises in a sub-problem
of a constraint satisfaction problem, where
the sub-problem satisfies some condition un-
der which additional symetries hold. Typically,
the condition is a set of assignments of values
to variables, i.e. a partial assignment reached
during systematic search. Like unconditional
symmetry, conditional symmetry can cause re-
dundancy in a systematic search for solutions.
Breaking this symmetry, in addition to break-
ing unconditional symmetry, is therefore an im-
portant part of solving a constraint satisfaction
problem effectively. This paper examines three
ways in which this can be done: by adding con-
ditional symmetry-breaking constraints, by re-
formulating the problem to remove the symme-
try, and by augmenting the search process to
break the conditional symmetry dynamically.

1 Introduction

Constraint programming has been used with great suc-
cess to tackle a wide variety of combinatorial problems
in industry and academia. In order to apply constraint
programming tools to a particular domain, the problem
must be modelled as a constraint program. However,
constraints provide a rich language, so typically many
alternative models exist for a given problem, some of
which are more effective than others. Constructing an
effective constraint program is a difficult task.

One important aspect of modelling is dealing with
symmetry. Symmetry is a solution-preserving transfor-
mation; symmetry in a model can result in a great deal
of wasted effort when the model is solved via systematic
search. Hence, it is necessary to ensure that Symmetry

*Most of this work was done while the 4th author was
employed at the University of Huddersfield. We thank Alan
Frisch, Chris Jefferson, Karen Petrie and Steve Prestwich for
useful discussions, and our anonymous reviewers for their in-
sightful comments. Ian Gent is supported by a Royal Society
of Edinburgh SEELLD/RSE Support Research Fellowship.
Tan Miguel is supported by a UK Royal Academy of Engi-
neering/EPSRC Post-doctoral Research Fellowship.
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is broken effectively. The majority of research in sym-
metry in constraint models considers only the Symmetry
present in a model before search begins. However, as we
will discuss, it is commonly the case that Ssymmetry can
form during search. We refer to this as conditional Sym-
metry, since its formation depends on the choices made
during search. In order to avoid redundant search, it is
important to break this symmetry in addition to uncon-
ditional symmetry breaking.

All symmetry breaking trades the reduction in search
gained versus the cost of breaking the symmetry. The
detection of the condition for the symmetry to arise adds
a further cost when creating a conditional symmetry-
breaking scheme. Therefore, the reduction in search gen-
erally has to be significant to make the effort worthwhile.
A further consideration is how frequently during search
the condition is likely to be satisfied. The greater the
proportion of search that is within sub-problems where
conditional symmetry arises, the greater the impact con-
ditional symmetry breaking is likely to have.

This paper discusses three ways to deal with condi-
tional symmetry. First, to add constraints to a model to
detect and break the symmetry as it arises. Second, to
reformulate the problem such that the new model does
not have the conditional symmetry. Finally, we discuss
how conditional symmetry can be broken during search.

2 Background

The finite domain constraint satisfaction problem (CSP)
consists of a triple (X, D, C), where X is a set of vari-
ables, D is a set of domains, and C is a set of constraints.
Each z; € X is associated with a finite domain D;eD
of potential values. A variable is assigned a value from
its domain. A constraint ¢ € C, constraining variables
Tj,...,%j, specifies a subset of the Cartesian product
D; x ... x D; indicating mutually compatible variable
assignments. A constrained optimisation problem is a
CSP with some objective, which is to be optimised.

A partial assignment is an assignment to one or more
elements of X. A solution is a partial assignment that
includes all elements of X and satisfies all the con-
straints. This paper focuses on the use of systematic
search through the space of partial assignments to find
such solutions. A sub-CSP, P/, of a, CSP P is obtained
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from P by adding one or more constraints to P. Note
that assigning a value v to a variable z is equivalent to
adding the constraint z = v.

A symmetry in a CSP is a bijection mapping solutions
to solutions and non-solutions to non-solutions. A condi-
tional symmetry of a CSP P holds only in a sub-problem
P’ of P. The condition for the symmetry to arise is the
conjunction of constraints necessary to generate P’ from
P. Conditional symmetry is a generalisation of uncondi-
tional symmetry, since unconditional symmetry can be
seen as a conditional symmetry with an empty condi-
tion. For the most part, we focus herein on conditions
in the form of partial assigniments.

As with unconditional symmetry, we can distin-
guish between instance-independent conditional symme-
try, which has the potential to arise in all elements of a
problem class, and instance-dependent conditional sym-
metry, which can arise in some instances of a problem
class, but not in others. We will see examples of both
types in the following section.

Symmetry breaking is made difficult by the interaction
of the various symmetries in a problem. Breaking some
or all of one symmetry might break some, all or none of
another. This remains true of conditional symmetry, as
will be discussed. Furthermore, we will see how breaking
an unconditional symmetry can simplify the condition of
a conditional symmetry, and therefore reduce the cost of
conditional symmetry breaking. Symmetry can often be
broken in a variety of ways. Hence, it might be preferable
to choose a scheme whose consequences are beneficial to
conditional symmetry breaking in this way.

3 Conditional Symmetry-breaking
Constraints

One method of breaking conditional symmetries is to
add symmetry-breaking constraints of the form:

condition — symmetry-breaking constraint

where condition is a conjunction of constraints, for in-
stance a partial assignment such as z = 1 Ay = 2,
that must be satisfied for the symmetry to form. As
in unconditional symmetry breaking [1], the symmetry-
breaking constraint usually takes the form of an ordering
constraint on the conditionally symmetric objects. This
section discusses two case studies of breaking conditional
symmetry in this way.

3.1 Graceful Graphs

The first case study is of conditional symmetry in finding
a graceful labelling [5] of a class of graphs. As noted in
[5], labelled graphs have a variety of applications, rang-
ing from coding theory to radar astronomy. A labelling
f of the vertices of a graph with e edges is graceful if f
assigns each vertex a unique label from {0,1,...,e} and
when each edge zy is labelled with |f(z) — f(y)|, the
edge labels are all different. (Hence, the edge labels are
a permutation of 1, 2, ..., e.)
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Finding a graceful labelling of a given graph, or prov-
ing that one does not exist, can easily be expressed
as a constraint satisfaction problem. The CSP has a
variable for each vertex, z1, 2, ..., £, each with domain
{0,1,...,e} and a variable for each edge, di,ds,...,de,
each with domain {1,2,...,e}.

The constraints of the problem are:

o if edge k joins vertices i and j then dy = |z; — 2]

e I1,T2,..., T, are all different

e di,ds,...,d, are all different (and form a permuta-

tion)

Figure 1 shows an instance of a class of graphs listed
in Gallian’s survey of graceful graphs [5] as C%: they
consist of ¢ copies of a cycle with n nodes, with a common

vertex. For n = 3, these graphs are graceful whenever
t=0or 1 (mod 4), so the graph shown is graceful.

~
™

6 5

Figure 1: The windmill graph 0?54)

The nodes in Figure 1 are numbered to show the num-
bering of the variables in the CSP model, i.e. node 0 is
the centre node and is represented by the variable zo.

The CSP has three instance-independent symmetries:

e swap the labels of the nodes other than the cen-
tre node in any triangle, e.g. swapping the labels of
nodes 1 and 2;

e permute the triangles, e.g. swap the labels of nodes
1 and 2 with those of nodes 3 and 4;

e change every node label z; for its complement e —;.

The centre node cannot have a label > 1 and <e—1.
Since there must be an edge connnecting two nodes la-
belled 0 and e, if the centre node’s label is not 0 or e,
then two other nodes in a triangle, e.g. nodes 1 and 2,
must be labelled 0 and e. But then, unless the centre
node is labelled 1 or e — 1 there is no way to label an
edge e — 1, given that the largest node label is e. The
labels 0, 1, e — 1 and e are possible for the centre node,
however, if there is a graceful labelling.

Relabelling a Triangle

Consider a graceful labelling of a graph in this class, with
the centre node labelled 0. In any triangle, where the
other two nodes are labelled a and b, with a < b, we can
replace a with b — a to get another solution. Note that
b — a was unused: otherwise, since the centre is labelled
0, there would have been two edges labelled b—a. Figure
2 shows how the edge labels in the triangle are permuted.



Proc. SymCon’04

Figure 2: Relabelling a triangle in a graceful labelling
with centre node labelled 0.

Any graceful labelling of C3(t) with centre node labelled
0 has 2¢ equivalent labellings by changing or not chang-
ing the labels within each of the ¢ triangles in this way.
However, for a specific instance of this symmetry, on
nodes 0, 1, 2, say, in order to describe its effect, if any,
we need two pieces of information. We need to know
both whether node 0 is labelled 0 and which of nodes 1
and 2 has the smaller label; hence, we need to know the
assignments to these three variables.

A graceful labelling with the centre node labelled 1 can
be transformed into an equivalent labelling similarly: a
triangle labelled 1, a, b, with @ < b can be relabelled
1, b—a+1, b. Again, this is conditional on the three
assignments. There are equivalents for the other possible
labels for the centre node, i.e. e — 1 and e.

Labellings with Centre Node Labelled 1

As already mentioned, there are graceful labellings where
the centre node is labelled 1. In such a labelling, there
must be a triangle labelled 1, 0, e, since there must be an
edge whose endpoints are labelled 0 and e. The remain-
ing nodes have labels in the range 3, .., e — 1. (There is
no edge labelled 2, since it has to be connected to the
centre node, giving a second edge labelled 1.)

b b-1

Figure 3: Transforming a labelling with centre node la-
belled 1.

Figure 3 (left) shows the 1, 0, e triangle and another
representative triangle. We can transform the labels of
all the nodes as shown on the right. If the original la-
belling is graceful, so is the transformed labelling, and
the centre node is now labelled 0. Hence, any labelling
with centre node labelled 1 is equivalent to one with
centre node labelled 0. The reverse is true only if there
exists a triangle labelled 0, 1, e. The condition for this
symmetry is thus a conjunction of constraints specifying
that a 0, 1, e triangle exists. Similarly, if the centre node
is labelled e — 1, we can transform any resulting graceful
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labelling into one with the centre node labelled e, and
vice versa if there exists a triangle labelled 0, e — 1, e.
We can also view these particular conditional symme-
tries as dominance relations [10]. Labelling the centre
node with 0 dominates labelling it with 1, and labelling
the centre node with e dominates labelling it with e — 1.
These relations are typically exploited by disallowing the
dominated value, which, as we will see, corresponds to
the way we break the conditional symmetry here. Ex-
ploring the connection between dominance and condi-
tional symmetry is an important item of future work.

Symmetry-Breaking Constraints

Ignoring the conditional symmetries for now, the sym-
metries of the CSP can easily be eliminated by adding
constraints to the model.

1. In each triangle, we can switch the labels of the
nodes that are not the central node. Constraints to
eliminate this are: z9;_1 < 2,1 =1,2,...,¢

. We can permute the triangles. Given the previous
constraints, we can add the following to eliminate
this: z9;_1 < Toit1,0=1,2,..,t—1

3. To eliminate the complement symmetry, we can

post: zg < e/2.

The conditional symmetry where the central node is 0
can be eliminated easily. It also requires knowing which
of the two other nodes in each triangle has the smaller
label. Notice that, because of symmetry-breaking con-
straint 1 above, this condition is simplified: the node
with the smaller label has the smaller index. Hence,
we can add a conditional constraint: if 29 = 0, then
229;1 < xg;, for i = 1,2,...,¢. In terms of Figure 2, we
choose the labelling 0, a, b for the triangle and want this
to be lexicographically smaller than 0, b — a, b.

Given symmetry-breaking constraint 3 to eliminate
the complement symmetry, 0 and 1 are the only pos-
sible labels for the central node. We have shown that
the labellings with the central node labelled 1 are equiv-
alent to some of the labellings with node 0 labelled 0.
Hence, we can simply add o = 0 to eliminate the condi-
tional symmetry where there exists a triangle labelled
0,1,e. This, in turn, simplifies the conditional con-
straints given earlier: if we know that o = 0, then we
can drop the condition from the earlier constraints and
just have 229; 1 < @9;, for i =1,2, ..., ¢.

Hence, in this example, all the symmetries, including
the conditional symmetry, can be eliminated by simple
constraints.

Results

Using symmetry-breaking constraints (1-3) to eliminate
the graph and complement symmetries, the graph in Fig-
ure 1 has 144 graceful labellings. Eliminating the condi-
tional symmetries reduces these to 8. The resulting re-
duction in search would be greater still for larger graphs

in the same class, Cét). This case study demonstrates
that conditional symmetry can sometimes be eliminated
with little overhead and reduce the search effort enor-
mously.
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3.2 Steel Mill Slab Design

Our second case study is the steel mill slab design prob-
lem [4] (problem 38 at www.csplib.org). Steel is pro-
duced by casting molten iron into slabs. A finite number,
o, of slab sizes is available. An order has two properties,
a colour corresponding to the route required through the
steel mill and a weight. The problem is to pack the d in-
put orders onto slabs such that the total slab capacity is
minimised. There are two types of constraint:

1. Capacity constraints. The total weight of orders
assigned to a slab cannot exceed the slab capacity.

2. Colour constraints. FEach slab can contain at
most p of k total colours (p is usually 2). This con-
straint arises because it is expensive to cut the slabs

up to send them to different parts of the mill.

A Matrix Model

It is natural to use a matrix model to represent this
problem. Under the assumption that the largest order
is smaller than the largest slab, at most d slabs are re-
quired to accommodate all the input orders. Hence, a
one-dimensional matrix of size d, slabys, can be used to
represent the size of each slab used, with a size of zero
indicating that there is no corresponding slab in the solu-
tion. In addition, a dx d 0-1 matrix, orderys, can be used
to represent the assignment of orders to slabs, where a
‘1’ entry in the ith column and jth row indicates that
the ith order is assigned to the jth slab. Constraints on
the rows ensure that the slab capacity is not exceeded:

Vj e {1..d}: Z weight(i) x orderp[i, j] < slabal[j]
ie{l..d}

where weight(i) is a function mapping the ith order to
its weight. Constraints on the columns ensure that each
order is assigned to one and only one slab:

Viel.d: Y. ordermli,j]=1
je{1..d}

A second 0-1 matrix, colourys with dimensions &k x d,
is used to represent the relation between the slabs and
the colours. A ‘1’ entry in the ith column and jth row
indicates that the ith colour is present on the jth slab.
Constraints link orderys and colourys:

Vi€ {1..d}Vj € {1..d} :
orderp[i, j] = 1 — colourp[colour(i), j] =1
where colour(i) is a function mapping the ith order to its

colour. Constraints on the rows of colourys ensure that
orders with at most p colours are assigned to each slab:

Vie{l.d}: Y colournli,j]<p
ie{l..k}

Symmetry and Conditional Symmetry

In this initial model, slaby; has instance-independent
column symmetry: a (non-)solution can be transformed
into a (non-)solution by permuting the values assigned to
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each element of slabps and permuting the corresponding
rows of orderps. This symmetry can be broken simply
by ordering the elements of slabys as follows:

slabpr[1] > slabp[2] > .. . slaba[d]

Furthermore, orderps has instance-dependent partial
column symmetry. When two orders have equal weight
and colour, a (non-)solution can be mapped to a (non-
)solution by exchanging the columns associated with
these two orders. This symmetry can be broken by com-
bining symmetric orders into a single column. The sum
of that column is then constrained to be equal to the
number of orders it represents.

Symmetry on the rows of orderas is, however, con-
ditional: only if two slabs have equal size can their
contents be exchanged in a (non-)solution to obtain a
(non-)solution. This symmetry is instance-independent.
Notice also that the unconditional symmetry-breaking
on slabys simplifies breaking the conditional slab sym-
metry, since it constrains rows of orderys representing
equal-sized slabs to be adjacent. Hence, conditional slab
symmetry can be broken statically in a straightforward
manner using lexicographic ordering:

Vie {l.d—1}:
(slabps[i]) = slabar[i + 1]) = (orderas[i] >i1ex orders[i + 1])

There is a further instance-dependent symmetry con-
ditional on the way that orders are assigned to slabs.
Consider 3 ‘red’ orders, order a of weight 6 and two
instances of order b, with weight 3 (the last two are rep-
resented by a single column). Consider the following
partial assignments to orders:

a b ... a b ...
slaby /1 0 ... slaby 7/ 0 2 e
slaby ( 0 2 ) slaby ( 1 0 ...

These assignments are symmetrical. Note that the sym-
metry is conditional on both instances of b being assigned
to the same slab, effectively creating a single ‘super’ or-
der symmetrical to a. This is the simplest case of com-
pound order symmetry, where individual orders combine
to become symmetrical to single larger orders (such as
the instance of @ in the example — we will call these unit
compounds) or other compounds.

The conditional lexicographic ordering of the contents
of the slabs interacts with the compound order symme-
try. In the above example, if the size of the first slab is
the same as that of the second then only the first partial
assignment is allowed. This is not, however, the case in
general. We now describe how compound order symme-
try can be detected and broken effectively.

Formation of Compound Order Symmetry

To break compound order symmetry, we must know
when and where the symmetry forms. For simplicity, we
consider only compound orders composed from multi-
ple instances of the same order. The encoding described
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Figure 4: Conditional formation of two compound orders
of size 3.

here can be extended straightforwardly to support com-
pounds formed from orders of different sizes. Consider
an instance with 6 red orders of size 1. The assignment
of these orders to slabs is represented by a single column
of orderps, whose sum is constrained to be six. Con-
sider now the formation of a red compound order of size
three. Up to two such compounds can form from the six
red orders. Figure 4 presents example cases for which we
must cater. In every example all the orders have been
assigned to a slab, but in some cases one (Fig.4d, Fig.4e,
Fig.4f) or both (Fig.4a) compounds have not formed.

It is useful to consider a first compound (formed from
the first three orders, counting down the column) and a
second compound (formed from the second three). No-
tice that, counting from the top of each column, a com-
pound can form only when a sufficient number of orders
have been assigned. In the example, this is three and six
orders for the first and second compounds, respectively.
To exploit this observation, for each column on which
compound orders may appear, we introduce a column of
variables, subsumys, which record the cumulative sum of
assigned orders read down the column. Figure 5 presents
the subsumy, variables for our examples.

Given the subsumys variables, we can introduce a, po-
sition variable for each compound, whose domain is the
set of possible slab indices, constrained as follows:

subsumps[position — 1] < compoundSize x instanceNo
subsumpy[position] > compoundSize x instanceNo

where compoundSize indicates the number of orders nec-
essary to form the compound in question, and instan-
ceNo denotes which of the compounds of compoundSize
on this column that position is associated with. This pair
of constraints ensure that position indicates a unique slab
when the corresponding column of orderys is assigned.

The remaining question, given some partial assign-
ment, is whether the compound order associated with
position has formed on the slab indicated by position.
This is recorded in a 0/1 variable, switch, paired with
each position variable and constrained as follows:

switch = (orderas[column][position] > compoundSize)

where column is the column of ordery; on which the com-
pound may form.

Breaking Compound Order Symmetry
Consider n symmetrical compound orders. We order
these compounds ascending by the column on which they
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Figure 5: Assignments to subsumas variables corre-
sponding to order variable assignments in Figure 4.

appear, breaking ties by ordering the ‘first’, ‘second’, .. .,
‘nth’ compounds in a column, as defined in the previous
section, ascending. We denote the switch and position
variables of the -ith compound under this ordering as
switch; and position;. The conditional symmetry can be
broken straightforwardly as follows:

Vi<je{l,...,n}:
(switch; = 1 A switch; = 1) — position; < position;

We have been careful to ensure that these order-
ing constraints are compatible with the slab conditional
symmetry breaking constraints given above. Consider
the following example, where slabs one and two have
equal size, and the compound formed from two instances
of order three is symmetrical to an instance of order two:

order; ordery orders
slab, 1 1 0
Sldbz 1 0 2

The lexicographic ordering constraints used to break the
conditional symmetry on the slabs, and the compound
order symmetry-breaking constraints, as given above,
are both satisfied. If, however, the compound orders
were ordered in the reverse direction, in this example
they would clash with the lexicographic ordering con-
straints, potentially pruning solutions.

Note that we post the transitive closure of the ordering
constraints. This is contrary to unconditional symmetry
breaking; given a set of symmetrical objects, it is usually
only necessary to order adjacent elements in the enumer-
ation of the set [3]. However, we cannot be certain that
any particular conditional symmetry will form.

Experimental Results

As noted, conditional slab symmetry is instance-
independent, while compound order Ssymmetry is
instance-dependent. To experiment with the effects of
both slab and compound order symmetry breaking, we
constructed 12 instances where compound order symme-
tries were highly likely to form by using only one colour
for all orders, and choosing the. size and number of the
smaller orders such that multiple instances of a small
order sum to the size of one of the larger orders. In con-
structing these instances, we made use of the following
observation: if the steel mill is able to create slabs whose
size is small, the likelihood that individual orders will be
assigned to a slab alone is increased, and therefore the
likelihood that compounds will form is decreased.
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No Conditional Slab Conditional Compound Order Slab & Compound Order
Symmetry Breaking Symmetry Breaking | Conditional Symmetry Breaking | Conditional Symmetry Breaking
Problem Choices Time(s) | Choices  Time(s) Choices Time(s) Choices Time(s)
1 18,014,515 1120 79,720 5.64 - - 68,717 36.4
2 6,985,007 439 15739 1.45 - - 13,464 6.79
3 7,721 0.741 1,798 0.26 6,461 3.48 1,472 0.971
4 155,438 8.86 60,481 4.10 49,234 31.0 30,534 16.2
5 146,076 7.48 56,590 3.45 46,599 23.4 27,921 12.4
6 117,240 6.01 49,098 2.82 39,411 17.7 24,112 9.70
7 147,148 7.1 60,035 3.34 70,881 36.3 37,672 18.0
8 171,781 8.02 77,187 4.13 80,557 37.1 45,293 19.3
9 206,138 9.52 92,526 4.87 97,072 44.9 53,666 23.0
10 348,716 16.6 140,741 7.55 178,753 94.8 84,046 41.5
11 313,840 15.7 130,524 7.21 164,615 98.5 79,621 44.4
12 266,584 13.9 110,007 6.19 138,300 82.5 68,087 37.8

Table 1: Steel Mill Slab Design: Experimental Results. Times to 3 significant figures. A dash indicates optimal
solution not found within 1 hour. Hardware: PIIT 750MHz, 128Mb. Software: Ilog Solver 5.3 (Windows version).

The results (Table 1) show that both types of condi-
tional symmetry breaking reduce search significantly. In
the case of slab symmetry breaking, the overhead of the
symmetry-breaking constraints is negligible, hence there
is also a reduction in time. The overhead of compound
order symmetry breaking is more significant. Although
this technique clearly reduces search — in the instances
tested a further reduction of as much as 50% is gained
by adding compound order symmetry breaking to slab
symmetry breaking — overall time taken is increased.

These results confirm that if a conditional symmetry
can be detected and broken cheaply, then it is probably
worthwhile to do so. Another positive indicator is if the
symmetry is likely to appear in many sub-problems. In
the case of the steel mill, although there is a clear re-
duction in search gained from breaking compound order
symmetry, the challenge is to make the encoding of de-
tection of this symmetry sufficiently lightweight that it
can be used without fear of increasing the overall effort.

4 Breaking Conditional Symmetry by
Reformulation

While reformulation is very important, we discuss it only
briefly in this paper as our major success in this area is
discussed fully in another paper [8].

Formulation of constraint problems can be essential to
success in solving them, affecting solution times by many
orders of magnitude. So an appropriate reformulation of
a constraint problem can turn an insoluble problem into
a soluble one in practical terms.

Formulation and reformulation are equally, or even
more, important for symmetry breaking. Different for-
mulations of the same problem can have different num-
bers of symmetries. Also, one formulation can have sym-
metries which are easier to deal with than in another for-
mulation. For example, in one formulation symmetries
might be the full permutation group Sy, which is usually
easy to deal with, while another formulation with fewer
symmetries may yield a group that is more difficult to
deal with. Thus, reformulation of a problem into a differ-
ent model may be the critical step in dealing with sym-
metries. Unfortunately, there is no general technique for
suggesting reformulations for breaking symmetry, and to
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date it has been achieved only by the insight of the par-
ticular constraint programmer.

If anything, conditional symmetry intensifies the prob-
lems inherent in reformulation to break symmetry. This
can be seen in the case of all-interval series problem, re-
ported by Gent, McDonald and Smith [8]. They achieved
a speedup of a factor of 50 on the state-of-the-art by
reformulating the problem based on identifying a condi-
tional symmetry. The problem itself has 4 symmetries,
and the conditional symmetry doubles this to 8 where it
occurs. In fact, one of n conditional symmetries always
occurs. The reformulation in fact changed the problem
slightly, so goes beyond what can be achieved by chang-
ing the constraint model of the original problem. In the
new problem, the conditional symmetry has become un-
conditional, and indeed all n of the possible conditional
symmetries apply in each case. So we have both in-
creased the number of symmetries, and used formulation
to make conditional symmetries unconditional: both of
these tricks have the aura of a rabbit pulled out of the
hat rather than a generalisable technique. The reason
this works so well is that it is extremely easy to break
all symmetry in the new problem, leading to the excel-
lent runtimes, and from solutions to the new problem we
can read off solutions to the original very easily. So this
example shows how effective reformulation can be, with-
out apparently suggesting how to do it in other cases of
conditional symmetry.

In summary, there is little we can say in general about
reformulating to break conditional symmetry. To achieve
this seems to require considerable insight on a case-by-
case basis, so general techniques for reformulation that
could be useful even in families of constraint problems
would be highly desirable, but remain in the future.

5 A Generic Method of Breaking
Conditional Symmetries

It is preferable for breaking conditional symmetries — as
it is for ordinary, non-conditional symmetries — to have
a generic method where the symmetries and conditions
can be described easily and broken efficiently. Hence, we
examine how previous methods of breaking symmetries
could be modified to cope with conditional symmetries.
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Gent, McDonald and Smith provided two implemen-
tations of SBDS [9] modified to work for conditional
symmetries [8]. These implementations provided proof
of concept only as both had serious problems. In both
methods the efficiency of constraint solving was reduced
by its introduction. The first method required a differ-
ent symmetry function for each possible conditional sym-
metry, and naturally there will always be many more
than the unconditional symmetries. For example, the
all-interval series problems has 4 unconditional symme-
tries but 4(n—1) conditional ones. The second modifica-
tion of SBDS removed this problem, but the implemen-
tation was grounded heavily in the specific CSP. Thus no
general purpose method proposed to date for conditional
symmetries can be regarded as satisfactory.

In this section we show what the main disadvantage
of using SBDS like approaches (such as GHK-SBDS [6])
is when dealing with conditional symmetry. We also
explain how SBDD [2] can be modified to effectively
deal with generic conditional symmetries, although im-
plementing this modification remains future work.

5.1 The problem with using SBDS to
break conditional symmetry

SBDS adds constraints to the local subtree. These con-
straints are discarded upon backtracking from the root
node of a the subtree. However, this means that we
must have an SBDS constraint for each possibly applica-
ble symmetry. In the case of conditional symmetry, this
is a particularly high overhead where, as in the example
of all-interval series, there are many more conditional
symmetries than unconditional ones.

An alternative is to check at a node whether or not a
condition holds, and only to add the SBDS constraints
in a local subtree where the condition is known to hold
(Figure 6). Unfortunately, this approach fails. We
might backtrack from this point and therefore discard
the SBDS constraint, going back up the tree to a node
where the condition is no longer true. Since the condi-
tion is not true, no conditional symmetry will be posted.
Unfortunately, the condition could become true again
on further backtracking and reassignment of variables.
Thus, this approach is untenable because it will miss
duplicate (non-)solutions (Figure 7). In order to solve
this problem to use SBDS, we need to either post global
constraints, or search the failed subtrees for conditional
symmetries that were true. Even then, the constraints
posted for breaking conditional symmetries would be of
larger arity, since they contain the condition as well as
the symmetry breaking constraints. Thus, we do not yet
have a satisfactory approach for using a variant of SBDS
as a generic method for breaking conditional symmetries.

5.2 Using SBDD to break conditional
symmetries

In contrast to SBDS, SBDD should adapt very natu-

rally to the conditional case. This is because the check

is performed at a node about to be explored. At this

point, we can calculate which conditional symmetries
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Figure 6: Upon backtracking to the highlighted node
from X' SBDS posts a constraint to forbid g(X”) in the
local subtree. '

A

X A
Figure 7: The symmetrical variant g(X) of the nogood
X, does not exist in the local subtree. SBDS can cope
with such a situation by forbidding g(X') (as shown in
Figure 6). The condition that makes a bijective map-

ping h a symmetry, for example, may not hold at the
node X', hence the nogood h(X') will not be ruled out.

are known to hold. We can then calculate the resulting
group, and check this against previously visited nodes.
Unlike SBDS, when we backtrack from a node, we do not
need to know what conditional symmetry holds in some
future node. We can maintain the database of nodes
visited in the same way as conventional SBDD: that is,
we need merely to record the nodes at the roots of fully
explored search trees. At a search node of depth d there
are at most d such roots to store.

In the case of conditional-SBDD, we need to check
whether the current node is dominated by some previ-
ously visited node. That is, does some conditional sym-
metry hold which maps one of the roots of a failed tree
into the current node? In the terms of this paper, does
it map a previous node representing a CSP P into an-
other CSP P’, such that the current node P" is a sub-
CSP of P'? It might seem that we have to consider all
nodes representing sub-CSP’s of P, as different condi-
tional symmetries can occur at different sub-CSP’s, and
perhaps one of these but not others will dominate P".
This is the problem that bedevils extending SBDS for
conditional symmetries. However, we can solve this ap-
parent problem by a simple reversal: if a conditional
symmetry maps a sub-CSP of P into a super-CSP of the
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current node P, then its inverse must be a conditional
symmetry mapping P" into a sub-CSP of P.

We look at the question the opposite way round be-
cause we need to calculate the conditional symmetries
that apply only at the current node. Specifically, we
can calculate the symmetries known to apply at the cur-
rent node. There may be sub-CSP’s of the current node
where more conditional symmetries apply, but we cannot
deal with this. However, we do not see this as a major
problem in general. If some subproblem P’ of P maps to
a superproblem of P, then in most cases the symmetric
version of the condition that holds at P’ will hold in the
superproblem of P and so in P" itself.

This reversal allows us to apply SBDD methods almost
unchanged from current implementations. The new fea-
ture is that at any node where we check dominance, we
have to calculate which conditions apply and therefore
which symmetries to check. Having done this, and thus
having perhaps a different group at each node, we can
use any existing implementation technique for SBDD,
adapting it as necessary to allow for a different group
holding each time the dominance check is called.

For example, consider using computational group the-
ory methods for SBDD following Gent, Harvey, Kelsey,
and Linton [7]. The advantage for conditional SBDD is
that we do not need to deal separately with all condi-
tional symmetries. Instead, we need some method for
testing the existence of generating symmetries. For ex-
ample, consider the case of conditional compound order
symmetry in the steel mill problem. At a point where
we want to perform the SBDD check, it is very easy to
examine the problem to see if the symmetry has formed.
We just look at each slab to see if it has definitely been
assigned two copies of the same order. While the switch
variable could be used for this purpose, alternatively we
could perform a simple check before performing the dom-
inance check. Having done so, we then know which of
these conditional symmetries hold. These can be ex-
pressed, as required by [7], as a permutation. The group
of symmetries that hold is therefore as generated by the
conventional symmetries, and the detected conditional
symmetries. Passing each detected conditional symme-
try as a permutation to the computational algebra sys-
tem, automatically allows all combinations of symme-
tries — conditional and unconditional — to be used in
the dominance check. The computational algebra sys-
tem using essentially the same algorithm to check dom-
inance as in the unconditional case [7]. In the example
discussed, note that we did not need to have anything
stored for conditional symmetries which do not arise. A
simple program is written to see which symmetries hold,
and for each one we only need to construct one generat-
ing permutation on the fly. This does not lead to large
overheads compared to an unconditional SBDD imple-
mentation. On the algebraic side, the main inefficiency
is in having to start with potentially a new group on
each check, but it remains to be seen how significant a
problem this is.

It thus seems that conditional SBDD has the poten-
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tial to give a general and efficient way of dealing with
conditional symmetries. We intend to implement our
proposed conditional-SBDD in the near future. It thus
remains to be seen if this approach can provide effective
symmetry breaking with low enough overheads.

6 Conclusions and Future Work

This paper has discussed the phenomenon of conditional
symmetry, and methods to exploit this symmetry to re-
duce search. The first, adding conditional symmetry-
breaking constraints to a model, is most effective when
the condition for the symmetry to arise is a) simple and
therefore easy to check, and b) likely to be satisfied
often during search. As with unconditional symmetry
breaking, adding constraints to break one conditional
symmetry can partially break another. Furthermore,
choosing unconditional symmetry-breaking constraints
carefully can simplify conditional symmetry-breaking in
some cases, as was shown in both the Graceful Graphs
and Steel Mill Slab Design problems studied herein. For-
mulating general rules to guide the modelling of a prob-
lem and the choice of symmetry-breaking constraints to
take advantage of these insights is a considerable chal-
lenge, which we are beginning to explore.

The second method, reformulating the model to re-
move the conditional symmetry, can give a much im-
proved model, but it is not clear that such a reformula-
tion will always be possible or, if possible, achievable
through general methods rather than special purpose
reasoning. Finally, we discussed how a generic, dynamic
method of breaking conditional symmetries might be
constructed based on SBDD. A principal item of future
work is in developing this method.
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Abstract

The exploitation of symmetry in combinatorial
search problems has typically focussed on using in-
formation about symmetries to control search. This
work describes an approach that exploits symme-
try to get more detailed domain-analysis rather than
as a method of search-control. We describe both
the concepts of atomic and disjunctive landmarks
in planning (a concept analogous to the backbone
of a SAT/CP problem) and algorithms for extract-
ing them. We categorise various types of sym-
metry encountered in planning, and show exam-
ples of each on actual problems. We introduce the
Orlando API, a tool that extracts disjunctive land-
marks using symmetry-breaking techniques and
atomic landmarks analysis in concert. This pro-
vides a polynomial-time algorithm for extracting
landmarks with respect to any equivalence func-
tion. We introduce the standard equivalence func-
tions supplied with Orlando and show situations in
which these are useful.

1 Introduction

Many different research communities have seen the attrac-
tion of exploiting symmetry in problems. Symmetry seems
to be a characteristic of many combinatorial search problems
and has been examined in the CP [Joslin and Roy, 1997;
Gent and Smith, 2000], planning [Fox and Long, 1999;
2002] and model-checking [Ip and Dill, 1996; Clarke ef al.,
1996; Emerson and Sistla, 1996] communities. Much ef-
fort has been spent in finding ways break symmetries dur-
ing search. This work, however, details a method of gaining
a rich domain-analysis by analysing symmetrically reduced
problems. Symmetric reduction is performed by casting the
properties of all the objects in a symmetric group on to a rep-
resentative member of that group.

Landmarks are facts that occur in every valid solution to a
planning problem [Porteous et al., 2001]. Atomic landmarks
are single literals. There are often no atomic landmarks in
problems with symmetry in them. Disjunctive landmarks are
disjunctions of literals that represent a set of facts, any of

*This work is part funded by EPSRC grant GR/S11015/01.
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which could occur in a valid plan [Porteous and Cresswell,
2002]. These disjunctions arise because of the symmetry in
problems. If the problems are first symmetrically reduced
then atomic landmarks can be extracted from the new prob-
lem and interpreted as disjunctive landmarks. This method is
faster than other ways of extracting disjunctive landmarks, it
also attaches more meaning to the landmarks we extract.

In Section 2 we will briefly introduce planning problems.
We will discuss atomic landmarks, an algorithm for extract-
ing them and give reasons for their weakness. We discuss
how symmetry arises in planning problems, and how it ren-
ders atomic landmarks analysis useless. We then discuss dis-
junctive landmarks, along with an algorithm to extract them.

Section 3 discusses the Orlando API. The approach of ex-
tracting disjunctive landmarks using a combination of sym-
metry reduction and atomic landmarks analysis is detailed.
The equivalence functions that are supplied with Orlando as
standard are described. The use of landmarks analysis in sev-
eral planners is discussed in Section 4. Also discussed are
planners that make use of symmetry-breaking (although not
in concert with landmarks analysis.)

2 Planning Problems

A planning problem is composed of a set of actions, an ini-
tial state and a goal formula. An action is itself composed
of a condition formula that must be satisfied for success-
ful application of the action, and an effect that modifies the
state in some way. In today’s planning formalisms [Fox and
Long, 2003], it is possible to represent problems with a very
rich structure. Problems with temporal structure, numeric
resources and conditional effects amongst others are repre-
sentable. The conditions of an action can be pre- or post-
conditions to an action or can be an invariant that must hold
over the duration of the action. The initial state is a conjunc-
tion of atomic predicates. The goal is a formula that, when
satisfied, indicates a valid plan.

This paper, for reasons of clarity, will only consider a sub-
set of this expressivity. We consider actions to have only
pre-conditions (and not post-conditions and state-invariants).
These pre-conditions will take the form of a conjunction of
atomic predicates. Also, the effects are represented as two
sets of atomic predicates; the add-list and the delete-list.
When an action is applied, the facts in the add-list are added,
and those in the delete-list are removed, from the current
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state. The goal formula is also assumed to be a conjunction
of atomic predicates.

Predicate Key

ag”

( at parcel location )

b’

( at truck location )

o

( road locl loc2 )

4o

( in parcel truck )

(a) The predicates.
:action load
:parameters ?parcel ?truck ?location
:preconditions (at ?parcel ?location)

(at ?truck ?location)

:add-effects (in ?parcel ?truck)
:del-effects (at 7parcel ?location)
:action unload
:parameters ?parcel 7truck ?location
:preconditions (in ?parcel ?truck)

(at truck ?location)

:add-effects

(at ?parcel ?location)

:del-effects (in ?parcel ?truck)
:action drive

:parameters truck ?locl ?loc2
:preconditions (at ?truck ?locl)

(road ?truck ?location)
:add-effects (at ?truck ?loc2)
:del-effects (at ?truck ?locl)
(b) The Action Schema

Table 1: The domain description of a logistics domain, with
diagrammatic key, where appropriate

Table 1 describes a logistics domain used throughout this
paper for explanatory purposes. It is intentionally simplistic
so that clear examples of important concepts can be shown
throughout the paper.

2.1 Atomic Landmarks Analysis

A landmark can be informally described as a fact that occurs
in every valid solution to a problem [Porteous et al., 2001].
The concept of landmarks in a planning problem is closely re-
lated to that of the backbone in the general CP/SAT problem.
The main difference between the two is that the backbone is
described as the set of fixed variables in the optimal solution
[Slaney and Walsh, 2001]; landmarks are the facts that occur
in all solutions.

There are algorithms in the literature [Porteous ef al., 2001;
Zhu and Givan, 2003] for extracting atomic landmarks from
a planning problem. The approach we use is described in 2.
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Contrary to the method employed in [Porteous et al., 2001]
the algorithm does not need to reconstruct an RPG to test
each literal. The concept of an RPG (relaxed plan graph is
described in [Hoffmann, 2003]. The important aspect of the
RPG for this work is that it is constructed in polynomial time.

We associate a set of ancestors with each literal and each
action. The ancestors of a fact or action are literals necessar-
ily visited in reaching it. These are carried through the pro-
cess of RPG construction. We obtain the necessary ancestors
of an action at a given level by computing the union of the
ancestors of its preconditions. We obtain the necessary an-
cestors of a fact at a given level by computing the intersection
of the ancestors of its achieving actions. Trivially, the initial
and goal states are landmarks. The algorithm is detailed in
Figure 2.

Advance through Level until no change to
action ancestors set

For each Literal reachable at Level
Ancestors(Literal, Level) :=
intersection of ancestors of
achievers of Literal
reachable at Level-1

For each Action reachable at Level
Ancestors (Action, Level) :=
Union of ancestors of
preconditions (Action)
reachable at Level

Output ancestors of the top-level goals
as landmarks.

Figure 2: Algorithm for extracting atomic landmarks.

If the parcel in Figure 1(a) needs to be delivered to loca-
tion G then atomic landmarks analysis would find the land-
marks (at Tl S), (in P1 T1) and (at T1 G) other
than the facts in the initial and goal state. These facts, along
with their orderings, are almost enough to infer a plan.

Atomic landmarks analysis is weak in situations like Fig-
ure 1(b). Because each parcel could be delivered by either T1
or T2, the landmarks analysis counts neither (in P1 T1)
nor (in P1 T2) aslandmarks. The symmetry in the prob-
lem means that the algorithm is unable to find any landmarks.

2.2 Symmetries in Planning

The literature identifies several types of symmetry that arise
in planning and CSP problems [Fox and Long, 1999; Long
and Fox, 2003b; Joslin and Roy, 1997]. Techniques to
break symmetry in search have been identified and imple-
mented in several different planners [Fox and Long, 2002;
Chen et al., 2004; Edelkamp and Helmert, 2000]. General
symmetry-breaking approaches have also been studied in the
CPlJoslin and Roy, 1997; Gent and Smith, 2000] and model-
checking communities [Ip and Dill, 1996; Clarke et al., 1996;
Emerson and Sistla, 1996]. The CP community has also con-
sidered static symmetry-breaking constraints. The CP lan-
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T1 ¢ d 1o

P1o
S

T1 ¢
G T2

$o T3

Pio

o T3 S d T4

(a) Example of a problem
with no symmetry. Atomic
landmarks analysis extracts
all landmarks.

(b) Example of a prob-
lem with functional equiv-
alences. The trucks, T1 and
T2, are functionally equiv-
alent, as are the parcels P1
and P2. :

F

(c) Example of a prob-
lem with almost-symmetry.
The trucks are each clus-
tered about location S but
are not functionally equiv-
alent.

F

(d) Example of a prob-
lem with structural symme-
try. This does not consti-
tute functional equivalence
since it is the compos-
ite structures of ‘truck-and-

road’ that are symmetric.

Figure 1: Pedagogical examples of problems from the simple logistics domain defined in Table 1. In all problems, each parcel
is initially located at S; the goal is that each parcel is delivered to location F. Atomic landmarks analysis extracts all landmarks

in (a) but none from the rest.

guage eclipse is packaged with a SBDS (symmetry-breaking
during search) library and the model-checking tool Spin in-
clude a symmetry package ‘SymmSpin’.

We now describe four major categories of symmetries that
arise in planning problems. Illustrations drawn from the sim-
ple logistics domain demonstrate an example of each:

Functional Equivalences: Two objects are functionally
equivalent if they play exactly the same role in the initial (or
current) and goal states of a planning problem and are not
distinguished in any actions. In this case, it is only the names
of the objects that distinguishes the objects and they can be
freely permuted in any plan to yield a plan that achieves
the same goals [Fox and Long, 1999]. Each of the trucks
(parcels) in Figure 1(b) are functionally equivalent. In any
valid plan, the roles of T1 and T2 could be reversed and the
new plan would remain sound and would be equivalent to the
original.

Functional identities are the most commonly exploited type
of symmetry in planning. Typically, the only exploited iden-
tities are those which can be derived from the initial and goal
states. [Fox and Long, 2002; Long and Fox, 2003b] used an
innovative approach to keep track of the symmetric groups
during search to take advantage of symmetries that arise dur-
ing search.

Plan Permutation: Two plan fragments are symmetric
when they achieve the same facts from the same state [Long
and Fox, 2003b]. A successful plan for the problem in Fig-

ure 1(b) could include the plan fragment (load P1 T1) ,

i (load P2 T1). It could also include the fragment
(load P2 T1) ; (load Pl T1), so these fragments
are an example of plan permutation symmetry.

Any two non-interfering actions executed sequentially may
be reversed. Any n non-interfering actions executed sequen-
tially can be permuted in any of n! ways. More generally,
certain collections of actions will be equivalent under par-
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ticular permutation operations (that is, symmetries) and will
therefore play equivalent roles in any plans that contain them.
As with other types of symmetry, exponential growth in the
search-space is possible. Some preliminary results are pre-
sented in [Long and Fox, 2003a] for exploitation of this form
of symmetry in a Graphplan planner (STAN).

Almost Symmetry: Symmetry arises as a consequence of
abstraction in the representation of a problem. In many plan-
ning problems, potential symmetries are broken by elements
of the problem description that are not sufficiently abstracted.
In some cases, it is possible to apply an abstraction to a prob-
lem and thereby create opportunities for exploitation of sym-
metries that are exposed. The key to this approach is to find
abstractions that lead to problems for which the solutions re-
main direct and relevant guides to the solutions of the origi-
nal problems. A simple abstraction is to remove information
from the domain. If the information is irrelevant to the prob-
lem then its removal will not prevent a solution from being
found and the solution remains (trivially) a solution of the
original problem.

A more sophisticated abstraction is to ignore certain ini-
tial conditions. An example of this idea can be applied to
the example in Figure 1(c). The trucks clustered around the
initial location of the parcel are not functionally equivalent,
but since the goal location is so distant the small differences
in location at the clustered side could be abstracted out. A
plan prefix or postfix can then be applied to resolve the dif-
ferences between the solution to the abstracted problem and
the solution to the original problem.

There are many unresolved challenges in the exploitation
of almost symmetry and it remains a current topic of research.

Structural Symmetry:  The trucks in Figure 1(d) are
equidistant from location S. They are not functionally equiv-
alent because they are connected to S by different roads. It is
clear, however, that the structure of each of the initial (Truck,
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Location) pairs is symmetric with respect to any of any other
initial (Truck, Location) pairs.

These higher-order structures can be found using NAUTY,
a tool that finds graph automorphisms. Joslin and Roy [Joslin
and Roy, 1997] have illustrated use of this approach. Don-
aldson et. al. have also used the approach in model-checking
[Donaldson et al., 2004].

Much symmetry in planning is clear to a person but is not as
uniform as functional equivalence. This is exemplified in the
concept of almost symmetry. If symmetry can be defined as a
mapping of a structure onto itself then there must be methods
of representing these types of abstractions as mappings.

Can these types of symmetry be generalised to CSP? Yes,
many problems exhibit these forms of symmetry. Consider
any problem where some ordered schedule has to be found;
identical jobs can clearly be permuted, a stronger claim could
be that any jobs can be permuted so long as the permutation
doesn’t affect the cost of the schedule. This exhibits plan
permutation symmetry. Also, since none of the jobs need be
identical, it exhibits almost-symmetry.

All types of symmetry prevent atomic landmarks analysis
from performing well. One of the goals of our work is to
extend earlier work on landmarks analysis to exploit infor-
mation on symmetry.

2.3 Disjunctive Landmarks

Atomic landmarks are incapable of representing the land-
marks that are present because of the symmetry in problems.
Disjunctive landmarks analysis (referred to as ‘resource ab-
stracted landmarks’ in [Porteous and Cresswell, 2002]) looks
to remedy this situation by representing landmarks as disjunc-
tions of facts. If the reader again refers to Figure 1(b) then he
will recall that atomic landmarks analysis fails to recover any
landmarks.

There are several recoverable disjunctive landmarks in this
problem, three examples of which are given in Table 2.

1. (in P1 T1) V (in P1 T2)

2. (in P2 T1) V (in P2 T2)

3. (in P1 T1) V (in P1 T2) V (in P2 T1) V
(in P2 T2)

Table 2: Disjunctive landmarks from problem in Figure 1(b).

The first two tell us that each of the parcels respectively
are required to be in one of the trucks if the goal is to be
achieved. The last is more general; it states that either of the
parcels must be in either of the trucks. We now introduce an
algorithm for extracting disjunctive landmarks based on the
algorithm in Figure 2.

2.4 Disjunctive Landmarks via Forwards
Propagation
In this section, we extend the forwards algorithm to deal

with disjunctive landmarks. The part of the algorithm which
changes is the computation of an ancestor set for a literal from
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ancestor sets of achieving actions. When we consider land-
marks to be simple literals, this computation is an intersection
of the ancestor sets. A literal has to occur as an ancestor of
every achieving action.

In the case of disjunctive landmarks, we have the option
of selecting one condition from each achiever, and forming a
disjunctive set. A problem that we now encounter is that there
are very many possible disjunctive sets that could correctly be
considered to be ancestors, and may turn out to be landmarks.
We need some criteria by which to select which disjunctive
sets are worth keeping.

Selecting disjunctions

An obvious criterion to use is to select literals which have
the same predicate. However, we need to also impose further
restrictions for this to work well.

‘We now give an example where this simple approach works
poorly. Suppose we have a landmark which requires that
some truck (truckl or truck?2) has a driver (driver1 or driver2).
The disjunction of preconditions of achieving actions would
include the following:

(at(driverl,locl
(at(driver2, locl

A at(truckl,locl)...)V
A at(truckl,locl)...)V
(at(driverl,locl) A at(truck2,locl)...)V
(at(driver2,locl) A at(truck2,locl)...)

We would like to get two disjunctive landmarks, requiring
that at least one truck and one driver are available.

at(driverl,locl) V at(driver2,locl)
at(truckl,locl) V at(truck2,locl)

—

However, if we group according to the common predicate at,
two disjunctive landmarks become merged into one:

at(driverl,locl)V
at(driver2,locl)V
at(truckl,locl)V
at(truck2,locl)

Hence we need to be able to make a distinction between
drivers and trucks which is not obvious from the context. A
solution to this problem is to make use of the type data which
is generated by analysis of the domain and problem using
TIM [Fox and Long, 1998]. Fig. 3 shows part of a type hier-
archy that is produced by TIM analysis. Given this informa-
tion, when we attempt to generalise a disjunctive set, we do
so by making the smallest available step towards the root of
the type hierarchy. The categorisation of types in TIM makes
use of a fingerprint for each object, which is the set of TIM
spaces in which the object may participate. TIM spaces group
together objects which are functionally equivalent. If we rep-
resent types as sets of space identifiers, then for types T'ypel
and T'ype2, the subset relation T'ypel C Type2 means that
the type Type2 is more specific than Typel, and so T'ype2
is subtype of Typel. For present purposes, we also regard
specific object identities as type information, and where ap-
propriate we add those to the set. As a consequence, we can
find a node in the type hierarchy that generalises two types
simply by computing the intersection of their signatures.

We represent each ancestor as a pair (Sig, DJ set), where
Stg is a signature which specifies the predicate common to
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Figure 3: Example type hierarchy

the disjuncts and the types of the arguments common between
disjuncts, and DJset is a disjunctive set of literals.

The step in the forwards propagation algorithm in which
the intersection of the ancestors of the achievers is computed
is replaced by a procedure which uses signatures to derive
generalisations where necessary. The generalisation of two
pairs is defined as follows:

least_generalisation( (Sig0, D Jset0), (Sigl, D Jsetl)):
Sig2 := intersect_signatures(Sig0, Sigl)
DJset2 := DJsetOU DJsetl
return (Sig2, DJset2)

intersect_signatures( Sig0, Sigl ):
P := predicate of Sig0, Sigl
Sig2 is a new signature with predicate P
For each (N'*t") arg of Sig0
Arg(Sig2,N) := Arg(Sig0, N) N Arg(Sigl, N)
return Sig2

We generate disjunctive landmarks such that each achiev-
ing action has at least one of the disjuncts as an ancestor. We
keep only the most specific disjunctive sets — i.e. we discard
any disjunctive set if its signature subsumes the signature of
another disjunctive set.

Our algorithm based on these principles is effective at find-
ing disjunctive landmarks in benchmark problems. How-
ever the space requirement is high, and under certain circum-
stances the generalisation algorithm could generate a number
of disjunctive sets which is exponential in the number achiev-
ers for a literal. Hence the type information is not always
sufficient on its own to select useful disjunctive landmarks.

2.5 Other Algorithms

There is another algorithm described in the literature for
extracting disjunctive landmarks from a planning problem.
[Porteous and Cresswell, 2002] introduce a different ap-
proach based on propagating an RPG backwards. No disjunc-
tive landmarks analysis has yet been used in practical plan-
ning.

Here we introduce the Orlando API, a program that we
have created to extract and manage disjunctive landmarks.
Orlando does not use the algorithm from [Porteous and Cress-
well, 2002] or the one in Section 2.4. Rather, the authors have
discovered a novel way of combining symmetry-breaking
techniques and atomic landmarks analysis to discover dis-
junctive landmarks.
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Figure 4: Architecture of Orlando.

3 The Orlando API

Orlando is a tool for extracting and managing disjunctive
landmarks. By symmetric reduction, we can reveal disjunc-
tive landmarks using only conventional landmarks analysis.
The API takes a planning problem as input; the user can then
request landmarks analysis be performed on several abstrac-
tions of the original problem. The landmarks obtained from
these abstracted problems are equivalent to disjunctive land-
marks.

Figure 4 shows the architecture of Orlando. A client pro-
gram requests that landmarks analysis be performed with re-
spect to some equivalence function. All of the equivalence
functions are hard-coded into Orlando and are described be-
low. Orlando reduces the problem and performs atomic land-
marks analysis on this reduced problem. A translation of the
results are returned to the client program. The Orlando al-
gorithm can be described, in greater detail, in the following
steps:

Find the symmetry groups S of all the objects in the
problem with respect to equivalence function F'.

e For each symmetry group, choose a representative mem-
ber object S;.. All occurances of any member of group
S in the problem should be replaced by S,.. This stage is
the symmetric reduction stage. It is likely that all mem-
bers of some symmetry group share common functional-
ity. Therefore the new problem will be smaller, and less
complex, than the old one; hence symmetric reduction.

e Perform conventional landmarks analysis using the al-
gorithm in Figure 2. The landmarks obtained can now
be reinterpreted into the original problem.

e Any atomic predicate including S is be expanded into a
disjunctive landmark. The number of objects in S gives
the number of disjuncts in the landmark. For all m in S,
create a new disjunct identical to the atomic landmark
replacing S,. with m.
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This technique exploits symmetry so that we can gener-
alise a problem. This is a novel use of symmetry. Symmetry
has been exploited in planning to prune the search space, but
here we are proposing to use symmetries to identify a way to
structure the search space before exploring it. It is also a novel
way of extracting disjunctive landmarks. Orlando depends on
different equivalence functions, and so finds landmarks with
respect to different symmetries. It can be said that we are
gaining ‘structural analysis from symmetry’.

This is in juxtaposition to the current algorithms, which
find disjunctive landmarks in one sweep; there is no indi-
cation of what type of symmetry the landmarks represent.
This can be described as ‘symmetry from structural analysis’.
These algorithms can suffer from the fact that they can gener-
ate meaningless landmarks [Porteous and Cresswell, 2002].
In contrast to this, the landmarks we generate have a very
specific meaning relating to the equivalence function used to
reduce the problem. This should aid a user in his decision-
making process. Since the algorithm uses only traditional
landmarks analysis then the time complexity is better than
the older algorithms.

However, the landmarks we find are only ordered with re-
spect to each equivalence function used. The older algorithms
order all of the disjunctive landmarks that they find. Or-
lando requires the user to know something about symmetry,
if only very little at this stage. There are good arguments for
both types of disjunctive landmarks analysis and a forward-
propagating algorithm such as that described in Section 2.4 is
seriously considered for the next version of Orlando.

We will now examine the equivalence functions supplied
with Orlando. We demonstrate, by example, what type of
landmark these reveal. We also discuss the individual merits
and shortfalls of each.

Functional equivalences: The functional equivalence func-
tions come in two different flavours:

1. With respect to all goals. Often reducing a problem by

functional equivalences recovers only a negligible num-
ber of new landmarks. Reducing the problem with re-
spect to all of the goals has the problem that the land-
marks that are found will not distinguish between goals
and the resources associated with those goals.
The third landmark in Table 2 is extracted using this
equivalence function; the first two, however, are not.
The third landmark has to be achieved twice for a suc-
cessful plan. It would be much better if it were repre-
sented as two distinct landmarks.

With respect to individual goals. Interesting land-
marks can be deduced by removing each of the goals,
save one, and then reducing the problem by functional
identities. This method typically finds more specific, and
useful, landmarks than the previous one.

If we only consider one goal at a time, each parameter
of that goal predicate is enforced as asymmetric to all
objects of the same type. Thus, each object in that goal
predicate will appear as an atom. Returning to Table 2,
landmarks 1 and 2 are now found but 3 is not.

Relax complete types: Another way of abstracting the prob-
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lem is to consider each object of the same type to be symmet-
ric. This abstraction can counter the intuitive, but hard to
define, almost-symmetries in a problem. In our logistics ex-
ample Figure 1(c), for instance, relaxing the truck type would
yield the landmark:

[(in P1 T1) V (in P1 T2) V (in P1 T3)]
This landmark is useful in the sense that it reveals the resource
in the problem (i.e. the trucks). However, it does not give us
any specific information about the problem. In this particular
situation it is a useful landmark (all of the trucks are located
close to each other).

It could easily be the case that there was a very distant truck
in the problem that should never be considered as a candidate
for delivering the parcel. This naive relaxation would include
the distant truck in the disjunction. This is clearly unattrac-
tive, but the abstraction is still useful when more specific ab-
stractions fail to discover landmarks.

Reducing the static structure: Static predicates are those
that cannot be modified. An example of a static predicate is
the road predicate in the logistics domain. Since no actions
can add or delete a road predicate, it is said to be static.
Sometimes structural symmetry arises because of symmetry
in the static structure of the problem.

If only the static structure of Figure 1(d) is considered then
by functional identities, we can collapse the structure such
that all of the trucks now occupy one location. After rein-
troducing the dynamic predicates, it is clear that the problem
can be reduced further (as the trucks are all now at the same
location in the abstraction). Note that two abstractions were
performed here. One to remove the symmetry in the static
structure, and then one to remove the symmetry which was
then introduced.

We would now extract the following landmarks from the
problem:

1. (at T1 8) V (at T2 S) V (at T3 S) V
(at T4 S)

2. (in P1 T1) V (in P1 T2) V (in P1 T3) V
(in P1 T4)

3, (at T1 G) V (at T2 G) V (at T3 G) V
(at T4 G)

These landmarks are enough to solve this problem. Any
sequence of actions that achieve these landmarks in order is a
valid plan.

The previous example shows that the application of com-
pound equivalence functions on a problem can collapse
greater amounts of symmetry than one alone. We can imagine
the abstractions spanning from the original problem in a hier-
archy. At the top levels are those landmarks with the greatest
specificity. As we go deeper into the tree, the extracted land-
marks are necessarily more general.

4 Future and Related Work

The initial work on atomic landmarks in [Porteous et al.,
2001] has demonstrated that the performance of a planner
can be improved with use of landmarks. There has remained
moderate interest in the field of landmarks analysis.
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The planner SGPlan[Chen et al., 2004] uses landmarks
(Chen et. al. refer to them as ‘hidden subgoals’, but their
definition is the same). SGPlan decomposes the problem by
finding goal-wise atomic landmarks, but not disjunctive land-
marks. In the recent International Planning Competition it
performed exceptionally, coming first and second place in
the ‘Suboptimal Metric Temporal Track’ and the ‘Suboptimal
Propositional Track’ respectively [EdelKamp and Hoffmann,
2004]. This shows that a planner that utilises landmarks can
be successful. Zhu and Givan also entered a planner in the
same competition, but performed less well [Zhu and Givan,
2004]. Their planner discriminates between different types of
landmarks and then partially orders these to create what they
call ‘roadmaps’. [Sebastia er al., 2003] produced a planner
that uses landmarks analysis to partition a planning problem
so it can be solved in a parallel architecture.

Interesting future work could include creating a planner
that uses disjunctive landmarks analysis to guide its search.
Analysis of the equivalence functions in different situations
will give a deeper understanding of how to automate such a
process. Once the landmarks are found, one possible search
strategy could be searching across the disjuncts. Also, we
could proceed by trying to unify the disjuncts (intersect dis-
Junctive landmarks where facts overlap.) Perhaps it would be
better to make the landmarks distinct. Only further experi-
mentation can answer these questions.

5 Conclusions

In this paper we have introduced Orlando, a domain-analysis
tool for extracting disjunctive landmarks. This API uses
symmetry-breaking techniques to enable disjunctive land-
marks analysis to be performed at the cost of atomic land-
marks analysis. Several equivalence functions are detailed,
these are the standard equivalence functions supplied with
Orlando. The functions that rely on functional identities are
shown to have special plan-preserving properties. They are
however quite brittle. Some structural symmetries can be bro-
ken by reducing the static structure of the problem. We have
discussed weaknesses of the standard equivalence functions,
there is a need for the user to be able to supply custom func-
tions.

In real problems, few objects are functionally identical.
The domain engineer knows in which situations objects
should be considered symmetric, but sometimes cannot ab-
stract that out when writing the domain. In this circum-
stance then supplying a custom equivalence function to Or-
lando should be possible. These functions must depend on
structural aspects of a problem known by the user, such as
the map in our examples. It seems imperative that, to write
reusable functions, we should have to reason about generic
types. It is indeed a goal of the authors to create a generic
type specification language for this purpose.

The relationship between planning and CSP is very inter-
esting. The comparison between landmarks in planning and
the backbone in CSP problems is one that should be studied
further. In [Slaney and Walsh, 2001] it is found that for one
planning problem (the blocks-world domain) the relationship
between size of backbone and difficulty of solving that prob-
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lem was slightly negatively-correlated. This was in contradic-
tion to how size of backbone was correlated with difficulty of
solving several CSP problems (strongly positive correlation).
It would be interesting to find out if this difference is global
for all planning/CSP problems.

Landmark-extraction has been seen as a way of making
planning easier. Much work has been carried out exam-
ining the relationship between the backbone of a CSP and
the phase transition of the problem [Singer et al., 2000;
Slaney and Walsh, 2001; Culberson and Gent, 2000]. In
[Dubois and Dequen, 2001], a heuristic search algorithm for
solving SAT problems, based of backbone information, is in-
troduced. Positive results in this paper suggest that heuristics
based on backbone information should be studied elsewhere.
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~ Abstract

Adding static constraints (e.g. lexicographic con-
straints) and modifying a backtracking search pro-
cedure to dynamically eliminate the consideration
of symmetrically equivalent states (e.g. SBDS and
SBDD) are two common methods for breaking
symmetry, with different advantages and disadvan-
tages. It is natural to try to combine these in order
to try to harness the strengths of each. However, in
some cases solutions can be lost if the combination
is not done carefully. We examine this problem,
giving an example, and show how vulnerable ver-
sions of SBDS and SBDD can be modified to make
them safe for combining in this way.

1 Introduction

Usually when solving a constraint programming problem
which contains symmetry, we are only interested in finding at
most one solution from any given equivalence class (doubly
so if we are only looking for the first solution!). More than
this, we would like to avoid exploring symmetrically equiva-
lent search states; it is the avoidance of redundant search that
allows symmetry-aware methods to solve symmetric prob-
lems more efficiently than other techniques.

In this paper we consider two popular symmetry-breaking
approaches:

e Adding a set of static symmetry-breaking constraints: in
particular, inequalities based on the lex-leader approach

[3].

e Modifying the search to dynamically exclude symmet-
rical equivalents: in particular, the SBDS (“Symmetry
Breaking During Search”) [1; 9] and SBDD (“Symmetry
Breaking via Dominance Detection”) [4; 5] approaches
(which we will collectively refer to as SBDx).

The standard lex-leader approach can only be applied to
variable symmetry, and if the symmetry group is large it is
not practical to break all symmetry (one constraint is required
for each element of the group), but the addition of a suitable
subset (or other simplification) of the lex-leader constraints
can be a cheap and efficient way to break a lot of symmetry.

Classic SBDS [9] is also impractical for breaking all sym-
metry for large symmetry groups (one symmetry function is
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required for each element of the group), but a modified ver-
sion based on computational group theory [7] has been shown
to be practical for performing complete symmetry breaking
for groups of up to 10° elements.

SBDD-based approaches such as [10; 8] have been able to
handle much larger groups, but the high cost of dominance
checks for large groups has led some to consider sacrificing
the completeness of the dominance check for improved over-
all runtime [4; 10; 2].

Given the efficient but incomplete lex-leader-based ap-
proach and the less efficient but complete SBDx approaches,
it is natural to consider combining the two, using static con-
straints to prune much of the symmetric search space cheaply,
but using an SBDx-based approach to make the symmetry
breaking complete. Indeed, a combination of the two was
used in [10], and something similar was used in [2] (with set
variables rather than integer variables). However, concerns
have been raised as to whether it is possible to combine the
techniques without losing correctness: the lex-leader-based
approach uses a static ordering on the solutions and only
guarantees that the lexicographically least solution will be re-
tained in any equivalence class, while the SBDx approaches
usually use a dynamic ordering with the retention of solutions
dependent upon the order in which they are found during the
search. Any method which combines the two must make sure
that they agree upon which solution to retain, or solutions
may be lost.

In this paper we examine this issue of compatibility, show-
ing how the obvious but naive combination can go wrong in
some circumstances, identifying which of the SBDx variants
might have a problem, and showing how to modify them to
make them safe. The simple combination of techniques pre-
sented here is not claimed to be a great way to break sym-
metry, but is merely intended to show that it can be done;
the main contribution of the paper is to point out some of
the problems that arise when combining these techniques and
how to overcome them, as a foundation for further work in
this area.

The rest of the paper is organised as follows. In Section 2
we briefly review the important features of the techniques we
will be combining. This is followed in Section 3 by the pre-
sentation of a straightforward way to combine the techniques,
a discussion of the problems that can arise, and how they can
be overcome. Finally, in Section 4 we present some experi-
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ments backing up the main results of the paper.

2 Review of Relevant Symmetry Breaking
Techniques

In this section we briefly review the key features of the rele-
vant symmetry-breaking techniques. The reader is referred to
the original papers for more detail if desired.

2.1 Lex-Leader Symmetry Breaking

This approach [3] derives from the observation that one can
break symmetry by constraining the problem state to be the
smallest (or largest) among all the symmetrically equivalent
states according to some suitable measure. Complete sym-
metry breaking can be achieved if the measure yields differ-
ent values for two solutions whenever those solutions are not
identical. The standard way to do this is to arrange the prob-
lem variables into a vector, and constrain this vector to be
lexicographically less than or equal to (some approaches use
greater than or equal to) every symmetrical variant of the vec-
tor (hence making sure it is the lex leader).

Since one constraint is needed for each element of the sym-
metry group in order to ensure complete symmetry breaking,
it is not practical to do this for anything but relatively small
symmetry groups. However, partial symmetry breaking can
be achieved by using just a subset of the constraints (or some
other suitable weakening, such as truncation), and many pop-
ular sets of symmetry-breaking constraints can be cast in this
framework (e.g. “double lex” for matrix models with full row
and column symmetry, where each row is constrained to be
lexicographically less than or equal to the next, and each col-
umn is constrained to be lexicographically less than or equal
to the next).

One common way to decide how to choose a suitable
subset to use is to take into account the other constraints
of the problem. For example, if a set of symmetry-
breaking lexicographic constraints have a common prefix
(w1,...,2k) <joy (¥1,...Yr) and the problem constraints
imply that V&_ z; # y; (i.e. the vectors cannot be identical
over this prefix), then we can replace the entire set of con-
straints by (21, ..., %) <joy (¥1,.--Yk). In particular, if the
problem constraints imply that z; # ¥; then the constraints
reduce to simply 1 < y;. Note that this actually strength-
ens the constraints: due to the inequality now being strict,
the resulting constraints can propagate more strongly than the
originals.

2.2 SBDS

SBDS [1; 9] is a dynamic symmetry breaking technique
which works by modifying a standard backtracking search
procedure. The idea is simply that whenever a subtree has
been completely explored, constraints are added which ex-
clude everything which is symmetrically equivalent to that
subtree. Suppose that in the context of a partial assignment
A, the assignment Var = Val was tried and is now being back-
tracked (either because there was no solution, or because we
are looking for more solutions). At this point, SBDS in ef-
fect imposes the constraint g(A) = g(Var # Val) for each
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symmetry g of the problem. This ensures that if a state sym-
metrically equivalent to (or implied by) A is reached, we do
not try the equivalent of Var = Val.

Note that it is not necessary for A to include all variables
which are ground when representing the partial assignment:
the ones set by (positive) decisions during the search is suffi-
cient, and this is what most (if not all) implementations use,
for efficiency reasons.

2.3 SBDD

SBDD [4; 5] is also a dynamic symmetry breaking technique
that works by modifying a standard backtracking search pro-
cedure, and is quite closely related to SBDS. Whenever a
subtree has been completely explored, a no-good is recorded.
At every node of the search tree, a dominance check is per-
formed, to see whether the current state is dominated by any
symmetric variant of a recorded no-good. If it is, then we
have already explored a state equivalent to the current one,
and may backtrack.

Early versions of SBDD recorded more-or-less the entire
state for the no-good and compared these to the current en-
tire state; later versions (e.g. [10; 8]) typically only record
the positive decisions made during the search, for comparison
with the current entire state, since this significantly improves
the efficiency of the dominance checks. Note that the current
state is always represented in full in the dominance check,
since using just the decisions can lead to incompleteness: in
general it is possible to reach the same state via more than one
different (and not symmetrically equivalent) set of decisions,
and thus a dominance check might fail to detect dominance
when it should.

In [4], a variant of SBDD was described where a static so-
lution order is used instead of recording no-goods. In this
variant the current state is checked for dominance by any state
which comes before it in the ordering. As far as we are aware,
this approach has never been implemented.

3 Combining Lex-Leader and SBDx

The real problem with just applying both these techniques
without consideration for their compatibility is of course that
adding the static symmetry-breaking constraints changes the
problem, so that it no longer has all of the symmetries that
SBDx is being told it has. The question is whether SBDx
can be made to work despite this and continue to retain ex-
actly one solution from each equivalence class of the original
problem.

3.1 False Start?

Initially we thought that compatibility could be ensured sim-
ply by using the right variable and value order in the search
in conjunction with standard SBDx methods. Specifically, the
variable order should be the same as that used in deriving the
lex-leader-based constraints (most significant variable first),
and the value order should be smallest to largest (or what-
ever the lexicographic constraints use). Applying SBDx in
the absence of the static constraints, this would mean that the
search would find the lexicographically least solution in any
equivalence class first, which means that it is these solutions
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that SBDx retains, while the lexicographically greater ones
are discarded. Since both approaches when applied individ-
ually would keep the lexicographically least solution in each
class, it would seem natural for the combination to also keep
these solutions.

Here is the proof:

Theorem 1 Given a static variable and value ordering and
a static set of symmetry-breaking constraints which preserve
the lexicographically least solution according to this ordering
in any equivalence class (e.g. lex-leader constraints or sim-
plifications thereof), one can use SBDS or SBDD symmetry
breaking and not lose any (unique) solutions if one uses that
variable and value ordering during the search.

Proof: Consider the complete search tree without any sym-
metry breaking. Note that the solutions are found in lexi-
cographic order (per the variable/value ordering used) in this
tree; in particular, the solutions in any given equivalence class
are found in lexicographic order. Note also that the effect
on the search tree of adding the static constraints is to prune
some subtrees, but if any pruned subtree contained any solu-
tions, these solutions are necessarily not the lexicographically
least in their respective equivalence classes.

Thus it remains to show that any solution pruned by SBDx
is also not the lexicographically least. This is straightfor-
ward. Due to the variable/value search order, the subtree cor-
responding to an SBDx no-good is lexicographically smaller
than the parts of the search tree in which it is applied (since
these necessarily come later in the search). Thus if any solu-
tion  to the original problem is pruned by an SBDx no-good,
then we know that there is another, symmetrically equiva-
lent solution ¢’ in the subtree corresponding to the no-good
(if not, the no-good could not have pruned ), and that ¢’ is
necessarily lexicographically smaller than 6. Thus any solu-
tion pruned by the no-good is guaranteed to not be the lexi-
cographically least.

Thus, since neither the lexicographic constraints nor the
operation of the SBDx method removes the lexicographically
least solution in each equivalence class, we are guaranteed to
find at least this solution from each class and the result holds.

O

Unfortunately, the theorem is false — or at least mis-
leading without some provisos and caveats. Barbara Smith
pointed out! that if the symmetry-breaking constraints are
strong enough to cause a variable to become fixed and this
is not taken into account in some way, solutions can indeed
be lost.

3.2 Example: latin squares

Consider the problem of enumerating all possible latin
squares, considering only the row and column symmetry, and
assume that we are modelling the square as an n X n array of
variables, each taking a value from {1...n} representing the
colour of that cell (see Figure 1). The problem constraints are
then simply that within each row or column, all the entries are
different.

!Personal communication.

44

11 T12 Tin
T21 22 Ton
Tpl Tp2 Tnn
Figure 1: Latin square model
1 2 n
2 T Tan
n Tnp2 Tnn

Figure 2: Latin square after symmetry-breaking constraint
propagation

Suppose that the variable ordering we are using is row-
wise (11,212, . . . y T1n, T21, T22, . . ., T2y, . . .) and the value
order is smallest first. Then the lex-leader symmetry-breaking
constraints derived from this ordering can be simplified (los-
ing completeness) down to double lex. (Alternative way of
looking at it: double lex is compatible with this ordering be-
cause these constraints will never exclude the lexicographi-
cally least solution in any equivalence class.)

Note that by taking into account the problem constraints,
the lexicographic constraints may be strengthened. Con-
sider for example the row constraint {z1,.. 1) Siew
(Z21,...,T2n). We know that 217 cannot be equal to za1,
and thus this constraint may be replaced by the simple in-
equality 217 < 22;1. Doing this for all the other lexicographic
constraints results in a set of simple inequalities which, when
propagated, will set the first row and the first column to
(1,2,...,n) (see Figure 2).

Thus when we start searching, the first variable to be la-
belled is wa. It is first assigned the value 1; call the resulting
state 4. On backtracking we impose 125 # 1; call the result-
ing state B.

First consider SBDD. SBDD requires that we check
whether B is dominated by .4 before we proceed. If we com-
pare whole states, we see that there is no dominance: the
first row and first column must stay where they are. How-
ever, if we try to map just the decisions made to reach state
A (i.e. z22 = 1) into the state B then we can easily achieve
dominance by exchanging the first two rows and the first two
columns. Thus a standard decision-based SBDD implemen-
tation would prune this branch; if it contained any lex-leader
solutions, they would be erroneously discarded.

With SBDS, on backtracking the z32 = 1 assignment we
(effectively) impose g(A) = g(@az # 1) for each symmetry
g. Since this is the first decision, with standard SBDS A is
empty, and so we are imposing g(z22 # 1) for all symmetries
g. One such g exchanges the first two rows and the first two
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columns, so we add the constraint z1; # 1, which obviously
causes immediate failure. Again, any lex-leader solutions in
this branch are erroneously discarded.

3.3 Where is the problem?

The essence of the problem is that for SBDS and decision-
based SBDD dominance checks, in the presence of extra
symmetry-breaking constraints, the set of decisions taken to
reach a particular search state is no longer a sufficient char-
acterisation of that search state. In the pure SBDx version of
the problem, using just the decisions works because any dif-
ference between the current search state and the initial config-
uration is entailed by the set of decisions made to reach that
state, and so any other search state which entails-a symmet-
ric version of the decisions necessarily implies the symmetric
equivalent of the search state derived from those decisions.
Thus one can identify a symmetric search state (in order to
exclude it) by just looking for the symmetric set of decisions,
which is more efficient than comparing the entire state.

In the presence of static symmetry-breaking constraints,
however, a symmetrical set of decisions may not lead to a
symmetrical search state. In such a case the set of decisions
is no longer a sufficient characterisation of a search state in
order to identify a symmetrical variant of it. Since SBDS
and decision-based variants of SBDD assume that it is, these
techniques can therefore go wrong if it is not.

Obviously, variants of the SBDD algorithm where the
dominance check is implemented using the entire search state
(e.g. [4; 5]) do not have such a problem. For these methods, as
long as the search chooses to label the first non-ground vari-
able in the ordering each time, it should work fine. Similarly,
if one is using an SBDD variant with a static solution order-
ing (as mentioned in [4]) then as long as one is using the same
lexicographical ordering for this as for the static constraints
then the combination will work regardless of the search order.

This naturally leads to the question of whether something
less than the entire search state is sufficient characterisation
in the presence of static symmetry-breaking constraints. This
seems particularly important if one wishes to adapt SBDS for
use in combination with static constraints, since all current
SBDS algorithms are inherently decision-based.

3.4 Doing better than comparing whole search
states

It turns out to be relatively straightforward to adapt SBDS and
decision-based SBDD variants to work correctly without tak-
ing into account the entire search state. These decision-based
methods, when labelling a sequence of variables, usually just
skip over any variable that is ground, since there is no deci-
sion to make. In the presence of static symmetry-breaking
constraints, however, some variables may be ground when
they would not have been otherwise, and so some “decisions”
are skipped that would have beén included in the absence of
the static constraints. If these decisions are re-included, then
the combination of static and dynamic techniques ought to
work fine.

Of course, it is not immediately obvious which of the
ground variables encountered during labelling have been set
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as a consequence of the static constraints, so we propose sim-
ply including all such variables in the decision set used by
these techniques. We now show that this modification means
that decision-based SBDx techniques will never exclude so-
lutions that are minimal with respect to the lexicographic or-
dering, regardless of which variables may have been set by
(lex-leader compatible) static symmetry-breaking constraints,
thus making the combination safe.

Theorem 2 Given a static variable and value ordering and
a static set of symmetry-breaking constraints which preserve
the lexicographically least solution according to this order-
ing in any equivalence class (e.g. lex-leader constraints or
simplifications thereof), one can use SBDS or decision-based
SBDD symmetry breaking and not lose any (unique) solutions
if one uses that variable and value ordering during the search
and treats any ground variables encountered as a decision to
assign that value to that variable.

Proof: Let the variable order be (z1,...,Z,). We assume
w.l.o.g. that the value order is smallest to largest.

Consider a subtree of the search. This subtree is
reached by making a sequence of (positive) decisions (z; =
ai,...,; = a;) for some j and some a;. Upon completing
the exploration of this subtree, this set of decisions is treated
as a no-good with all symmetrical equivalents excluded from
consideration in subsequent parts of the search tree, either by
explicit constraints (SBDS) or dominance checks (decision-
based SBDD).

Due to the variable and value ordering used, subsequent
search states necessarily have a corresponding sequence pos-
itive decisions {(x; = by, ..., zr = bi) for some k and some
b; such that (ay,...,a;) <iex (b1,...,br). If a previously
recorded no-good mapped by some symmetry g is entailed
by the current search state, SBDx prunes the current state.?
This pruning is valid if the current state cannot be extended
to a solution which is lexicographically least in its equiva-
lence class. Suppose to the contrary that there exists such a
lexicographically least solution §. Since 6 is a refinement of
the current state, we know that 6 |= z; = b; for1 < ¢ < k.
Now consider the solution §’ = g~1(6), i.e. § mapped by the
inverse of the symmetry that embeds the no-good in the cur-
rent state. Then we have that @’ |= z; = a; for1 < i < j. But
this means that 8’ is lexicographically smaller than @, contra-
dicting our assumption that § was lexicographically least in
its equivalence class. Hence pruning the current state is valid.

Since the above argument applies for any no-good and
makes no assumptions about the presence or absence of any
static symmetry-breaking constraints, we have that using the
stated labelling approach with SBDx can never exclude the
lexicographically least solution in any equivalence class even
if static symmetry-breaking constraints are added. Since the
static constraints also preserve these lexicographically least
solutions, the result follows. O

For particular problems, one can no doubt do better than
including all ground variables encountered during labelling

*We are ignoring here the fact that the no-good can be used to
filter domain values as well as causing branches to fail, but the same
argument applies.
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in the decision set, by exploiting problem-specific informa-
tion. For instance, if one has a set of variables that must
be assigned distinct values from a set of the same cardinal-
ity (e.g. z1,...,%n € {1,...,n},alldifferent(zy,...,z,)),
then there is no need to include the last one encountered in the
decision set: the other variable-value pairs already included
sufficiently represent the state. This kind of optimisation is
probably more important for boolean models: if a set of vari-
ables must sum to 1, then the only “interesting” assignment is
the one that sets some variable to 1; if there is such an assign-
ment (i.e. the set of variables are ground) then including all
the Os in the SBDS partial assignment or an SBDD no-good
is a waste of time and space.

3.5 Didit really need fixing?

In the latin square example of Section 3.2, we used the prob-
lem constraints to strengthen the static symmetry-breaking
constraints, and this was key in demonstrating the loss of
solutions. We conjecture that if one uses just natural (un-
strengthened) lex-leader constraints, then using standard (un-
modified) decision-based SBDx is safe, but this remains to be
proven.

3.6 Related work

For SBDS, the extra conditions that appear in the dynamically
added constraints as a result of including ground variables in
the partial assignment A are similar to the extra conditions
added to such constraints when adapting SBDS for partial
symmetries [12]. However, with a partial symmetry the extra
condition ¢y added to the constraint is invariant with respect
to the symmetry, which is not the case here. Also, the extra
condition that ends up included in our approach depends on
where in the search tree the constraint is added, whereas with
partial symmetries the condition depends only on the (partial)
symmetry.

4 Experiments

As an empirical validation of the above results we ran some
experiments on the latin square problem, combining lexico-
graphic constraints with SBDS and SBDD implementations.
The symmetry-breaking constraint choices tried were:

e none: No symmetry-breaking constraints.
e weak: Standard double lex constraints.

e strong: Strengthened form of the lexicographic con-
straints; i.e. < constraints between the elements of the
first row and between the elements of the first column.

The SBDx choices tried were:
e none: Standard search (no SBDS or SBDD).
e SBDS: SBDS (the GAP-ECL?PS® version described in
[7]).

e SBDS no-skip: A modified SBDS search that treats
ground variables encountered in the variable order as if
they were decisions.

e SBDD: Decision-based SBDD (the GAP-ECL*PS¢ ver-
sion described in [8]).
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e SBDD no-skip: A modified SBDD search that treats
ground variables encountered in the variable order as if
they were decisions.

In each case the labelling order was row-wise.

The experiments were performed using ECL!PS€ 5.7 #57
[11] and GAP 4.3fix5 [6] on a 933MHz Intel Pentium 111 ma-
chine.?

The results of enumerating all 5 x 5 latin squares (number
of solutions found and number of seconds taken) appears in
Table 1. The corresponding data for the 6 x 6 instance are
shown in Table 2.

Clearly there are 16 unique solutions to the 5 x 5 instance,

~and 1868 for the 6 x 6. As expected, the lexicographic con-

straints are not sufficient to break all symmetry. Also as ex-
pected, combining the strong lexicographic constraints with
(decision-based) SBDx algorithms results in solutions being
lost unless those algorithms are modified appropriately. The
results for the weak lexicographic constraints suggest that
there is not a problem for this combination — at least on this
problem, with only local consistency applied to the lexico-
graphic constraints on an individual basis.

As can be seen, treating all ground variables encountered
as though they were decisions does incur an efficiency over-
head when no static constraints are added. For SBDD, the
benefit that the static constraints bring in reducing the num-
ber of dominance checks required more than offsets this extra
overhead. On the other hand, SBDS does not seem to partic-
ularly benefit from the addition of the static constraints. We
have not analysed the reasons for this, but a plausible expla-
nation is that SBDS has already done most (if not all) of the
work it would do anyway by the time the static constraints
prune the search, in which case there is nothing to gain from
adding the static constraints. It is also possible though that
we have just done a poor implementation of it, and that better
can be done.

5 Conclusions

We have shown that for some combinations of lex-leader-
derived static constraints and decision-based SBDx imple-
mentations, solutions can be lost. We have also shown how to
modify these SBDx implementations in order to make them
safe for combining with such constraints. It is still an open
question as to exactly when there is a problem; until this is
resolved we suggest that any attempt to combine these two
approaches should either use a safe variant described here or
carefully justify the correctness of the combination.
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SBDx none SBDS SBDS no-skip SBDD SBDD no-skip
Tex NSols time | NSols time | NSols time | NSols time | NSols  time
none | 161280 191.57 16 1.33 16 2.01 16 1.71 16 1.95
weak 56 0.17 16 1.30 16 1.86 16 1.19 16 1.39
strong 56 0.08 1 040 16 173 1 041 16 1.05
Table 1: 5 x b latin square enumeration: number of solutions and time taken
SBDx none SBDS SBDS no-skip SBDD SBDD no-skip
lex NSols  time | NSols time | NSols time | NSols time | NSols time
none - - | 1868 13293 | 1868 232.11 | 1868 176.15 | 1868 243.56
weak 9408 2634 | 1868 118.01 | 1868 217.39 | 1868 138.62 | 1868 177.01
strong | 9408 10.03 3 0.73 | 1868 186.42 3 0.71 | 1868 135.93

Table 2: 6 X 6 latin square enumeration:
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Abstract

In this paper we consider a generalisation of sym-
metry, which we call weak symmetry.A weak sym-
metry acts only on a subset of the variables and
preserves the feasibility state only with respect to
a subset of the constraints.

We will consider weakly decomposable problems
that is, a problem decomposes in two subproblems
whereby the whole problem contains weak symme-
tries. That means that one of the subproblems is
proper symmetrical.

We discuss a remodelling concept where we use ad-
ditional variables which we call SymVar (Symme-
try Variable). These variables enable us to exploit
weak symmetries and achieve symmetry breaking
on the symmetrical variables of the problem with-
out losing solutions.

Roughly speaking we rearrange the search tree in a
way such that all symmetrical variable assignments
are arranged under a specific node. This node rep-
resents a complete SymVar assignment of the sym-
metry class. Therefore the symmetrical variable as-
signments form a “frontier line” in the search tree
where each node corresponds exactly to one sym-
metrical variable assignment of the Sym Vars.

1 Introduction

Symmetries transform a (partial) solution in a symmetrical
(partial) solution and preserve the state of feasibility: no-
goods are tranformed in symmetrical no-goods while feasible
solutions are transformed in symmetrical feasible solutions.
Therefore symmetries decompose the search space in classes
of symmetrical solutions whereby each class contains either
only feasible or infeasible solutions.

When searching a solution to a problem it is sufficient to
find only one solution in each class of solutions. If more than
one solution is requested the symmetrical equivalents to the
found solution can be derived by applying the symmetry func-
tion exhaustively. Therefore symmetries should be excluded
from the search space to speed up the search.

In cooperation with Philips/Assembléon,Netherlands
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Various techniques have been proposed for symmetry han-
dling. In general it is done by remodelling the model, exclud-
ing the symmetry up-front via constraints, breaking it during
the search or by a combination thereof.

Consider now a scenario where the problem itself includes
some kind of symmetry that acts only on a subset of the vari-
ables and only with respect to a subset of the constraints.
They cannot be excluded or broken by the standard meth-
ods mentioned above without losing solutions. This is due
to the fact that symmetrical variable assignments for the vari-
ables affected by this kind of symmetry yield different value
assignments for the asymmetrical variables, such that the cru-
cial property of symmetry — full equivalence of symmetrical
solutions — is lost.

A good idea would be to decompose the problem in two
parts and perform symmetry breaking on the symmetrical
subproblem. This implies to solve them successively and use
the solutions of the first model as input to the second one. But
solving the first model exhaustively is usually too expensive.

SymVars address this problem. SymVars are additional
variables which represent the symmetrical solutions of the
problem. The symmetry function is then applied via the as-
signment of the SymVars. In case the symmetry function is
a permutation, for example, an assignment of the SymVars
represents a permutation of the variables of the symmetrical
subproblem.

Using Sym Vars seems to be particularly useful for tight-fit
problems and optimisation within a given time limit (that is
just a small amount or a fraction of the time it would take to
search the problem exhaustively).

In Section 2 we introduce weak symmetries and state in
Section 3 how weak symmetries influence the search tree.
Section 4 comprises some variations of standard problems
that include weak symmetries. In Section 5 we discuss the
different ways of handling weak symmetries and introduce in
Section 6 the new modelling concept of SymVars and how it
could be used to break weak symmetries. In Section 7 we
give examples that use the SymVar concept and in Section 8
we give an outlook to further work with weak symmetries and
SymVars.
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2 Weak Symmetry Description
2.1 Weak Symmetry Definition

To characterise weak symmetries we first have to define a
weakly decomposable problem.

Definition 1 (Weakly Decomposable Problem)
Given a problem description P = (X, C).

X ={z1,...,%,} is the set of variables and

C = {ci1,...,¢m} is the set of the constraints. The con-
straints ci, . . . , ¢y are of the form c(x1, . . ., x¢) and the con-
StrQints Cy1, - - - , Cm.are of the form c(x1,. .., Ty).

P is weakly decomposable if it splits in two subproblems Py
and Ps.
P, = (X1, C1) consists of the variables X1 = {z1, ...
and the constraints C1 = {c1,...,c,} and
P, (X2,C3) consists of the variables X, =
{%¢41,...,2n} and the constraints C3 = {cj 1,-,Cn}
of the form c(dy, . . ., d¢, Tes1, - - -, Tn), whereby d; is a con-
crete value for the variable x;, 1 < i < L.

In that, for £ + 1 < j < m, ¢; arises from c; by assigning
the variables of X1 concrete values: ©; = d;,; 1 <1 < L.
If £ = 0 then P; is empty and if { = n then P; is empty.
Clearly, if £ < n then the problem is a proper weakly de-
composable problem.

,IE[}

A symmetry that acts on the subproblem P, is considered
a weak symmetry.

Definition 2 (Weak Symmetry)

Given a weakly decomposable problem with subproblems P,
and Py. A symmetry acting on Py but not on Py is called a
weak symmetry.

If the weakly decomposable problem is proper then the sym-
metry in considered a proper weak symmetry.

If the weakly decomposable problem is not proper then the
symmetry is a real symmetry.

In the following we will only consider proper weakly de-
composable problems and proper weak symmetries for con-
venience.

A weak symmetry splits the problem into two parts: one
that is symmetrical and one that is asymmetrical.

The symmetrical part contains all the constraints and vari-
ables that are affected by the weak symmetry.

The asymmetrical part contains the rest of the constraints
and variables.

Both parts cannot be solved individually to receive a full
solution.

Side remark: In our studies so far it is useful to regard
the symmetrical part first and then regard the asymmetrical
part. This is since the asymmetrical part in our studies is
mostly concerned with deriving the objective value (in case of
optimisation) or with constraints that evaluates the objective
value (in satisfaction problems where a solution must at least
achieve a certain objective value to be feasible). O
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2.2 Weak Symmetry as a Constraint Pattern

To characterize the weak symmetry problem we state it fol-
lowing the definition of constraint patterns ([Walsh, 2003]).

e Pattern name: WeakSymmetry

o Context: A symmetry that acts only on a subset of the
variables respecting only a subset of the constraints in
terms of feasibility. The symmetry splits the problem in
a symmetrical and an asymmetrical part intimately re-

lated to each other.

Problem: Breaking the weak symmetry without losing
solutions.

Forces: Breaking the weak symmetry is not possible
without losing solutions and not breaking it is highly in-
efficient.

Solution: Using SymVars results in a rearrangement of
the search-tree that allows all known kinds of standard
symmetry breaking for weak symmetries.

Example: Weighted n-Queens, Multiple Rack Configu-
ration, Automated Manufacturing

3

For convenience, we consider a static variable ordering
(where concerning weak symmetries the symmetrical vari-
ables are consecutively ordered starting at the root of the tree)
but the ideas can also be applied to a dynamical variable or-
dering.

The Effect of Symmetries in the Search Tree

3.1 Proper Symmetries in the Search Tree

If a problem contains symmetries all paths of an equivalence
class of solutions of (partial) solutions can be identified and
represented by a single path. Therefore the pruned search tree
contains only a fraction of the paths of the straight forward
search tree.

In practice, this means that symmetrical (partial) solutions
are evaluated as no-goods as soon as possible and the under-
lying subtree is pruned.

Therefore the explored search tree also excludes all but one
path per equivalence class if the symmetry is broken.

3.2 Weak Symmetries in the Search Tree

If a problem contains weak symmetries the symmetry func-
tion can only be applied to nodes up to a specific depth in the
search tree since up to this depth the symmetric variables of
P are arrayed. Therefore only paths up to this specific level
could be identified. But the subtrees under each symmetrical
subpath of a class are different. Therefore these paths cannot
be identified and represented by a single path without losing
solutions in the subtree. These solutions cannot be derived
using the weak symmetry function.

Therefore the search tree contains all symmetrical paths.

To our best knowledge there is no way of excluding weak
symmetries without losing solutions in this search tree.
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4 Weak Symmetries in Practice

Problems including weak symmetries can be found in optimi-
sation as well as in satisfaction problems. Also several stan-
dard problems can be extended to fit in the class of proper
weakly decomposable problems. The easiest way to extend
a problem to be proper weakly decomposable is to cluster
two problems that are familiar in some way like the magic-
knight-tour which is a combination of a knight tour and a
magic square [Jelliss, 20041, [Stertenbrink, 2004].

4.1 Proper Weakly Decomposable Optimisation
Problems

Every optimisation problem can be considered weakly de-
composable as follows: The objective value can be repre-
sented by a variable and the objective function is a constraint
that determines the value of the objective variable. There-
fore the original problem forms P; and the optimisation part
forms P, of the weakly decomposable problem.

If the objective function is in the same way symmetrical
as the weak symmetry in P then the problem is not proper
weak symmetrical.

There are optimisation problems where P, consists of fur-
ther variables and constraints. In such a case the variable as-
signment of these further variables depend on the variable as-
signment of P;.

An example of such a problem is the “open warehouse”
problem where the number of sold goods is to be maximised
(See [Hentenryck, Lustig, 1999] for a detailed description).
There are several stores and each can only sell goods if they
are open. The variables of P; would be the decision variables
whether a store is open or not while the variables that state
the number of goods sold are a part of P,.

This is demonstrated by a short model using ILOG OPL
Syntax [Hentenryck, Lustig, 1999]:

int+ numberOfStores;
range Stores 1..numberOfStores;

int+ numberOfGoods;
range Goods 1..numberOfGoods;

int+ InStock[Stores, Goods]

var Open[Stores] in 0..1;
var Sold[Stores,Goods] in 0..maxint;

forall (s in Stores)
Open[s]= 0 => Sold[s,

g in Goods] 0;

4.2 Proper Weakly Decomposable Satisfaction
Problems

Satisfaction problems are often self-contained such that they
cannot be decomposed reasonably. Nonetheless many can be
extended to be proper weakly decomposable. In the case of
extension the original problem forms P; and the extension
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forms P,. The variable assignment of the variables in P
predefines the feasible domains for the variables in P.

If the problem is weakly symmetrical this could lead to
the fact that not all partial symmetrical solutions of a class
are feasible with respect to the problem P. So the feasibility
state for P; is preserved but not in general for P. That means
that P contains constraints that evaluates a partial solution
infeasible.

Consider a problem where depending on a variable assign-
ment for the symmetrical part variables are to be assigned.
The variable assignment of the symmetrical part therefore
predefines feasible variable assignments for the latter vari-
ables whereby even symmetrical solutions (for the symmetri-
cal part) may yield different feasible variable assignments for
the asymmetrical part.

This may even have the consequence that a symmetrical
variable assignment yields only infeasible solutions.

4.3 Weak Symmetries in Extensions of Standard
Problems

Example of an Optimisation Problem — Weighted
N-Queens

Consider the weighted n-Queen problem where each field on
the chessboard features a weight expressed by an integer. The
task now is to find a n-Queen solution with minimal/maximal
weight.?

The symmetrical part P; is clearly the n-Queen problem
while the asymmetrical part P is determining the objective
value.

The weak symmetries acting on the variables of P; are all
kinds of rotation and flips of the chessboard.

In this problem for example the flip around the x-axis de-
livers a symmetrical solution but this may have a different ob-
jective value and is therefore a different solution to the prob-
lem.

Example of a Satisfaction Problem — Time-based Rack
Configuration

Consider the time-based rack configuration problem, a varia-
tion of the rack configuration problem (CSPLib problem031
[Gent, Walsh, 2003], [Kiziltan, Hnich, 2003]).

In the rack configuration problem a number of racks of dif-
ferent types are needed to plug in a certain number of differ-
ent electronic cards. The task is to decide how many racks
of each type are needed such that the price for all racks is
minimal.

In the extension of the problem the price is modelled as an
upper bound, that reflects the budget that could be spend at
most for all racks. Any rack configuration thats price is below
the budget is a feasible configuration. But additionally to the
decision which racks are to be bought the time of purchase
has to be considered or more specifically the order in which
they are bought. Also for some kind of electronic cards there
are constraints that state when they have to be used in the
latest.

The symmetrical part P is the rack configuration (configu-
rated racks are feasible no matter in which order they appear)

*This problem could also be stated as satisfaction problem when
a n-queen solution is wanted that achieves at least a specified value.
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while the order of the racks is the asymmetrical part P, (since
the order defines the feasibility of the racks with respect to the
time constraints of the electronic cards).

The weak symmetry acting is the permutation of the racks.
Any permutation of the racks is still a feasible rack configura-
tion. But a specific order of the racks may be infeasible since
a constraint stating the latest use of a specific card is violated.

Example from Automated Manufacturing
The problem formulation is a variation of a real world prob-
lem originating from a cooperation with Philips/Assembléon,
Netherlands (see Fotenote 1). For a more specific descrip-
tions see [Gaudlitz, 2004] and [Tazari, 2003].

Given is:

e A mounting machine with several in parallel working,

consecutively ordered mounting devices.

e Several tools and container of a specific type for specific
component types.

e A PC board layout specified by a set of mounting tasks,
each consisting of a specific component type and coor-
dinates where this component type has to be placed on
the board.

The task is to find a setup for each mounting device —
consisting of a tool and several component container — and
— depending on this setup — find an optimal distribution of the
mounting tasks to the mounting devices such that the work-
load is minimised.

The mounting devices are consecutively ordered and do not
interfere with each other. The boards are arrayed along the
mounting devices. Usually a board is visible on two mounting
devices at a time such that both can mount on it, each on a
different clipping of the board.

The mounting devices are identical in terms of the possi-
bilities of assigning a setup but each has a different visibility
range on the machine. Therefore each device has access to a
different subset of mounting tasks of the boards.

Each mounting device receives its own setup that defines
which mounting tasks can be processed by this device. Since
the devices are symmetrical feasible setups can be swapped
to other devices and they are still feasible. A specific setup
achieves different performance values in terms of the job pro-
cessing since the subsets of accessible mounting tasks are dif-
ferent for each mounting device.

The symmetrical part P; of the problem is the configura-
tion of the setups for the individual mounting devices while
the asymmetrical part P, is the distribution of the mounting
tasks to the devices.

The weak symmetry acting is the permutation of the setups
for the mounting devices since a feasible setup is feasible no
matter to which mounting device it is assigned.

S Handling Weak Symmetries
For the purpose of this paper we focus on the case that the
weak symmetry function acts like a permutation.

5.1 Standard Methods

Usually a problem that contains weak symmetries could be
decomposed in two independent subproblems whereby the
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solution of the first is input to the second. The advantage
of this method is that the weak symmetry in this case is a real
symmetry in the subproblem and can be broken. All symmet-
rical solutions can be derived explicitly in post-processing to
form the input for the second subproblem. The drawback is
that the first problem has to be solved exhaustively to get all
solutions before the second problem can be solved. But if one
is just interested in one solution that satisfies all constraints
(CSP) or the best solution that can be found in a specified
time (CSOP) this approach would not be suiting.

A different approach would be to have a framework that
supports several models and anytime a solution for the first
problem is found it is passed to the second model to find a
solution for it like ILOG OPLScript ([Hentenryck, Lustig,
1999]).

Both approaches would lead to a remodelling of the prob-
lem and either a special framework has to be used or the solv-
ing process is split since the solution of one problem has to
be post processed to form the new input.

The approach we suggest to handle weakly decompos-
able problems is using variable objects called SymVar. Us-
ing SymVars enables us to use standard symmetry breaking
methods without solving the first problem exhaustively and
without the need of a special framework.

This approach also means to remodel the problem but only
in the way of introducing new variables.

5.2 Breaking Weak Symmetries

The main problem in breaking weak symmetries is that the
knowledge about the symmetrical structure of P; can not be
exploited without losing solutions.

Since we are interested in symmetrical equivalents of a
feasible solution to P; we do not care for infeasible solu-
tions. An infeasible solution to P; is also infeasible to P
such that the state of infeasibility is preserved throughout the
search. Therefore all infeasible classes can be excluded with-
out doubt.

Moreover we are only interested in feasible solutions to P;
not in feasible partial solutions. Therefore it would be suffi-
cient to retrieve all symmetrical solutions of an investigated
feasible solution and exclude the paths to that solutions. That
means that we basically have to find only one representative
of a feasibility class. That is exactly what symmetry breaking
does.

So if we can retrieve all symmetrical solutions we can use
all known kinds of symmetry breaking.

To retrieve all symmetrical solutions we use SymVars that
state which symmetrical equivalent of a solution we consider
further for Ps.

6 The SymVar Concept

The main problem in handling weak symmetries is to receive
all symmetrical solutions (once a solution is found) without
searching in the symmetrical branches of the search tree.

To achieve this we introduce additional variables that act as
an interface to the symmetry of the problem. These variables
are the SymVars.

Formally the original problem description P is changed to
P’ which splits in the subproblems P, Psym, and Pj.
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P isextended to P; by adding the symmetry breaking con-
straints. Py, contains the SymVars and the constraints for
the SymVar assignment. In fact the weak symmetry function
is expressed by the constraints of Py, .

P, is changed to P in the way that instead of the values
for the variables of P| the symmetrical equivalents expressed
by the variables of Pj,,, are considered.

Psym = (Xsym, Csym) consists of the variables X, =
{ @40+ 1 y%s, } and the consiraints Gy = {€5,5.+ - - 165, } Of
the form ¢(zs, , ..., s, ).

P; consists of the variables X = {z¢y1,...,Zn}
and the constraints C; = {¢{q,...,¢p}, of the form
c(Sym(di),...,Sym(de), Teg1,-- ., Tn).

Sym(dy), ..., Sym(dg) is a symmetrical solution — deter-
mined by the value assignment of the SymVars — of the con-
crete values for the variables x4, .. ., z;.

That means that the difference between c; and c” is that
the concrete values of the variables of X; are changed to a
symmetrical value assignment. Which symmetrical values as-
signment that is, is determined by the values of the variables
of Xsym.

Definition 3 (Symmetry Variable (SymVar))
The variables of X gym are the SymVars. Each SymVar is a
copy of a set of variables of the symmetrical problem Py. The
set of SymVars represents all variables of the problem P;.

A value assignment of the SymVars represents a symmetri-
cal solution for the variables of the problem P;.

Therefore the symmetry of the problem acts on the SymVars
rather than on the initial variables X; such that the symmetry
on the initial variables is broken.

An instance of a SymVar corresponds to a set of variables
of P, forming a specific object in the model.

In the weighted n-Queens problem this object would be a
single queen while in the time-based rack configuration prob-
lem it would be a whole rack and its included electronic cards.
In the last context a value assignment to a SymVar that repre-
sents a specific rack would assign this rack to a specific time
slot.

In case of the example from automated manufacturing from
Page 4 a mounting device would be the corresponding object.
A specific SymVar would in this case correspond to a specific
setup for a mounting device while the value of the SymVar
indicates to which specific mounting device this setup is as-
signed.

A permutation of the SymVar represents now a permuta-
tion of the variable assignments for the mounting devices.
Therefore the symmetry of the mounting devices — the per-
mutation of the devices — can be broken since all symmetrical
solutions can be derived by the instantiations of the SymVars.
The symmetry acts now only via the SymVars and is broken
on the initial variables V;.

6.1 Ordering Heuristics for Py,

The gain in using SymVars is that once a feasible solution
to Pj is found all symmetrical solutions can be found just
by solving Py, and therefore the symmetry in P; can be
broken.
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When the SymVars assignment is infeasible for P or an-
other solution is to be evaluated, a different solution of Py,
is considered.

Basically this means that each solution of Pk, has to be
considered since it may yield a different solution for Pj.

But depending on the problem and scenario not all sym-
metrical solutions have to be considered. Propagation can
still take place and therefore ordering heuristics can be used
to guide the search. In the automated manufacturing problem
(Page 4) it would be a good idea to assign a setup to a mount-
ing device such that as many mounting tasks as possible are
visible.

In case of optimisation a good solution may rule out many
other such that a great deal a symmetrical solutions can be
pruned very early. _

Ordering heuristics depend very much on the problem itself
and finding a good one is still a crucial task.

But to our best knowledge there are no limitations in terms
of using ordering heuristics.

6.2 Trade off in Using SymVars

Since P’ contains more variables than the original problem P
it means basically that it takes more variable assignments. In
fact the height of the tree to make up a solution is greater than
the height of the tree in P.

On the other hand, since the weak symmetry is broken in
P’ the width of its search tree is lesser than the width of P.

Depending on the problem, the instance, the symmetry and
the scenario, SymVars may or may not lead to speed up in the
search for better solutions.

Disadvantage Scenario

Consider a CSP where the first found solution of P; does not
lead to a feasible solution of P’ and propagation is unable
to prune efficiently. That would mean that all symmetrical
solutions of P| will be considered without finding a feasible
solution.

The standard approach does not consider the symmetrical
solutions necessarily and therefore it could happen that the
it finds a feasible solution while the SymVar approach still
considers the symmetrical solutions.

Advantage Scenario

Consider an optimisation problem with a given computational
time limit and consider further that the solution space is rather
sparse but propagation can not prune effectively. Consider
further that it is rather difficult to find a solution to P; but
very easy to find a solution to P,.

The standard approach would invest much time in search-
ing a feasible solution to P; potentially wasting much time
with the unbroken weak symmetry. Even if a solution is found
it could take a long time until the next is found because of the
sparse solution space. Therefore it is likely that this approach
does not find many solutions within the given time limit.

In the SymVar approach — once a solution for P is found
— the whole equivalence class to this solution is at hand via
the SymVars. Since it is easy to solve P, many solutions are
at hand. Therefore this approach is more likely to find many
solutions within the given time limit increasing the chance of
finding a good solution.
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7 Examples using SymVars

In this section we provide insight to the usage and construc-
tion of SymVars for some problem descriptions.

7.1 Weighted n-Queen Problem with SymVars

In the weighted n-queen problem a SymVar represents a sin-
gle queen. Since a geometrical symmetry is more compli-
cated in comparison to a permutation, the SymVars act in a
different way: A value assignment for a specific SymVar de-
termines which symmetrical value its corresponding queen
has (suppose each queen denotes a column) as well as its col-
umn on the chessboard. That means that the row value as well
as the column representation are subject to the symmetry.
Example:

Consider the diagonal flip the symmetry function. That
means that a queen on column ¢ with row value j is translated
to column 5 and row <.

The problem P’ consists of the following parts:

P/ is just the n-queen problem extended by the symmetry
breaking constraints for the diagonal flip.

Psym consists of determining the symmetrical solutions
(which in this case is the identity and the diagonal flip).

Pj consists of the problem for determining the objective
value whereby the symmetrical values determined by Pgym
are considered (instead of the values determined by P;).
Pyyr, is realised by

sym = {(Ilsym: was ’(Insym} and

sym_— {(qisym=(li)! 1<:<nV (qisym = jlqj = i)v 1<
1 <n}.

Since the diagonal flip contains only two different values
the constraint in Cly,, just states these two symmetrical val-
ues as feasible.

It’s also possible to break the other symmetries of the prob-
lem like rotations and any combination thereof. They just
have to be incorporated in Clsy,.

7.2 Automated Manufacturing — Revisited

We consider again the automated manufacturing problem
from Page 4 and investigate how SymVars could be used to
break the weak symmetry.

P still consists of the setup configuration part such that
the task is to find a feasible setup for the mounting machine.
In addition the symmetry of the permutation of the setups is
broken.

Each setup for a mounting device is represented by a Sym-
Var, such that its position on the machine is not determined
yet. The task for Pk, therefore is to find a permutation of
the setup delivered by PJ on the machine. This can be easily
done by stating an alldifferent constraint on the SymVars.

The task of Pj is to find a mounting task distribution based
on the permuted setup delivered by Fsy,, and compute the
processing time for this distribution.

When an optimal distribution for this setup is determined a
different permutation is considered for Pj.

7.3 Variation of the Problem

Following we will consider a variation of the above problem.
The subproblem P itself is hard to solve and finding an op-
timal distribution comprises a lot of work. There exists an
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algorithm that solves the problem by using a network flow
as core algorithm but the runtime is also exponential.> But
since we want to investigate the usage of SymVars we focus
on solving P; and choose a heuristic for P;.

Our studies on the problem indicate that good solutions
for P, can be found for a setup with a high visibility of the
mounting tasks. Therefore the problem P is to find a feasible
machine setup and maximise the number of visible mounting
tasks. That means that the task for P; is just to compute the
number of visible mounting tasks for the setup.

Given are:

e avariable matrix A™*™ (representing the mounting ma-
chine, whereby n represents the number of mounting de-
vices and m represents the number of component con-
tainer that can be assigned to each device)

e a number ¢ of different types (representing the compo-
nent types)

e n x mvalues dy,...,dpxm € [1,...t] that have to be
assigned to A (representing the component container)

e a matrix V"*? (representing the number of mounting
tasks for each component type that are processable on
each mounting device)

e several sets containing values in [1,...¢t] (representing
the tool types)

Objective: Find a distribution of the values v1, ..., Upxm tO
the matrix A such that the number of processable mounting
tasks is maximised:

JEERS Z(colel..n,rowel..m) V[COZ’ A[’I‘O’U), COl]]
Constraints:

e several types cannot be assigned simultaneously. This
means that all values in a column must be in the same
compatibility set

e the values in each column must be all different

Since the order in which the values are assigned in a col-
umn does not matter the values can be ordered increasingly
breaking the row symmetry.

Using SymVars
P, is extended to P| by adding the column breaking con-
straints.

Pyym consists of

Koy = {051, o5, 008} € {1, o0} and

Csym = {alldif ferent(posi, ..., posn)} .

Each SymVar pos;, 1 < i < n represents its corresponding
column % and therefore the values assigned to this specific
column in P]. A value assignment pos; = j then yields, that
the values of column 7 are permuted to column j.

Pj determines the objective value and consists of

X5 = {obj} and

02 = {Obj = Z(colel..n,rowel..m) V[COZ’ A[pOSCOI’ ’I‘O’U)]]}

3See [Gaudlitz, 2004] and [Tazari, 2003] for an implementation
of the algorithm.
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Preliminary Results

We generated several small instances of the problem to in-
vestigate the power of using SymVars. We used matrices of
several sizes ranging from 5 X 6 to 5 x 10 and different number
of types for the values. We also set a time limit of 20 minutes
for the search and compared the results of the naive model
with the one that uses SymVars. We used ILOG OPL Studio
3.7 to do the computation on a Pentium 4 with 3.2 GHz and
512 MB RAM.

The results (although preliminary) were very encouraging.
In all instances the SymVars approach did find the first solu-
tion in less time compared to the naive approach. Even if the
objective value was lesser for the SymVars approach on this
first solution, another solution could be found (in the same or
lesser time that it took the naive approach to compute the first
solution) with a objective value that was better (sometimes up
to 20 %) than the solution of the naive approach. Even more
encouraging was that for all instances the objective value of
the SymVar approach was even or much much better than the
objective value of the naive approach and mostly the compu-
tational time was just a fraction of the solving time for the
naive approach.

For example in an instance where A has the dimensions
5 x 10 the naive approach did find a first solution with objec-
tive value 230 after 256.7 seconds and found the best solution
with objective value 257 after 580.2 seconds. The SymVar
approach found its first solution with objective value 233 af-
ter 0.218 seconds, found its seventh solution with objective
value 265 after 2.812 seconds and its best solution with ob-
jective value 276 after 305 seconds.

This small example shows that the Sym Var approach seems
to be very promising and that it is especially useful for time
bounded optimisation.

8 Outlook

We introduced the weakly decomposable problem definition,
the weak symmetry definition and delivered some extensions
of well examined standard problems that contain weak sym-
metries.

We also introduced SymVars that represent symmetrical
solutions of a subproblem with the consequence that the sym-
metry can be broken on the subproblem.

In addition we presented some problems where SymVars
are applied and delivered preliminary computational results
for on problem that were very encouraging.

An open question is whether there are other scenarios,
where weak symmetries play a vital role and whether they
can also be handled there in the way we introduced.

If the weak symmetry does not preserve the state of fea-
sibility for the whole problem then there should be ordering
heuristics such that not all n! permutations have to be consid-
ered (in the case the symmetry is a permutation). Developing
such heuristics would also be very interesting.
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Abstract

We introduce two hybrid method of GAP-SBDS
and GAP-SBDD; SBDS+D and SBDD+S. The im-
plementation of these hybrids comes from a com-
parison of GAP-SBDS and GAP-SBDD, which
concludes that combing the methods may produce a
more efficient symmetry breaking method than ei-
ther of the two methods alone. SBDS+D allows
the user to change from SBDS to SBDD, at any
depth in the search tree, SBDD+S allows the oppo-
site change from SBDD to SBDS. Experimentally
we show that SBDD+S is an incomplete symme-
try breaking method, which is less efficient than ei-
ther GAP-SBDS or GAP-SBDD alone. Before pre-
senting SBDS+D, which is a complete symmetry
breaking method; that can outperform both GAP-
SBDS and GAP-SBDD on a range of problems
with different types of symmetry.

1 Introduction

Constraint Satisfaction Problems (CSPs) are often highly
symmetric. Symmetries may be inherent in the problem, as
in placing queens on a chess board that may be rotated and
reflected. Additionally the modelling of a real problem as a
CSP can introduce extra symmetry: problem entities which
are indistinguishable may in the CSP be represented by sepa-
rate variables leading to n! symmetries between n variables.

Definition of Symmetry Given a CSP L, with a
set of constraints C, a symmetry of L is a bijective
function f which maps a representation of a search
state « to another search state, so that the following
holds:

1. If « satisfies the constraints C, then so does
(@)
2. Similarly, if a is a no-good, then so too is

fla). [13]

Symmetries can give rise to redundant search, while search-
ing for solutions a partial assignments may be considered
which is symmetric to one previously examined. If a partial
assignment does not lead to a solution, neither will any sym-
metric assignment, and if it does lead to a solution, the new
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solution is symmetrically equivalent to one already found.
To avoid this redundant search constraint programmers try
to exclude all but one in each equivalence class of solu-
tions. Many methods have been developed for this purpose.
Two of these methods for symmetry exclusion which oper-
ate during search are, symmetry breaking during search [1;
10], and symmetry breaking via dominance detection [3;
5]. More recently, computational group theoretic versions of
these methods have been devised, namely GAP-SBDS [8] and
GAP-SBDD [9].

Symmetry breaking during search (SBDS), was developed
by Gent and Smith [10], having been introduced by Backofen
and Will [1]. The search tree is built from decision points,
where a decision point has two possible choices; either as-
sign a value to a variable, or do not assign that value to that
variable. When a decision point is first reached during search
a value is assigned to a variable; if at a later stage in search the
decision point is revisited then a constraint is imposed that the
variable should not have the previously assigned value. SBDS
operates by taking a list of symmetry functions (provided by
the user) and placing related constraints when backtracking
to a decision point and taking the second branch.

A feature of SBDS is that it only breaks symmetries which
are not already broken in the current partial assignment: this
avoids placing unnecessary constraints. A symmetry is bro-
ken when the symmetric equivalent of the current partial as-
signment is not consistent with that assignment. The follow-
ing expression explains how SBDS works:

A & g(A) & var # val = g(var # val)

where A is the partial assignment made so far during search,
g(A) is the symmetric equivalent of A and var # wval is
the symmetrical equivalent to this failed assignment. If A
is the current partial assignment and we have established that
var # wval, we need to ensure that we are dealing with an
unbroken symmetry, so we check that g(A) still holds. Then
to ensure that the symmetrically equivalent subtree to the cur-
rent subtree will not be explored, the constraint g(var # val)
is placed. An SBDS library is now available in the ECL'PS®
constraint programming system [2]. As previously men-
tioned, SBDS requires a function for each symmetry in the
problem describing its effect on the assignment of a value to
a variable. If these symmetry functions are correct and com-
plete, all the symmetry will be broken; as a result of this only
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non-isomorphic solutions will be produced. Although SBDS
has been successfully used with a few thousand symmetry
functions, many problems have too many symmetries to al-
low a separate function for each.

To allow SBDS to be used in situations where there are
too many symmetries to allow a function to be created for
each, Gent et. al. [8] have linked SBDS in ECL{PS® with
GAP (Groups, Algorithms and Programming) [7], a system
for computational algebra and in particular computational
group theory (CGT). Group theory is the mathematical study
of symmetry. GAP-SBDS allows the symmetry group rather
than its individual elements to be described. GAP is used
when a value is assigned to a variable, at a decision point, to
find the stabiliser of the current partial assignment, i.e. the
subgroup which leaves it unchanged. Then if the decision
point is revisited on backtracking, the constraints are dynam-
ically calculated from the stabiliser and placed accordingly.
GAP-SBDS allows the symmetry to be handled more effi-
ciently than in SBDS; the elements of the group are not ex-
plicitly created which is akin to what the symmetry functions
represent in SBDS. However, there is an overhead in commu-
nication necessitated between GAP and ECLPS®.

Symmetry Breaking via Dominance Detection (SBDD) [3;
5] performs a check at every node in the search tree to see if
itis dominated by a symmetrically equivalent subtree already
explored, and if so prunes this branch. In SBDD, the domi-
nance detection function is based on the problem symmetry
and is hard-coded for each problem. This means in practice
SBDD can be difficult to implement, as the design of the dom-
inance detection function may be complicated; the user has to
ensure that all the symmetry of the problem is incorporated
within the function to enforce full symmetry breaking.

Gent et. al. [9] have recently developed GAP-SBDD, a
generic version of SBDD that uses the symmetry group of
each problem rather than an individual dominance detection
function and links SBDD (in ECL!PS®) with GAP. At each
node in the search tree, ECL'PS® communicates the details
of that node to GAP, and GAP returns false if dominance has
been detected and that branch can be pruned, or true other-
wise. Occasionally full dominance is not detected but there
are variable/value pairs which are easily detected as being el-
igible for domain deletion; at which point GAP returns true
followed by a list of variable/value pairs for which this is the
case. ECL*PS® removes these values from the corresponding
variables domains before search continues.

In this paper we compare GAP-SBDS and GAP-SBDD us-
ing ‘Graceful Graphs’ as our motivating example. This study
leads us to an analysis of exactly how the methods differ.
We use this analysis to create hybrid methods of GAP-SBDS
and GAP-SBDD. Before comparing our new SBDS+D and
SBDD+S methods to both GAP-SBDS and GAP-SBDD, pro-
ducing favourable results in the case of SBDS+D.

2 Comparison of SBDS and SBDD

Limited past work has been conducted comparing GAP-
SBDS and GAP-SBDD. Harvey [11] studied the algorithms
theoretically to draw the conclusion that SBDS and SBDD
are closely related; the difference is where in the search tree
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Figure 1: Graceful Labellings of K5 x P, and the Double
Wheel DWj5

and how, symmetry breaking is enforced. Gent et. al. [9]
compared GAP-SBDS and GAP-SBDD applied to instances
of the balanced incomplete block design (BIBD) problem
and showed that GAP-SBDD could solve much larger probl-
ems, and was faster than GAP-SBDS on the smaller problems
which both could solve. They surmised this was due to the
communication overhead between GAP and ECL?PS®, the
overhead in GAP-SBDD in only returning a true or false an-
swer, is less than that of GAP-SBDS where fairly complicated
constraints have to be placed. Petrie and Smith [15] investi-
gated symmetry breaking in the Graceful Graphs problem,
where they found GAP-SBDS to outperform GAP-SBDD on
all instances. In this section we perform further analysis on
this problem.

2.1 Graceful Graphs

The Graceful Graphs problem: A labelling f of the vertices
of a graph with ¢ edges is graceful if f assigns each vertex
with a unique label from {0,1,...,q} and each edge zy is
labelled with |f(z) — f(y)| the edges are all different [6].
(Hence, the edge labels are a permutation of 1,2, ..., ¢.) Fig-
ure 1 shows two examples. Lustig and Puget [12] give a co-
nstraint model for finding a graceful labelling of the graph
Ky x P,.

A basic CSP model has a variable for each node
T1,%2, ..., Tn, €ach with domain {0,1, ...,q} and a variable
for each edge di,dy, ..., d,, each with domain {1,2,...,q}.
The constraints of the problem are:

1. If edge k joins nodes i and j then dy, = |z; — z;|.
2. 21,29, ..., T, are all different.
3. d1,dy, ..., dq are all different.

ECLPS® provides two different levels of propagation for
the alldifferent constraint. It can either be treated as a set
of binary # constraints or as a global alldifferent which has
higher propagation. We use the global alldifferent on the
edge variables and the binary # version on the node variables.
They are treated differently because the values assigned to the
edge variables form a permutation and hence give more scope
for domain pruning than the node variables, which have more
possible values than variables. The node variables are used
as the search variables as they are the simplest set to consider
symmetry breaking over. More information on the modelling
of this problem and the symmetry group can be found in [15].

The graph Ky x P, shown in figure 1, consists of two
copies of Kj5, with corresponding vertices in the two cliques
forming the vertices of path P;. The symmetries of Ky x P
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BT ECL'PS® GAP  Total

time time time

GAP- K3 x Py 13 0.23 0.50 0.73
SBDD Kyx Py | 173 7.18 2.72 9.90
Ky x Py | 4402  337.69 88.20 426.89

GAP- K3 Xx Py 9 0.20 0.33 0.53
SBDS K4 x Py | 165 7.15 1.35 8.50
Ky x Py | 4390 352.10 36.61 388.71

Table 1: Comparison of GAP-SBDS and GAP-SBDD show-
ing backtracks (bt) and the time (in seconds) for finding all
graceful labellings of K3 x P, K4 X P, K5 X Ps.

are first any permutation of the 5-cliques which act on both
in the same way. Second, inter-clique symmetry: all the node
labels in the first clique can be interchanged with the labels of
the adjacent nodes in the second. Third, complement symme-
try: we can replace every vertex label z; by its complement
n — @;. These two graph symmetries and the complement
symmetry can be combined with each other. Hence, the size
of the symmetry group is 5! x 2 x 2. In general K, X P
graphs have a symmetry group of size m! x 2 x 2. In this
study we will concentrate on symmetry breaking in 3 such
graphs, namely K3 x Pa, K4 x P and K5 X P5. The results
of finding all graceful labellings of these graphs using either
GAP-SBDS or GAP-SBDD can be found in table 1. All ex-
periments throughout this paper are run on a 1.6GHz Pentium
4 processor with 512MB of memory, using ECL{PS® version
5.7 and GAP version 4.2. Analysing the results in table 1 we
can see that GAP-SBDD is slower than GAP-SBDS for all in-
stances.! Experiments have shown these results to be general
for all graphs, these results are documented in [14].

2.2 Analysis

We have analysed the difference between GAP-SBDS and
GAP-SBDD for the three graphs K3 x P, K4 X Py and
K5 x P,. The reason for the different times is consistent,
but for reasons of simplicity only the results for K3 x P,
are presented here. A diagram of K3 X P> can be seen in
figure 2, for ease of reference the node variables are named
in capital letters, and the edge variables with a letter pairing
corresponding to their attached nodes.

Figure 2: Graph K3 x P, showing node variable and edge
variable naming

!"These results differ from those presented in [14] as GAP-SBDD
has since been updated for efficiency and now provides more domain
removals

We began analysing where GAP-SBDS and GAP-SBDD
differ, by finding where the first difference in the search tree
occurs. In finding all graceful labellings of K3 x P, this ac-
tually happens quite late in the search, after the first two solu-
tions (from a possible 4) have been found. Of note is the fact
that the backtrack count in table 1 refers to deep-backtracks.
A deep-backtrack is when the search has moved passed a
point it later has to revisit. A shallow-backtrack is where the
var = val branch has been tried, and due to propagation of
that choice reversed in favour of the var # val branch. The
number of deep-backtracks is the standard backtrack count
in most constraint programming environments, so eases the
comparison of methods across environments, but perhaps in
this case it does not show the most accurate picture of a search
tree. This is important when studying GAP-SBDS, as every
time the var # wval branch is followed, symmetry breaking
constraints can be placed.

Looking more closely at the branch of the search tree
where the first difference occurs (this can be found in figure
3) shows that GAP-SBDS enables earlier pruning than GAP-
SBDD. This pruning happens after setting C = 5. GAP-
SBDS immediately reverses from this decision to follow the
C # 5 branch, whereas GAP-SBDD carries on from here to
set E = 1, and ends up performing a deep-backtrack back to

this point later on in search.
To understand why this difference occurs we have to look

into the variable propagation. In the first instance both GAP-
SBDS and GAP-SBDD perform propagation over the cur-
rent partial assignment, in conjunction with the problem con-
straints. Past this point GAP-SBDS, propagates any symme-
try breaking constraints previously employed on this branch.
The two that are vital in this case are a combination of the
graph symmetry and the complement symmetry for B # 1:
namely E # 8 and F' # 8. These extra constraints are placed
on the node variables, but they provide extra information for
propagation to occur on the edge variables as well. As we
have already discussed, the values assigned to these variables
form a permutation giving the alldifferent constraint more
scope for pruning. This added propagation causes C = 5
to fail and the alternative path to be followed.

In contrast to this, GAP-SBDD just returns a boolean to
indicate whether the current node is dominated or not, and
possibly a list of values to prune from the domains of specific
search variables. In the current implementation, the only vari-
able/value pairs returned for domain pruning are, when the
variable is the only one in the current partial assignment not
to cause domination to be detected. So in this case E/8 and
F/8 are not returned. This successfully breaks the symmetry
and prunes the search tree, but it does not provide informa-
tion that can propagate on any non-search variables, in this
case the edge variables. Further details of these experiments
and analysis can be found in [14].

3 Combining SBDS and SBDD

The fact that GAP-SBDD returns limited information to
ECL?PS® allows GAP-SBDD to solve much larger problems
than GAP-SBDS as found by Gent et. al. in there BIBD ex-
periments [9]. However our experiments and analysis have
shown the disadvantage of this reduced communication. We
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GAP-SBDS

Key:

a deep-backtrack was made at this point

A=0

GAP-SBDD

decision made due to propagation, deep-backtrack commences above

Figure 3: The search tree branch where GAP-SBDS and GAP-SBDD differ

have found that the constraints which GAP-SBDS places dur-
ing search are adding information to the problem, and for
some problems this can cause an increase in propagation.
These observations led us to implement hybrid algorithms
SBDS+D and SBDD+S, which combine the advantages of
both methods.

When using either GAP-SBDS or GAP-SBDD, the meth-
ods are called at each node on the search tree, so the sim-
plest way to combine the methods is to have different meth-
ods called at different nodes. This avoids duplicating any of
the symmetry breaking effort. In SBDS+D we perform SBDS
to a given depth in the search tree before switching to SBDD,
in SBDS+D SBDD proceeds SBDS. This allows us to use
SBDS at either the root or leaf nodes long enough to aid prop-
agation before or after switching to/from the more efficient
SBDD. In order to implement this change, two further param-
eters method and level are added to the symmetry breaking
module. The method (either SBDD or SBDS) is started from
the depth indicated by level in the search tree, with the other
method operating until this level i.e. method = SBDD and
level = 1 would perform SBDD on the entire search tree,
method = SBDD and level = 2 would perform SBDS+D
switching to SBDD from level 2. Figure 4 shows how this
switch works at some other depths in the search tree.

SBDS SB)

S

method = SBDD
level=3

SBPD

4
SB&)S

method = SBDS
level =4

Figure 4: Various arrangements of method and level using
algorithm SBDS+D and an SBDD+S respectively
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Both the SBDS+D and the SBDD+S methods called at
each node in search, operates the correct symmetry break-
ing method at the current depth. GAP-SBDS and GAP-
SBDD operate on different properties of the symmetry group,
we update the group information for both properties at each
node. This allows the methods to be interchanged at a later
point in search without the overhead of calculating symmetry
data on any nodes visited previously on the search tree, but
does provide an overhead over GAP-SBDS or GAP-SBDD
alone. This interchanging can be done on backtracking, if
we backtrack back past level as well as while forward search-
ing. Throughout this paper we refer to the components of
SBDS+D and SBDD+S as SBDS or SBDS as although they
both utilise group theory, they no longer completely follow
the GAP-SBDS and GAP-SBDD algorithms. The algorithm

for this method is outlined in full.
A point to note (from the algorithm) is that in SBDS assert-

ing var = wal does not necessitate any symmetry breaking
as it is all performed on the var # wal branch, whereas in
SBDD both the var = val and var # val cases are checked
for domination. This means that SBDD works actively to
break symmetry at all nodes, whereas SBDS just operates ac-
tively on a small subset.

4 SBDD before SBDS

The SBDD+S algorithm is an incomplete symmetry break-
ing method, by this we mean that it does not return only the
non-isomorphic solutions. Performing SBDD at the top of the
tree, performs a check to see if any of the nodes previously
visited dominate the current node. At the required level in the
search tree SBDS places constraints on backtracking to break
the symmetry after the current depth. This combination does
not give complete symmetry breaking.as there is no mecha-
nism to stop branches symmetric to those explored when per-
forming SBDD, being chosen later in the search tree where
SBDS is the chosen method. This method is a partial symme-
try breaking method. McDonald and Smith [13] performed
experiments using a subset of the total symmetries for each
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SBDS+D;D+S(A, Var, Val, Method, Level)
assert(Var = Val)
Depth is Current_Depth + 1
update_sbds_info(Var,Val) in GAP
update_sbdd_info(Var,Val) in GAP
if (Method = SBDS and Level > Depth) or
(Method = SBDD and Level < Depth)) then
if Var = Val is true then
no symmetry breaking
else
retract(Var = Var)
get non_broken_symms from GAP
for g in non_broken_symms do
assert(g(A) = g(var # val))
end do
end if
else
get is_node_dominated(Bool, Removals) from GAP
if (War = Val is true) and (Bool = false)) then
reduce_domains(Removals)
dominance_check_partial_assignment
else if (Var = Val is false) and (Bool = false)) then
retract(Var = Val)
reduce_domains(Removals)
dominance_check_partial _assignment
else
dominance detected so backtrack
end if
end if

The SBDS+D and SBDD+S algorithm

problem with SBDS. They found that each symmetry has an
overhead, so there is an optimum number to place for symme-
try breaking in order to get the maximum gain in efficiency
to solve the problem. In our method we are placing less sym-
metry breaking constraints than if we were performing pure
SBDS, but still place a subset which will aid propagation.

We have undertaken experiments on the graceful graphs
problem, to see how our method performs. Plots of exper-
imental data showing number of solutions against level of
change from SBDD to SBDS, indicate the amount of symme-
try broken at each level. Plots of backtracks against level of
change, indicate the search effort associated with each level.
This data is found in figure 5 and figure 6 for graceful la-
bellings of K3 x P, and K4 X P, respectively.

The data point at level = 1 on the plots shows the results
for performing SBDS on the entire tree. Studying the first
plot in both figures 5 and figure 6 we can see that K3 X P
has 4 and K4 x P, has 15 non-isomorphic solutions. Per-
forming SBDD from level = 2 causes a dramatic rise in the
number of solutions, which peaks at level = 3 before slowly
decreasing. This dramatic rise is due to the fact that if using
GAP-SBDS when backtracking past the root node in a search
tree none of the symmetry is broken in the current partial as-
signment so a symmetry constraint is placed for every one of
the problem symmetries, which can rule out a vast number
of branches from being followed later in search. The slow
decrease after the plots peak is because SBDD is conduct-
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ing symmetry breaking on more of the tree as the level which
SBDS enters at decreases, until a level which finds only the
non-isomorphic solutions is reached. At this level, which is
lower for K4 x P, than K3 x P, due to the increased num-
ber of search variables, the depth in the search where SBDS
would be triggered is never reached so full symmetry break-
ing is conducted by SBDD.

Studying the second graph in both figure 5 and figure 6 we
see that the number of backtracks, and hence the amount of
search undertaken, rises in proportion to the number of solu-
tions at each level. The total running time also rises in propor-
tion to the number of backtracks. Using SBDD+S never per-
forms better than GAP-SBDD or GAP-SBDS alone. These
results have been verified on other graceful graphs and on
other problem classes.

5 SBDS before SBDD

The SBDS+D algorithm is a complete symmetry breaking
method. SBDS operates at the top of the tree at and near
the root node, at this level few decisions have been under-
taken which could break symmetry; so if we backtrack past
these nodes constraints to break a large percentage of the total
problem symmetries can be placed. The propagation of these
constraints can reduce branches being explored in the search
tree, hence they can cut down the number of failed variable to
value assignments. It is worth noting here that SBDD only re-
turns candidate values for domain removal for decisions that
if were to be the next decision in the search tree would cause
dominance to be detected. Hence early in the search tree there

"SBDSK3p2sols dat’ —+—

sols
»
b

Figure 5: Plots of K3 x P» showing depth of change from

SBDD to SBDS against number of solutions and number of
backtracks respectively.
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Figure 6: Plots of K4 x P, showing depth of change from

SBDD to SBDS against number of solutions and number of
backtracks respectively.

are unlikely to be any of these domain removal values to be
returned, so the use of SBDD at this point would not aid co-
nstraint propagation. Later in the tree we change from SBDS
to SBDD, which performs the faster dominance check at each
node. In doing so SBDD checks all solutions for dominance
by a previous solution, ensuring only the non- isomorphic so-
lutions are returned.

We have performed experiments with SBDS+D on various
problems, with various ‘types’ of symmetry groups. The re-
sults of these experiments have shown that SBDS+D, can do
better than GAP-SBDD or GAP-SBDS alone.

S.1 Graceful Graphs

The graceful graphs problem, as we have shown, is a prob-
lem where GAP-SBDS operates more efficiently than GAP-
SBDD. This is due to the fact that the search variables are not
the most constrained variables, and the symmetry breaking
constraints placed by SBDS propagate with these non-search
variables. GAP-SBDD performs a more efficient symmetry
check at each node than GAP-SBDS. So we experimented
with SBDS+D to see whether the extra propagation of SBDS
combined with SBDD will produce a better symmetry break-
ing method for this class of problems. We are also interessted
to see at which level this will happen. Figure 7 and figure 8
show plots of K3 x Py and Ky x P, respectively showing
backtracks and time against level of change from SBDS to
SBDD.

The data point at level = 1 on the plot represents per-
forming GAP-SBDD on the entire search tree. Studying the
first plot in both figure 7 and figure 8, we see the backtrack

count for GAP-SBDD alone is 13 and 173 for K3 x Py &
K4 x P, respectively; at level = 2 this falls to 9 & 163 which
it then remains at for all subsequent levels. Using GAP-SBDS
K3 x P, & K4 x P, have 9 and 163 backtracks respectively.
By placing SBDS constraints at the root node the search ef-
fort of SBDS+D is equal to that of GAP-SBDS. Turning to the
time plots; the time for GAP-SBDD alone is higher than that
for any level of SBDS+D for both graphs labellings. The time
falls dramatically from level = 1 to level = 2 in K3 x P, and
to level = 3 in K4 x P», we then see a slight rise as the over-
head for placing SBDS constraints, while maintaining group
information for SBDD begins to take effect. The time de-
creases again as SBDS is used across a bigger proportion of
the search tree, until SBDD is never triggered. The symme-
try breaking is performed purely by SBDS at level = 10
for K3 x P, and level = 17 for K4 x P,. The total time
taken by SBDS+D is comparative to that taken by SBDS from
level = 5 for K3 X P, and level = 11 for K4 X P,.

5.2 N-Queens

The N-queens problem is to place N queens on an N x N
chessboard so that no queens can attack each other along a
horizontal, vertical or diagonal line. The symmetry group of
this problem comprises of the 7 board symmetries. It is an
example of a problem with a small symmetry group which is
the same order for any IN. This class of problems is more ef-
ficiently solved by GAP-SBDS than GAP-SBDD as the com-
munication overhead of GAP-SBDD is less than that of GAP-
SBDS, but the group theory calculations are more complex.
The results of applying SBDS+D to N-queens are in table 2.

T sBODRpb dat’ ——

°
~
-
@
®
3
sF
@
8

time
§ £ & 8 8 8 ¢ 8 8 3§ @

10 12 14 16 18 20
level

°
~
IS

Figure 7: Plots of K3 x P, showing depth of change from
SBDS to SBDD against number of backtracks and time (in
Ms) respectively.
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GAP- SBDS+D SBDS+D SBDS+D SBDS+D SBDS+D SBDS+D

SBDS level =1 level = 2 level = 3 level =4 level =5 level = 6
N | BT time | BT time | BT time | BT time | BT time | BT time | BT time
4 2 312 2 317 2 311 2 305 2 305 2 303 2 311
5 2 310 3 326 2 320 2 313 2 311 2 324 2 309
6 4 338 7 346 6 358 4 338 4 336 4 341 4 337
7 11 360 15 408 13 406 11 383 11 352 11 360 11 361
8 | 34 436 | 39 636 | 37 579 | 34 574 | 34 530 | 34 463 | 34 481
9 | 130 875 | 146 1379 | 137 1256 | 130 1130 | 130 1114 | 130 983 | 130 936
10 | 461 2496 | 505 4248 | 477 3674 | 462 3337 | 461 3387 | 461 3156 | 461 2873

Table 2: Comparison of GAP-SBDS and SBDS+D showing backtracks (bt) and the time (in Ms) for finding all N-Queens

solutions.
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Figure 8: Plots of K4 x P, showing depth of change from
SBDS to SBDD against number of backtracks and time (in
Ms) respectively.

Analysing the results for N-Queens we see that SBDS
is always faster and more efficient than GAP-SBDD alone
(SBDS+D & level = 1). The number of backtracks using
SBDS+D across all instances decreases to be the same as that
of GAP-SBDS as the level of change increases. The total
time for SBDS+D is always less than that of GAP-SBDD
and in the smaller cases can also be less than that of GAP-
SBDS. Continuing to increase the level further in SBDS+D
for N = 8,9 & 10 never decreases the time to bellow that
of SBDS. Overall, using SBDS+D decreases the search effort
and time in comparison to GAP-SBDD.

5.3 BIBDs

The computational version of the (v, b,r, k, \) balanced in-
complete block design (BIBD) problem s to find a v x b binary
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matrix such that each row has exactly 7 ones, each column has
exactly k ones and the scalar product of each pair of distinct
rows is A. The columns and rows of the matrix can all be per-
muted, giving the problem a symmetry group of size v! x bl.
Gent et. al. found GAP-SBDD capable of solving more in-
stances than GAP-SBDS; for the problems both could solve
GAP-SBDD was the more efficient method. Our experiments
(in table 3) compare GAP-SBDD across the whole problem
(SBDS+D with level = 1) against using SBDS just at the root
node (SBDS+D with level = 2). SBDS+D with level > 2
does not show any improvement over SBDS+D with level2
for all instances apart from (8,14,7,4,3), which has a larger
search tree than other instances.

Studying table 3 we see that by using SBDS to place sym-
metry breaking constraints at the root node, we have reduced
the number of backtracks in comparison to SBDD by 1, in
every instance. Given the small number of backtracks needed
to solve these instances, this is a reasonable reduction in
search. The solving time is also slightly reduced in every in-
stance apart from (8, 14,7, 4, 3), this instance requires plac-
ing SBDS constraints to a deeper level to show an improve-
ment, due to its larger search tree.

We can not solve some of the instances with SBDS+D that
SBDD alone can solve, such as the (6,20, 10, 3,4) and the
(7,21,6,2,1) instances, which have O(10%!) and O(10%3)
problem symmetries respectively. With such large symme-
try groups the communication overhead between GAP &
ECL*PS® required to place symmetries even at the root node
is too high. In the future we hope to remedy this situation

Parameters level =1 level = 2
v b » k X|BT time |BT time
7 7 3 3 1] 2 0.66 1 0.63
6 10 5 3 2| 3 1.90 2) 1.80
7 14 6 3 2| 8 59.72 7 59.25
9 12 4 3 1| 2 3.05 1 2.79
11 11 5 5 2| 3 15.79 2 15.47
8 14 7 4 3| 10 45038 | 9 46537
13 13 4 4 1| 2 23.17 1 21.67

Table 3: Comparison of SBDS+D with level 1 and
level = 2, showing backtracks (bt) and the time (in seconds)
for finding all BIBD solutions.
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by allowing the SBDS+D user to fix a maximum number of
constraints to be placed as well as a level in the search tree to
change symmetry breaking method.

The timings shown seem comparable with that of the
double-lex symmetry breaking method [4] where constraints
are placed to break symmetry before search commences.
Double-lex is an incomplete symmetry breaking method,
whereas our SBDS+D method guarantees only to return non-
isomorphic solutions.

6 Conclusion

We have compared the GAP-SBDS and GAP-SBDD symme-
try breaking methods; to conclude that although GAP-SBDD

has less of an ECLPS¢/GAP communication overhead than .

GAP-SBDS, the constraints GAP-SBDS places can cause it
to be a more efficent symmetry breaking method. In order to
combine the advantages of both methods we implemented hy-
brid methods SBDS+D and SBDD+S which allows a switch
between SBDS and SBDD, or vice versa, at a given depth in
the search tree.

Using SBDD+S is an incomplete symmetry breaking
method; our experiments found this to be worse than GAP-
SBDD or GAP-SBDS. In contrast, using SBDS+D is a com-
plete symmetry breaking method. We performed experiments
with SBDS+D on three problems, all with different symme-
try ‘types’. In the graceful graphs problem the symmetry is
more efficently broken by GAP-SBDS than by GAP-SBDD
due to the extra propagation of constraints. In this problem
SBDS+D breaks the symmetry comparably to GAP-SBDS
and more efficently than GAP-SBDD. The N-queens prob-
lem has a symmetry group of order 8 for all instances, a
small symmetry group is more efficently broken by GAP-
SBDS than GAP-SBDD; SBDS+D outperforms GAP-SBDD
in all instances and GAP-SBDS, for small values of N. The
BIBD has a large symmetry group so the symmetry is more
efficently dealt with by GAP-SBDD. The instances we could
solve with SBDS+D had smaller search trees than GAP-
SBDD and for all but one instance the total time was reduced.
Overall, our hybrid SBDS+D method compares favourably
with the use of either GAP-SBDS or GAP-SBDD, in nearly
all instances undertaken. This is a prelimenary study into this
new algorithm, more experiments have to be conducted be-
fore we can claim under which conditions SBDS+D will out-
perform GAP-SBDD or GAP-SBDS, but these inital results
show that it is a welcome addition to the suite of CGT dy-
namic symmetry breaking methods.
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Abstract

Symmetry breaking has led to huge improvements
in search performance, and has recently been the
subject of considerable research. The related con-
cept of dominance is even more powerful than sym-
metry, yet it has been relatively unused in Con-
straint Programming. This paper describes pre-
viously unexploited dominances for three well-
studied symmetric problems. Experiments show
the benefit of adding constraints to exclude both
symmetric and dominated solutions.

1 Introduction

A great deal of work has been done by the Constraint Pro-
gramming (CP) community in the area of detection and ex-
ploitation of symmetric search states. Informally, a pair of
search states s;, s; is symmetric if there is a validity preserv-
ing mapping between them. For each extension of s; (includ-
ing s; itself) there is a corresponding state that is an extension
of s; with the same validity. If the extension to s; is a (non-
)solution then so is the corresponding extension to s;. Obvi-
ously this relationship is bi-directional: if s; is symmetric to
s; then s; is symmetric to s;.

Dominance relations are a standard tool in the search for
optimal solutions to combinatorial optimization problems.
Informally, a dominance relation is a relation on a pair of
search states s;, s; stating that the best solution that is an ex-
tension of s; is no better than the best extension of s;. There-
fore only s; needs to be extended. There are two primary
differences between dominance relations and symmetry: the
cost function of the former and the bi-directionality of the lat-
ter. While symmetry has traditionally been applied in satis-
faction problems, we can easily model satisfaction problems
as having a cost function that is zero for any solution and infi-
nite for a non-solution. The bi-directionality can be dealt with
by adding constraints to enforce the anti-symmetric condition
of the dominance relation.

Even well-studied problems in the symmetry literature may
also contain unexploited dominances that can be used to sig-
nificantly improve search performance. Proll & Smith [16]
used the term pseudo-symmetry to denote the same weaken-
ing of bi-directionality. They added pseudo-symmetry break-
ing constraints to improve search in a template design prob-
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lem. Getoor et al. [12] added domain-specific redundant con-
straints to remove sub-optimal solutions from online schedul-
ing problems. Gent et al. [10] recently added constraints to
the Graceful Graphs problem to exclude dominated solutions.
But despite these examples, dominance has been far less ex-
ploited than symmetry in CP.

With the aim of stimulating further research in this area, we
present three case studies using symmetric problems from the
CP literature. Section 2 provides some background. Section
3 studies the Maximum-Density Still Life problem, Section
4 Steel Mill Slab Design, and Section 5 Peaceable Armies of
Queens. Section 6 concludes the paper. All our experiments
are performed on a 733 MHz Pentium IL

2 Dominance Relations and Symmetry

Ibaraki [14] provides a formal definition of dominance rela-
tions to find a single optimal solution.! Assuming a standard
constructive tree search as in common in CP, let S be the set
of all search states, and let f(s) be the minimum cost feasi-
ble solution that is an extension of the search state, s € S.
If s is infeasible then f(s) = co. A dominance relation is a
binary relation < on search states that satisfies the following
conditions:

o 5; X s; implies f(s:) < f(s5)

e = is a partial ordering: transitive, reflexive, and anti-
symmetric

e s; = s; As; # s; implies that there exists some ex-
tension s; of s; such that for all extensions sjs of sj,
Syt X S N\ Sy 7_4 St

The anti-symmetric requirement means that if f(s;) =
f(s;) and s; # s; then only one of s; X s; or s; = 8;
can hold. In that case, a simple way to tie-break is to allow
si X s; if s; was found before s; in the tree search.

As an example of dominance relations, Ibaraki uses the
(now) familiar 8-queens where the dominance relation s; =
s; holds if and only if the patterns represented by the search
states are isomorphic and s; was found before s;.

'Ibaraki presents alternative conditions for finding all optimal
solutions, while another condition that we do not discuss here arises
from technical aspects of branch-and-bound search.
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Because an explicit relation on all pairs of search states is
impractical, dominance relations are often based on proper-
ties of the search states. That is, a property X is identified and
it is proved that search states with X dominate search states
without X. For example, in job shop scheduling, solutions
which are “semi-active” have been shown to dominate non-
semi-active solutions and a common heuristic searches only
for semi-active solutions [7]. We will follow this property-
based approach.

Suppose that we are able to identify a property P of a
search state with the following attribute: if there exists a so-
lution satisfying P then there also exists at least one solution
satisfying —=P. This is a one-way relationship because the
existence of a solution satisfying —P need not imply the ex-
istence of a solution satisfying P. However, by only consid-
ering solutions satisfying =P we can reduce the search space
without affecting validity. One way to do this is to add con-
straints to enforce ~P. We shall call this technique domi-
nance enforcement. It is directly analogous to the addition of
symmetry breaking constraints to a model [17] and is justified
by the following simple theorem:

Theorem. Dominance enforcement preserves va-
lidity.
Proof. Consider two cases. (i) There is no solution satisfying
P. Then adding the constraint P excludes no solutions. (ii)
There is atleast one solution satisfying P. Then there also ex-
ists at least one solution satisfying =P, which the constraint
—P does not exclude. QED.

However, this does not prove that combining two domi-
nance constraints is guaranteed to preserve at least one solu-
tion. (The same applies to symmetry breaking, for example
when breaking both row and column symmetries in a ma-
trix model [8] one must be careful to combine the two sets
of constraints in the correct way.) In this paper we shall ig-
nore this important point, as this is a work in progress, but a
more formal treatment of the subject would be a useful direc-
tion for future work. This might proceed along similar lines
to the many recent applications of group theory to symme-
try breaking. Other approaches such as Symmetry Breaking
During Search (SBDS) [2; 11] might also be generalized to
dominance enforcement.

Note that, unlike symmetry breaking, by enforcing dom-
inance we may lose access to the full set of solutions. But
this is unimportant for problems in which we are interested
in finding any [optimal] solution, or in proving insolubility
[optimality].

3 Maximum-Density Still Life

Our first case study is the game of Life, invented by Conway
in the 1960s. In an infinite 2-dimensional array, each cell

is either alive or dead and has 8 neighbours. The game is |,

initialized by setting each cell alive or dead. Subsequently the
array is transformed into a new pattern for as many iterations
as desired using a few simple rules: (1) a cell with 2 living
neighbours is unchanged in the new pattern; (2) a cell with 3
neighbours is alive in the new pattern; and (3) any other cell
is dead in the new pattern. A still-life is a pattern that does
not change between iterations. A maximum density still-life
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Figure 1: A still-life pattern for dominance enforcement.

is one with the greatest number of live cells, in a finite square
region R of N x N cells (all cells outside R are dead).

3.1 A Basic Model

Two integer program (IP) formulations of this problem were
given in [3]. We use the second, better model which has a 0/1
variable z. foreach celle € R, 1 denoting a live cell and 0 a
dead one. The constraints are as follows:

e Death by isolation: 2z, —EfeN(e) x5 <0, where N (e)
denotes the variables corresponding to the neighbours of
e’s cell.

© Death by overcrowding: 3ze + 3 (o) 25 < 6.

e Birth: VS C N(e),|S| = 3 : —z, + D fesTf —
> reN(e)-s Tf < 2.

e Cells outside 1 cannot become alive: z 7+, +z), < 2,

where f, g and h are 3 cells lying in a line along the
boundary of R.

e The density must be at least d: Zee RTe > d.

To solve the problem we solve a series of CSPs with increas-
ing d.

3.2 Dominance

Consider the pattern of cells in Figure 1 with o denoting dead
cells. In any still-life the cells marked - can be all live or
all dead. Moreover, if there is a solution of density at least
d in which they are all dead then there is also a solution of
density greater than d in which they are not all dead. This
is the property P we need to apply dominance enforcement
constraints: we add a constraint —P forcing one of them to
be live. However, if one of the four is live they they must all
be live, in order to form a still-life, so we can add a stronger
constraint: 3. 42; + ) e x @ > 4. X denotes the cells
marked - while O denotes those marked o. The pattern may
be partly off the edge of the finite region R, as long as the
four central cells are inside R. We call these constraints D.

A second dominance is based on the following observa-
tion: if there is a solution whose top row contains only dead
cells then there is also a solution in which this is not true.
We can simply translate the pattern one or more rows up-
ward until a live cell appears in the top row. Therefore we
can add a translational dominance enforcement constraint to
exclude patterns in which the top row is all dead. Similarly,
we can exclude patterns in which the left column is all dead:
Zfil ;1 > 1 and Z;v:;l x1; > 1. We call these constraints
T'. Note that 7" are not symmetry breaking constraints: not
every pattern with live top row cells can be translated to one
whose top cells are all dead.
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N M M+T M+D | M+T+D
5 opt 999 877 999 877
proof 709 639 709 639
6 opt 7501 3009 7484 2993
proof 25703 22292 25700 22289
7 opt 161626 | 145563 | 161542 145487
proof 159718 | 149054 | 159686 149023
8 opt || 4893631 | 4682075 | 4882021 | 4672235
proof || 3289248 | 3143639 | 3282801 | 3137996
N M | M+T | M+D | M+T+D
Sopt || <0.1s | <0.1s | <0.1s <0.1s
proof || <0.1s | <0.1s | <O0.1s <0.1s
6 opt 0.5s 0.2s 0.5s 0.2s
proof 1.4s 1.2s 1.5s 1.3s
7 opt 11s 10s 12s 10s
proof 11s 11s 13s 11s
8 opt 6m2s | 5m48s | 6m22s 6m34s
proof | 4m23s | 4m18s | 4m40s 4m16s

Figure 2: Still-life results (backtracks and CPU time)

3.3 Results and Discussion

We transform the basic model M, with and without the T
and D constraints, to linear pseudo-Boolean form and then
apply a simple backtracker to solve the problem. Pseudo-
Boolean form is a special form of 0/1 integer program that
can be solved by SAT-based algorithms (see for example [1]).
The backtracker uses a lexicographical variable ordering (ex-
cept that a variable whose domain size becomes 1 is imme-
diately assigned) and a value ordering that tries O before 1.
The results are shown in Figure 2: “opt” is the CPU time or
backtracks needed to find an optimal solution and “proof” is
the time or backtracks to prove that no denser solution exists
(restarting the algorithm with a lower bound equal to the best
known value plus 1).

In all cases the dominance enforcement constraints reduce
or leave unchanged the required number of backtracks. The
D constraints result in little reduction in backtracks while in-
curring a CPU time overhead. The T constraints, on the other
hand, reduce both the backtracks and the CPU time. The re-
sults are comparable with the basic CP and IP results of [6]
but not as good as their hybrid approach nor other state-of-
the-art approaches [15; 19]. Though the improvement due to
dominance is small we feel that it is worth reporting, because
the geometrically-inspired dominances may inspire more ef-
fective versions for this or other problems. (In fact we reuse
the idea of translational dominance in Section 5.)

4 Steel Mill Slab Design

Our second case study is a simplified industrial problem. In
a steel mill, slabs are produced from molten iron in a finite
number of sizes which are later cut to fulfil individual orders.
Given a set of orders of certain sizes, we must pack the orders
onto the slabs while minimizing the total size of the slabs. In
addition, each order is assigned a colour, corresponding to
a route through the mill. There is a limit, p, on how many
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different colours may be assigned to a slab. We denote the .S
slab sizes by o, the K colours by k;, and the O order weights
by w;.

4.1 A Basic Model

We start from a basic model similar to the IP model of [13],
but explicitly model wastage as suggested in [9]. The number
of slabs is not known in advance so we assume that there may
be as many slabs as orders. A size variable s;; is 1if and only
if slab 3 takes size 0. Each slab has up to one size, Zj 855 <
1, and a slab with no size implicitly has size 0, denoting that it
is unused. The optimization problem of minimizing the total
slab size can be reduced to a series of CSPs with decreasing
upper bound U on the size. Each CSP has a total capacity
constraint: ), > 8;50; < U. An order variable 0;; is 1 if
and only if order j is assigned to slab ¢. Each slab capacity
must not be exceeded and each order is assigned to exactly

one slab:
> oy =1
i

E 04jwj < E 8ikOk
F] k

A colour variable c;; is 1 if and only if colour j is assigned
to slab 7. (In some instances not all colours are used, so
we relabel them to consecutive numbers.) No more than p
colours may be assigned to a slab, and if an order is as-
signed to a slab then so is its colour: Zj cij < p and
0ij < Cix;. A wastage variable e; for! = 1...B where
B = [logy (U — 3 ; w; +1)] is such that the wastage for slab

i is bounded by 3., 24 tey:
Zsijo'j — Zoikwk < Z 2 ey
j k !
The total wastage is bounded by:

2221_161'( <U- Zwk
7 l k

4.2 Symmetry

When variable sets form matrices, as they do here, a pow-
erful way of breaking symmetry is to impose lexicographi-
cal ordering on rows and/or columns [8]. In principle this
can be expressed in linear constraints by comparing weighted
sums of the form ), 2" z; (assuming binary variables), but
the finite word length of a computer makes this impracti-
cal for large vectors of variables. Instead we approximately
break symmetry by using sums of the form ), i%z; but re-
tain the symmetry breaking ideas of Frisch et al. This tech-
nique (which we have not seen used before but do not claim
to be original) potentially breaks some symmetry but leaves
at least one solution, because at least one weighted sum will
be greatest whatever coefficients we choose. But it may not
break all symmetries because more than one weighted sum
may be equal. In future work we hope to repeat the experi-
ments below using lexicographic ordering.

Orders of the same weight and colour are interchangeable
so we approximately order those columns of the order vari-
able matrix: ), i%(0i — 045) > 0, where j < k, kj = ki
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and w; = wy. The constraints

(Z l2> Zkz(sik — 8i) + le(oil —0j1) >0
l k 1

order slabs by decreasing size, and where two slabs take the
same size force their order vectors to be approximately or-
dered. The o variables are prevented from interfering with
the slab size ordering by the coefficient Y, 12.

4.3 Implied Constraints

Consider an implied constraint of Frisch et al. If symmetry
breaking constraints are used then the first slab must be large
enough to be assigned the largest order 4 (though it is not
necessarily assigned to the first slab). Furthermore, because
of the slab size ordering, order  must be assigned to a slab
1...M where M = min(O, |U/w,]): 05 = 0 and i >
M. The upper bound U on the total capacity can be used in
implied constraints:

Zzskjaj =+ (Z - 1)28,:]'0’]' <U

k=i j J

where 2 < ¢ < O. Similar constraints impose a lower bound

on the total capacity:
(O — Z) Zsijaj = Zwk
J k

Z Z Skj0; +

k<i j

4.4 Dominance

We have found four dominances in the steel mill slab design
problem. To the best of our knowledge the fourth is new, but
the other three could have been incorporated immediately into
the model without considerations of dominance. However,
they were not used in previous work on this problem, and
we aim to show that thinking in dominance terms can lead to
them in a natural way.?

We use a small example of Frisch et al. as an illustration:
the available slab sizes are {1, 3,4}, the available colours are
{red, green, blue, orange, brown} and the input orders are
shown in Figure 3. It also shows three optimal solutions, the
first taken from Frisch et al.

Colour Dominance. Consider a hypothetical solution (not
in Figure 3) in which only two orders are assigned to slab 1:
5,6 which are both orange. Assume that p = 2 so that each
slab can be assigned up to 2 colours. Then we are free to
assign another colour such as blue to slab 1 without violating
a colour constraint, even though no blue orders are assigned
to it. This is a form of dominance: if a solution exists with
orders 5,6 assigned to slab 1 which is assigned the colour
orange, then there exists a solution with slab 1 also assigned
the colour blue. To enforce the dominance we add constraints
to exclude states in which a colour is assigned to'a slab but

2These dominances may have been made unnecessary by not
branching on the related variables, for example by not branching on
colour variables we do not encounter colour-dominated solutions. It
is an open question which strategy works best, but by leaving the
choice of branching variables free we are able to apply a generic
solver that does not provide branching control.
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order [ 1 2 3 4 5 6 7 8 9
weight |2 3 1 1 1 1 1 2 1
color [ R G G B O O O B B

Solution 1 Solution 2 Solution 3

slabsize|orders||slab [size [orders|[slab[size [orders
114 17.8,9 113 18,9 113189
213113 213 (1,3 213 11,3
31312 31312 313 (2
4 (31456 4|3 14561 4|1 |4
51117 511 1|7
6|1 (5
7111|6

Figure 3: A small example and three optimal solutions

no order of that colour is: ¢, < ZjESk 035, where Sy,
{J | k; = k}. The definition of the colour constraint therefore
has been changed from an “if” to an “if-and-only-if”.
Wastage Dominance. The <-definition of wastage can be
transformed to an =-definition by adding inequalities:

-1
ZsijUj - Zoikwk 2 22 €il
k !

J

Now the e; give the exact wastage for slab 7 instead of an
upper bound. This is a dominance: if a solution exists in
which the wastage is greater than necessary, then there also
exists one in which it is exactly the total slab size minus the
total order weight. This is not a symmetry as we may not be
able to increase a slab wastage without violating the upper
bound on total wastage.

Capacity Dominance. Consider any solution in which the
size of a slab is larger than necessary: that is, it could be
reduced to the next smaller size (or even smaller) while still
exceeding or equalling the sum of the weights of its assigned
orders. The existence of the wasteful solution implies the
existence of the better solution (but not vice-versa) so we can
add constraints to exclude the former:

o)

Zsik(l +op-1) < Zoijwj si1 < Zoij

k=2 j J

A slab’s size is now a function of its orders: it is the smallest
size that is large enough to contain the slab’s orders. If no
orders are assigned then a slab has size 0.

Cutting Dominance. The second solution of Figure 3 is
derived from the first by cutting slab 1 of size 4 into slab
1 of size 3 and slab 5 of size 1. The third solution is de-
rived from the second by cutting slab 4 of size 3 into slabs
4,6,7 each of size 1. These transformations are reversible
and could be treated as a symmetry, giving an opportunity
for further symmetry breaking by adding constraints such as:
813 + 017 + 018 + 019 < 3. But we may need to enumerate
a large number of assignment-size combinations. This situa-
tion can be improved by relaxing the symmetry requirement
to a dominance as follows. Consider any solution in which
slab 1 has size 4 and is assigned orders {7} U S for some or-
ders S. Then it can be decomposed into two slabs, one of size
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PBS
O Uyp | Solver @ (b)) © @
12 77 0.3 1.89 044 04 1.59
16 99 18.9 132 4.8 3.81 543
18 110 226 948 57.9 485 454
19 115 1493 369 141 7.00
20 122 2683 394 10.5 54.1
21 135 246 801 0.74 1085
25 166 882 18.5 964 313
30 195 — — 376 198

Figure 4: Search times in seconds for optimum solutions.

1 assigned order 7, the other of size 3 assigned orders S. This
is always possible: no colour constraint can become violated
by cutting a slab into two, nor can the total capacity constraint
be violated as the capacity is unchanged. The reverse trans-
formation (merging two slabs into one) might violate a colour
constraint so this is not a symmetry. This dominance can be
enforced by adding a constraint to exclude any solution in
which slab 1 has size 4 (size number 3) and is assigned order
7: s13 + 017 < 1. This binary constraint subsumes several
symmetry breaking constraints of higher arity.

These binary constraints do not enforce all cutting domi-
nances. In the second solution of Figure 3, orders 4,5,6 are
assigned to slab 4, which therefore has size 1 +1 41 = 3.
We cannot cut this into two slabs of sizes 1 and 2 because 2 is
not a valid slab size. We can cut it into 3 slabs of size 1 as in
the third solution. All the cutting dominance constraints can
be described by sij + ) pcq 0k < || where:

e (2 contains orders of no more than p different colours;

e cither (i) ) 0 cqwk = 0 and there is a proper partition-
ing of ) into subsets each of whose size is a slab weight;
or (i) o5 — Y pcqwk = o for some j” and there is a
partitioning of §) (possibly the trivial partitioning {{2})
into subsets each of whose size is a slab weight;

e () has no proper subset that can be so partitioned (to
avoid generating subsumed constraints).

4.5 Results and Discussion

We transform the linear constraint models to pseudo-Boolean
form and apply PBS [1] (with VSIDS variable ordering
and G=50 as recommended). Using the instances from [9;
13], Figure 4 shows the time in seconds taken to find an op-
timum solution for ILOG Solver 5.0 on a 750 MHz Pentium
III [?]; this has similar performance to our machine so the
times are roughly comparable. Case (a) and the Solver results
use symmetry breaking and implied constraints, case (b) adds
capacity dominance enforcement constraints (implied when
U is set to the optimum value), case (c) adds to (b) colour
and wastage dominance enforcement constraints, and case (d)
adds to (c) cutting dominance enforcement constraints up to
arity 3. Times longer than one hour are denoted by “—”. The
upper bound U was set to the known optimum value for the
problem.

PBS with symmetry breaking and implied constraints is
(perhaps surprisingly) not much worse than Solver. Adding
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capacity dominance enforcement constraints significantly im-
proves performance. Adding colour and wastage dominance
enforcement constraints has a slightly erratic effect but is pos-
itive overall, and enables PBS to solve the largest problem.
Adding cutting dominance enforcement constraints also has
an erratic effect, with improvements on some instances.

Figure 5(i) compares PBS on model (c) with the results of
[13] who used a faster 1.17 GHz Pentium III. (The CPLEX
results are the best of several models; CPLEX was unable
to solve all instances within the time limit with any single
model.) They experimented with: IP models implemented in
OPL and solved with CPLEX; CP models with two different
branching strategies, solved with ILOG Solver 5.2; and hy-
brid CP/IP models solved by Solver and CPLEX. Both Solver
and CPLEX were called via OPL. Solver model 1 denotes an
IP model similar to our model (a), and model 2 denotes a hy-
brid model with channelling constraints.

We start PBS with U = 1000 instead of co because our
model needs a finite upper bound in order to express the
wastage constraints (a better method would be to compute an
upper bound for U). Each time we find a solution we restart
the search with U set to the total slab size of that solution mi-
nus 1. There is no other communication between iterations so
some search effort is wasted. When starting from a high value
of U the best PBS variable ordering heuristic turn out to be a
fixed ordering (o, s, c, €) instead of the recommended VSIDS
ordering. We now fail to solve the largest instance within
the time limit but obtain better results overall. All times in-
clude proof of optimality, which is trivial on these instances
because each has a “perfect” solution with zero wastage. We
use a threshold of 5746 seconds instead of one hour, to al-
low for our slower machine. Numbers in brackets indicate
the best result found within the time limit, while times longer
than the threshold are denoted by “—”.

PBS with model (c) now has better overall performance
than Solver with either constraint model, though our results
are not as good as their CPLEX or hybrid results. Note that
dominance enforcement constraints could be added to the hy-
brid model. (In retrospect it may have been more informative
to add dominance in the same models as used by previous re-
searchers.) As noted, for these problem instances the proof
of optimality is trivial as they all have perfect solutions. We
expect the dominance enforcement constraints to have an im-
pact on the time required to prove optimality as they prune
alternative (but not better) solutions. We therefore designed
a set of benchmarks without perfect optimum solutions. For
a problem of size N, we define a set of N orders with size 2
and colour 1, N orders with size 3 and colour 2, and 1 order
of size 4 and colour 3. The available slab sizes are 3 and 6.

Figure 5(ii) shows the optimum total slab size U,,: and
total order weight Yw for various values of IV, with execution
times for proofs of optimality (U = U,p, — 1) under various
models. Values of N having perfect solutions are omitted.
Cases (a), (c) and (d) are as in Figure 4. The colour, wastage
and capacity dominance enforcement constraints make a very
large difference to the proofs of optimality.



Proc. SymCon’04

Solver Solver CPLEX Solver+ | PBS
O | model 1 model2 model 1 CPLEX (©)
12 (79) 0.28 9.90 0.52 | 1.05
16 (112) 6.51 10.7 053 | 11.9
18 (121) 145 1.98 0.67 118
19 (121) 303 2.6 191 | 78.7
20 (152) 2014 5.91 297 509
21 — 21.8 12.0 484 | 46.4
25 — 1216 65.2 7.6 5.1
30 — @197 1180 15.9 | (196)

N Yw Uppt | (@) (c) (d)

3 19 21 0.01 0.02 0.02

5 29 30| 0.05 0.03 0.03

6 34 36| 0.07 0.07 0.05

8 44 45| 2.16 0.54 0.2

9 49 51| 0.58 0.68 0.14

11 59 60| 45.5 6.32 0.69

12 64 66| 533 5.79 0.39

14 74 751777 131 6.7

15 79 81| 51.2 55.5 0.99

17 89 90 — 1320 27.1

Figure 5: Slab design results.

S Peaceable Armies of Queens

For our final case study we consider the problem of placing
equally sized armies of black and white queens on an N x N
chess board so that no white queen can attack a black queen
(or vice-versa), and to maximize the size of the armies [4].
An IP model was defined by Plastria [5]. Smith et al. [18]
defined and tested three constraint models for the problem,
breaking symmetry by using SBDS [2; 11].

5.1 A Basic Model

We define a new IP for the problem, drawing on ideas from
the constraint models of [18]. Associate a pair of 0/1 vari-
ables b;; and w;; with each square. The b;; (resp. w;;) take
value 1 if there is a black (resp. white) queen on square (4, 7)
and 0 otherwise. In addition to these square variables, de-
fine 0/1 line variables by and w, for each line £ (row, column
or diagonal; one diagonal at each corner contains a single
square). The optimization problem can be expressed as a se-
ries of CSPs with increasing lower bound @ on the number

of black and white queens:
ZZ%‘ZQ Zzwz’jZQ

i i

Any surplus queens may be removed to obtain a pattern with
exactly () black and @ white queens. The other constraints
are as follows. No square or line may be both black and white:
bij +ws; < 1and by + we < 1. If a square is black [white]
then its four associated line variables are black [white]:

4bij S Z bg 4’Ll)1;j S Z Wy
LeL;; LeL;;

where L;; denotes the lines passing through square (3, 7). If a
line is black [white] then at least one of its associated squares
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is black [white]:

be < Z bij

(i,j)ESﬂ

where .S denotes the squares on line £.

5.2 Symmetry

Smith et al. use SBDS to break four rotational symmetries,
two reflectional symmetries and one colour symmetry (flip
all colours). We add constraints to the model before search,
which is weaker than SBDS but has the advantage that it can
be used with any search algorithm. First the colour symmetry
is broken by insisting that no white queens are placed on the
top row: wy = 0. For the rotational and reflectional symme-
tries, we consider the eight half-rows and half-columns at the
edges of the board as binary representations of integers. We
then post constraints to make the black left half of the top row
represent the greatest number:

Z{%ﬁj 21:_1(131'1 —bni —wpn;) >0
e, 2:_1(171'1 —biy —win) >0
e, 2‘_ (bix — b1y — wys) >0

Zi:l 9t 1

> N1/2J 9i—1

2

(bit —bN—i—in —wN—i—1N) >0
(bir —bin—i—1 —wiN—i—1) >0
27 (bin — by—i—11 — WN—i—11) > 0
271 (bit — by N—i—1 — WN N—i—1) = 0

(872
[y2)
1

1=

5.3 Dominance

Suppose that in a solution, queens are only placed in a smaller
rectangle than NV x IV, for example rows and columns 2.. . . N.
The solution can still be rotated and reflected within the
smaller square, and also translated upward until a queen ap-
pears in the top row, and leftwards until a queen appears in the
left column. The reverse is not true: a solution with queens in
the top row and left column cannot necessarily be translated,
because other queens might fall off the bottom row and right
column. Thus we have two translational dominances, which
can be enforced by insisting that at least one queen be placed
in the top row and at least one queen be placed in the left
column: by +w; > 1 and byy1 + w1 > 1, where line
N + 1 denotes the left column. Combining these constraints
with the colour symmetry breaking constraint above, results
in the constraint b; = 1, requiring a black queen in the top
row.

Another dominance occurs when placing a queen on a
square cannot violate any constraint. There are three cases.
Firstly, if a solution exists with an empty square whose lines
are uncoloured then a solution also exists with a queen of ei-
ther colour in that square (recall that in our formulation only
lower bounds are placed on the sizes of the armies). We call
this the uncoloured dominance and it can be enforced by plac-
ing a queen in that square; more specifically, a black queen.
Secondly, if a solution exists in which an empty square has
no white lines and at least one black line passing through it,
then a black queen may be placed there. We call this the
black dominance. Thirdly, if a solution exists in which an
empty square has no black lines and at least one white line,
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pseudo-Boolean ILOG Solver

N Q| basicsymm dom both +VOlbasicsymm|U+VO
4 2| <0.1<0.01<0.1 <0.1 0.01{0.03 0.02| 0.02
5 4 0.12 0.020.08 0.01 0.02/0.11 0.04] 0.03
6 5 1.6 0.15 0.6 0.07 0.08 29 041 0.13
7 7 29 22 6 049 0.66] 56 7.8] 1.12
8 9| 236 41 93 54 525/2100 240 11.7
9 12[26091 17041262 93 31 116
10 14 879 298 2460
11 17 12379 2874 37100
1221 17868

13 24 247331

Figure 6: Results for the Peaceable Armies of Queehs

then a white queen may be placed there. This is the white
dominance. Two families of constraints can be used to en-
force these dominances. One enforces both the black and un-
coloured and the other enforces the white:

bij-l-zwezl bij+wij+zb£21
LeL;j eL;j

5.4 Results and Discussion

As above, these models are transformed to pseudo-Boolean
form. We apply a naive backtracker using a lexicographi-
cal variable ordering: first the square variables row by row,
then the line variables (experiments with the much more so-
phisticated PBS solver [1] surprisingly gave inferior results).
Figure 6 shows the CPU times for the algorithms to find and
prove optimal solutions for various values of N. It shows
results for the basic model (basic), the basic model with sym-
metry breaking (symm), with dominance enforcement (dom),
with both (both), and both with a modified (but still static)
variable ordering heuristic (+V0). The modified variable or-
dering chooses variables with the highest score pn +p +n
where p and n are the number of positive and negative occur-
rences of the variable, breaking ties lexicographically. The
figure also shows results for ILOG Solver with and with-
out SBDS on a basic squares-only model (basic and symm),
and ILOG Solver results with SBDS on the best (unattacked
squares) model and a most-unattacked-square variable order-
ing heuristic (U+VO0). The results for Solver are taken from
Smith et al. [18] who use a 600 MHz Celeron PC. ) denotes
the number of queens.

Both symmetry breaking and dominance enforcement
make a significant difference to search time. Though our
symmetry breaking approach is simple it achieves speedups
comparable to those of SBDS on this problem. Dominance
enforcement achieves similar speedups, that increase with
N until it gives better results than symmetry breaking (we
do not know whether this can be extrapolated to larger in-
stances). Applying both symmetry breaking and dominance
enforcement gives even better results than ILOG Solver, and
adding the modified variable ordering further reduces execu-
tion times so that we are able to increase N by 2. Figure
7 shows the first known optimal solutions, as far as we are
aware, for N = 12 and N = 13. The solution for N = 13
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Figure 7: Optimal 12 x 12 and 13 x 13 solutions.

actually contains 25 black queens and 24 white ones; to ob-
tain a solution with equal-sized armies we can simply remove
any black queen.

6 Conclusion

Problem symmetry has recently received a great deal of at-
tention in the literature, and exploiting it has led to huge im-
provements in search performance. Symmetry can be seen
as a special (bi-directional) form of dominance, which is a
weaker, more general property. However, dominance has
been far less exploited than symmetry in the CP literature.
We believe that it should rank alongside symmetry breaking
as a generic CP technique, and that it can be profitable to treat
both in a uniform way.

To support this thesis we added new dominance enforce-
ment constraints to three well-studied symmetric problems.
In the Still-Life and Peaceable Armies of Queens problems
we found geometrically-inspired dominances that are analo-
gous to some common symmetries: whereas rotation and re-
flection are common symmetries in geometric problems, we
found translational and pattern-based dominances, leading to
improved results on the latter problem. In the Steel Mill Slab
Design problem we found a new form of dominance (cutting)
that improves proof's of optimality. We hope that these exam-
ples will serve to stimulate further research on dominance in
CP.

It may be that dominance has been relatively unexploited
because it is more natural to think in terms of symmetry.
However, we found that after a little practice it became quite
natural to think in dominance terms, and that it helped to
guide the modeling process. In the Steel Mill Slab De-
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sign problem we found several dominance enforcement con-
straints that transform if and less-than-or-equal-to definitions
to tighter if-and-only-if and equals definitions. Though these
could have been exploited without thinking in dominance
terms, they were not used by previous researchers and we
were led to them by considerations of dominance.

Dominance also led us to an insight on another problem.
The best constraint model for the Peaceable Queens prob-
lem found by Smith et al. [18] was the unattacked queens
model. That model represents only the white queens, ensur-
ing that there are at least as many unattacked squares as white
queens; black queens are implicitly placed in these squares.
The stated advantages of this model are that.the search vari-
ables have smaller domains and that there are fewer con-
straints. But another perspective on this model is that by
merging the cases of a square containing no queen and a black
queen, it implicitly enforces the black and uncoloured (but
not the white or translational) dominances. Perhaps part of
the advantage of this model can be traced to the absence of
these dominances. In retrospect, the unattacked queens model
could have been inspired by the identification and elimination
of dominated solutions. Given that constraint modeling is a
poorly understood and difficult process, heuristics that lead to
good models are an important research direction.
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Breaking symmetries in all different problems

Jean-Francois Puget
ILOG, 9 avenue de Verdun, 94253 Gentilly, France

Abstract

Adding symmetry breaking constraints is one
of the oldest ways of breaking variable symme-
tries for CSPs. We have established two ma-
jor results. First of all, all variable symme-
tries can be broken with at most n — 1 binary
constraints if all the n variables of a CSP are
subject to an all different constraint. Second,
symmetry breaking constraints can be safely
used together with the GE-tree method of [11].
Both results have been applied to the sub graph
isomorphism problem , a prevalent problem in
computer science applications. In particular,
the SBDD method of [9] solves many SGIP in
order to prune search. The symmetry breaking
techniques discussed in this paper can be ap-
plied to those sub problems. Experiments on
BIBD problems show that this is highly effec-
tive.

1 Introduction

Adding symmetry breaking constraints is one of the old-
est ways of breaking variable symmetries for constraint
satisfaction problems (CSPs). For instance, it is shown
in [1] that all variable symmetries could be broken by
adding one lexicographical ordering constraint per sym-
metry. Unfortunately, this method is not tractable in
general, as there may be an exponential number of sym-
metries. It has been shown that in general there is no
way to break all symmetries of a problem with a polyno-
mial number of constraints[12]. In [2], a linear number
of constraints are used to break symmetries for matrix
problems. As expected, since there are a polynomial
number of constraints, not all symmetries are broken.
However, a polynomial number of constraints may be
sufficient in some special cases. For instance, in [8], we
have shown that when the symmetry group is the full
group, then a linear number of constraints can break all
symmetries: one simply needs to order the variables. In
this paper we consider all different problems. These are
CSPs such that the variables are subject to an all dif-
ferent constraint among other constraints. We show in
section 3 that for such CSPs, all variable symmetries can
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be broken with at most n — 1 binary constraints, where
n is the number of variables.

In [11] a general purpose method for breaking all value
symmetries is given: the GE-tree method. We show in
section 4 that this method can be safely combined with
symmetry breaking constraints, under some conditions
on the order in which the search tree is traversed.

In section 5, we apply the previous results to a preva-
lent problem in computer science applications, namely
the sub graph isomorphism (SGI) problem. In section 6,
we report various experiments using a variant of SBDD
where the dominance test amounts to solve a SGI prob-
lem. These experiments show that the overhead of com-
puting graph automorphism is more than offset by the
speedups resulting from symmetry breaking. In section
7, we summarize our findings and discuss some possible
generalizations.

2 Symmetries, Graphs and CSPs

The symmetries we consider are permutations, i.e. one
to one mappings (bijections) from a finite set onto itself.
Without loss of generality, we can consider permutations
of I, where I™ is the set of integers ranging from 1 to n.
For instance, we can label the vertices of a graph with in-
tegers, such that any graph automorphism is completely
described by a permutation of the labels of its vertices.
Similarly, any variable symmetry in a CSP can be de-
scribed by a permutation of the indices of the variables.
This is formalized as follows.

2.1 Automorphism groups

Let S™ be the set of all permutations of the set I™.
The image of i by the permutation o is denoted 7.
A permutation o € S™ is fully described by the vec-
tor [17,27,...,n?]. The product of two permutations o
s @' s defined] by (@0 = (77)9.

Given 7 € I"™ and a pe1mutat10n group G C S™, the
orbit of i in G, denoted i€, is the set of elements to Wthh
i can be mapped to by an element of G:

G = {0 € G}

Given i € I"™ and a permutation group G C S", the
stabilizer of i in G, denoted i¢, is the set of permutations
of G that leave ¢ unchanged:
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g = {0‘ & G|7:¢7 21:}

2.2 Graphs

A graph is a pair (V, E) where V is a finite set of vertices,
and £ a set of edges between these vertices. An edge is
a set of two vertices.

Given a graph (V, E), we can without loss of generality
assume that the set V is equal to I™ where n is the
number of vertices of the graph. Any permutation ¢ of
the vertices induces a permutations of the edges : the
image of the edge {i,} by o is {i,7}° = {i?, j°}.

An automorphism of the graph (V, E) is a permutation
o of V such that :

Vee E,¢’ ¢ F

The set of automorphism of a graph G is noted aut(G).
This set is a subgroup of S™. Graph automorphism can
be computed using packages such as Nauty][6].

The SGI problem can be defined as follows. We are
given two graphs, G; = (V1, F1) and G, = (Va, E), and
we want to know if G; is isomorphic to a sub graph of
Ga, i.e. if there exists a function f from V; to Vs such

that
Vi,j € Vi,i # j — (i) # f(j)
Ve € Fi, f(e) € B
where f({7,7}) = {f(?), f(5)}

2.3 CSP and symmetries

A constraint satisfaction problem P (CSP) with n vari-
ables is a triple P = (W, D,C) where V is a finite set of
variables (v;)iern, D a finite set of finite sets (D;)iern,
and C is a subset of the cross product @), D;. With-
out loss of generality, we can assume that D; C I* for
some k.

An assignment is a member of S, i.e. a vector of values
(as)iern such that a; € D; for all + € I"™, and is denoted
(vi = as3)iern. A partial assignment is sub vector of an
assignment,.

A solution to (V, D, C) is an assignment that is a mem-
ber of C.

Given a permutation o of I™, we define a variable per-
mutation on (partial) assignments as follows:

((vi = @i)ierm)? = (vie = ai)iern
Such permutation is called a variable symmetry if it
maps solutions to solutions.
Given a permutation 6 of I*, we define a value per-
mutation on (partial) assignments as follow:

((vi = ai)ier)? = (v; = af)ier

Such perinutation is called a value symmetry if it maps
solutions to solutions.

3 Breaking variable symmetries

Without loss of generality, we can assume that domains
are subsets of I* for some k, with the usual ordering on
integers.
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3.1 Lex leader constraints

Adding constraints is one of the oldest methods for re-
ducing the number of variable symmetries of a CSP[8].
In [1], it is shown that all the variable symmetries of any
CSP can be broken by the following constraints.

Vo € G, V<V° (1)

For a given o, the constraint (¥ < V7) is semantically
equivalent to the disjunction of the constraints:

V1 < V1o

V1 = V10 AV < Vgo

V1 =Vie A...Avj_1 = V(i—1)e N Vi < Vo

V1 =Vie Ao . ANVp_1 = U(n—1)e N\ Up < Upo
V1 =Vie AN e.. ANUp_1 = VU(n—1) A Up = Upe

If the last constraint is omitted, the set of constraints
is denoted V < V°.

3.2 A polynomial number of constraints

The number of constraints (1) can grow exponentially
with the size of G. Using the fact that the variables V are
subject to an all different constraint, we can significantly
reduce the number of symmetry breaking constraints.
Given a permutation o, let s(o) be the smallest  such
that i” # 4, and let (o) be equal to (s(c))?. By defi-
nition k7 = k for all k < s(o), and s(0)? # s(o). Let
us now look at the constraint V < V,. There is an all
different constraint on the variables V, which means that
v; = v if and only if 4% = 4. In particular, v, = vge for
all k < s(o), and vs(s) # V(s(s))o- Therefore, only one
disjunct for the constraint can be true, namely:

V1 =Vie A... A Vs(a)—1 = V(s(a)—1)" N\ Vs(o) < U(s(a))e

Since k7 = k for k < s(0) and s(0)” = (o), this can
be simplified into

Us(o) < Vr(o)

We have just proved the following result.

Lemma 1. Given a CSP where the variables V are
subject to an all different constraint, and a variable sym-
metry group G for this CSP, then all variable symmetries
can be broken by adding the following constraints:

(2)

Note that if two permutations o and 6 are such that
s(o) = s(0) and 7(c) = r(6), then the corresponding
symmetry breaking constraints are identical. Therefore,
it is sufficient to state only one symmetry breaking con-
straints for each pair 4, j such that there exists a permu-
tation o with i = s(0) and j = r(0).

Yo € G,'Us(a-) < VUr(o)
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The set of these pairs can be computed using what
is known as the Schreier Sims algorithm([13]. This al-
gorithm constructs a stabilizers chain Go, G1,...,G, as
follows:

Go=G

Viel, G;=ig,_,
By definition,
Gn an—l Cc Gl gGO

The Schreier Sims algorithm also computes set of coset
representatives U;. Those are orbits of i in G;_1:

U; = %

From now on, we will assume that all the groups we
use are described by a stabilizers chain and coset repre-
sentatives.

By definition, for each element j € U;, there exists at
least one permutation ¢ € G;_1 such that i = j and
j = r(0). The converse is also true. If there exists a per-
mutation o such that i = s(o) and that j = 7(0), then
j € U;. Therefore, the constraints (2) can be rewritten
into:

VieI"\VjeU, i#j=v <vj

There are ). ,(|U;| — 1) such constraints. All the
permutations of G;_; leave the numbers 1,...,7—1 un-
changed. Therefore U; is a subset of {i,...,n}. Then
|U;] — 1 < n— 1. Therefore, the number of constraints is
bounded from above by .7 ;(n —%) =n(n —1)/2. We
have just proved the following result?.

Theorem 2. Given a CSP with n variables V such
that there exists an all different constraint on these vari-
ables, and given coset representatives sets U; for the vari-
able symmetry group of the CSP, then all the variable
symmetries can be broken by at most n(n — 1)/2 binary
constraints. These constraints are given by :

Viel"\VjeU;, i#j— v <v; (3)

3.3 A linear number of constraints

The previous result can be improved by taking into ac-
count the transitivity of the < constraints. Given j € I",
it may be the case that j belongs to several of the sets
U;. In such case, let us define r(j) as the largest 4 differ-
ent from j such that j belongs to U;. If j belongs to no
U; other than Uj, then let 7(j) = j.

Before stating our main result, let us prove the follow-
ing.

Lemma 3. With the above notations, if j € U; and
i# g thenr(j) € U; and r(j) < j

LA reviewer tells me that Chris Jefferson independently
discovered this result without publishing it.
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Proof. Let us assume that j € U; and ¢ # j. By
definition of U; there exists a permutation ¢ € G;_1
such that i = j. Let k = r(j). By definition of r(j),
i < k and j € U. Therefore, there exists a permutation
0 € Gj_q such that k¥ = j. Let v = 06~1. Then,

v = 997" = j97' = k. Moreover, v € G;_; because
o€ Gi_q1and 0 € Gr_1 CGi_1. Therefore, k € U;. The
fact that r(j) < j is an immediate consequence of the

definition of 7(j).
We can now state our main result.

Theorem 4. With the above notations, given a CSP
with n variables V, such that there exists an all different
constraint on these variables, then all variable symme-
tries can be broken by at most n — 1 binary constraints.
These constraints are given by :

(4)

Vj € Ina T(?) 7é7 — Ur(j) <j

Proof. The number of constraints (4) is at most n
by definition. Note that r(1) = 1 by definition of r,
therefore, the number of constraints is at most n — 1.
Let us consider one of the constraints of (3). We are
given ¢ and j such that j € U; and ¢ # j. We want
to prove that the constraint ¢ = (v; < v;) is implied
by the constraints (4). Let us consider the sequence
(G, (5),r(r (), 7(r(r(5))),...).- Let us assume that the
sequence never meets i. We have that j € U; and i # j.
By application of lemma 3, we get 7(j) € U; and 7(j) <
j. Since 7(j) # 4 by hypothesis, lemma 3 can be applied
again. By repeated applications of lemma 3 we construct
an infinite decreasing sequence of integers all included in
U;. This is not possible as U; is finite. Therefore, there
exists k such that i = 7F(j). Moreover, we have es-
tablished 7*(5) # r*71(5),...,7(r(5)) # r(§),r(4) # J.
Therefore, the constraints v,k(;)y < Vpk-135), - Vr(r(5)) <
Ur(j), Vr(j) < V; are constraints of (4). Together they
imply v,x(;j) < v; which is the constraint c. We have
proved that the constraints (3) are implied by the con-
straints (4). Since the set of constraints (4) is a subset
of the constraints (3), both sets of constraints are equiv-
alent. Then, by theorem 2, the constraints (4) break all
variable symmetries.

3.4 Graceful graphs

A graph with m edges is graceful if there exists a labeling
f of its vertices such that:

e 0 < f(i) < m for each vertex i,
e the set of values f(i) are all different,

e the set values |f(i), f(j)| for each edge (i, ) are all
different.

A straightforward translation into a CSP exists where
there is a variable v; for each vertex v;, see [5]. The
variable symmetries of the problem are induced by the
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automorphism of the graph. There is one value sym-
metry, which maps v to m — v. More information on
symmetries in graceful graphs is available in [7].

Theorem 4 then states that all the variables symme-
tries can be broken by n — 1 binary constraints at most,
where n is the number of vertices. Let us consider the
following graph K3 x P»2:

0 3

V

1 4
The group of variable symmetries of the corresponding
CSP is equivalent to the automorphism of the graph.
This group G is:
{[0,1,2,3,4,5],[0,2,1,3,5,4],[1,0,2,4, 3,5],
(1,2,0,4,5,3],[2,0,1,5,3,4],[2,1,0,5,4, 3],
3,4,5,0,1,2],[3,5,4,0,2,1],[4,3,5,1,0,2],
4,5,3,1,2,0],[5,3,4,2,0,1],[5,4,3,2,1,0]}
Therefore the constraints given by [1] are

5

(v, v1, V2, 3,04, 05) X (vo, V1, V2, V3, V4, Us)
(vo,v1,v2,v3,v4,v5) < (vo, V2, V1, V3, Vs, Vy)
(vo, v1, V2, V3, v4,v5) < (v1,v0, V2, V4, V3, Vs)
(vo, v1, V2, v3,v4,05) X (v1,V2, V0, Vi, Vs, V3)
(vo, V1,2, v3, v4,v5) = (v2, 0, V1, Vs, U3, Vy)
(vo, v1,v2,v3,v4,05) X (va, V1,0, Vs, Va, U3)
(vo,v1,v2,v3,v4,V5) < (v3,Va, Vs, Vo, V1, V2)
(vo, v1, V2, V3, V4, V5) < (v3, Vs, V4, Vo, Va2, V1)
(vo,v1,V2,v3,v4,V5) X (va, V3, V5, V1, Vo, V2)
(vo, 1,2, v3,v4,v5) = (v4,v5, V3, V1, V2,V0)
(vo, v1,v2,v3,v4,V5) X (vs, V3, V4, Vo, Vo, V1)
(vo, V1,2, 3,04, 05) X (5, V4, V3, Va, V1, Vo)

The stabilizer chain is
Go=G
G1=0¢g, ={[0,1,2,3,4,5],[0,2,1,3,5,4]}
G =1¢g, ={[0,1,2,3,4,5]}

All remaining stabilizers G5, G4, G5 are equal to Gs.
Coset representatives are:

U = 0% ={0,1,2,3,4,5}
U= 1% ={1,2}
Us = 2% = {2}

*Vertices numbers start from 0 instead of 1 in this
example.

All remaining coset representatives Uy, Us are equal to
Us.
Therefore, the constraints (3) given by theorem 2 are:
Vo < 1
Vo < Vg
Vo < V3
Vo < V4
Vo < Us
U1 < Vg
Those constraints are much simpler and less numerous

_ than the previous ones.

From coset representatives we get:
r(0) =0
r(1)=0
r(2) =1
r(3)=0
r(4)=0
r(5) =0
Therefore, the constraints (4) given by theorem 4 are:

Vo < V1
Vo < V3
Vo < V4
Vo < Us
V1 < Vg

We see that the constraint vy < v, is implied by the
above constraints.

These constraints can be automatically added to the
problem. Indeed, we have implemented an algorithm
similar to Nauty[G] for computing graph automorphisms,
as well as a Schreier Sims algorithm[13].

3.5 The pigeon hole problem
Let us look at another example, namely the pigeon hole
problem. We are glven n variables (v;)jer» with do-
mains equal to ™', There is an all different constraint
on these variables. The group of variable symmetries
for this problem is the set of all permutations S™. The
stabilizers chain is:
GO = 9"
Viel", Gy ={o e S"\Vk <i,k° =i}
The coset representatives are given by:
Viel", Uy={i,i+1,...,n}

From this we get:

r(H)=1,r@2)=1,...,r@)=i—1,...,7r(n) =n—1

The symmetry breaking constraints (4) are therefore:

V1 <V2,V2 < U3y Vic] < ViyeenyUpo1 < Up

Bound propagation on these constraints is sufficient to
show that the CSP has no solution. Note that we only
used n—1 constraints, whereas (1) contains an exponen-
tial number of constraints in this case.
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4 Breaking both variable symmetries
and value symmetries

In [11], a general method for breaking all value symme-
tries is described. This method uses the group of value
symmetries of the CSP. We will show that this method
can be combined with symmetry breaking constraints
when there are both variable symmetries and value sym-
metries.

4.1 GE-tree and symmetry breaking
constraints

We are given a CSP P with n variables v; subject to an
all different constraint among other constraints. With-
out loss of generality, we can assume that the domains
of the variables are subsets of I* for some k. Let us add
n X k additional binary variables x;; (variables with do-
mains equal to {0,1}). We also add the following chan-
neling constraints:

VieI™jeI¥, (z;=1)=(v=4)

It should be clear that the new CSP P’ is equivalent
to P, i.e. that there is a one to one mapping between
the solutions of the two CSPs. Let us assume that the
variables z;; are ranked in increasing values of i then
increasing values of j in the vector X.

Any variable symmetry o of P is now a permutation
of the rows of the matrix (z;;). From [1], this variable
symmetry is broken by the constraints:

XXX’
that is,

($11,$12,...,$n,k) '_< (:clal,:c,;ag,...,mnak) (5)

Let us compare lexicographically the first k variables
in both sides of the constraint. We have the two vectors:

(mll)mIQ: .. '7$1k)

(Ilal,mlaz,---,wlak)

Let a be the value assigned to v, and b be the value
assigned to vio in a given solution. Then z1, = 1 and
zy; = 0 for j # a. Similarly, 210 = 1 and 2105 =
0 for 7 # b. Then the first vector is lexicographically
smaller than the second one if and only if a < b. This
is equivalent to the condition v; < v1.. By repeated
applications of a similar argument, once for every row of
the x;; matrix, we prove the following result.

Lemma 5. With the above notations, the constraint
(5) is equivalent to:
(vla V2yees >'U'n) j (Ul") Vo, avnl’)

Let us consider a value symmetry 6 for P. Then 0
is a permutation of the columns of the matrix. This
symmetry is broken by the constraint:

X = X?
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that is

(Illa T125. - 7:1;111»‘) = (m119a$129’ ceey znka) (6)
Let us compare lexicographically the first k variables
in both sides of the constraint. We have the two vectors:

($11,£U12, e 73311c)

(.’13119, L1264+« ,Q}lko)

Let a be the value assigned to v;. Then 21, = 1 and
z1; = 0 for j # a. Similarly, z150 = 1 if and only if
j=a""
a<al

. Therefore, the following holds if and only if

1

(1'11,3?127 e ,-”Ulk) = (31119,1'120, .. -al'lkf’)

This must be true for all possible #. This is true if and
only if a is the minimum of its orbit in G, where G is
the group of value symmetries for the CSP:

(7)
Let us now consider the second group of k variables
on both sides:

a = min(a®)

(z21, %12, - - -  Tak)
(T210,2120, . -+, Topo)
Let b be the value assigned to ve. Then, the following
holds if and only if b < b
(-'1:21) T12y -+ x?k) = (:1;2197 T120y«.-, $2k0)
Then, let us consider the first 2k variables on each side
altogether. We have that
(11, %12, -+ -, T2k) =X (T110, 190, -+, Topo)

in exactly one of the following two cases. The first
case is:

(@11, %12, -+ -, T1k) < (T110, 120, -+ -, T1ko)
The second case is :

(T11, %12, -+ -, T1k) = (T110,T120, - -+, T10)
and
s T10)

The first case if equivalent to a < a®"". The second
case is equivalent to a = a® " and b < 5. The condi-

tion a =a? " is equivalent to 6 € ag. When considering
all possible 6, we get the following conditions:

($21,$12,---,ﬂ31k) = (IL‘110,$129,---

V0 €ag, b< b

This means that b must be the minimum of its orbit in
ag when b # a. Note that if b = a, b is also the minimum
of its orbit in ag, because its orbit is then {a}. We have
proved that

($11,$12,---,$2k) = (33119,37129,---,37%9)
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holds if and only if the following holds: « is the mini-
mum of its orbit in G, and b is the minimum of its orbit
in ag.

More generally, let a; be the value assigned to the
variable v; in a solution to the CSP. By a repeating the
above argument with the first ¢ rows of the z;; matrix,
we get the following result.

Lemma 6. With the above notations, a; is the min-
imum of its orbit in the group of symmetries that leave
ai, az,...a;—1 unchanged.

This is equivalent to the GE-tree method for breaking
all value symmetries [11], when the variables and the
values are tried in an increasing order during search.

From [1], it is safe to add all possible symmetry break-
ing constraints (1). In particular, it is safe to state all
the constraints (5) and all the constraints (6) together.
By lemma 5, the set of constraints (5) is equivalent to
all the symmetry breaking constraints for 2. By lemma
6, the set of constraints (6) is equivalent to the GE-tree
method for breaking value symmetries. We have just
proved the following result.

Theorem 7. Given a CSP, its group of variable sym-
metries Gy, and its group of value symmetries Gy, then
the combination of the GE-tree method for breaking value
symmetries with the symmetry breaking constraints (1)
computes a set of solutions S such that:

VS € sol(P),J0 € G1,30 € G5,35' € S, 879 =5’

Theorem 4 in section 3 says that the set of all those
constraints (1) is equivalent to the constraints (4) when
there is an all different constraints on all the variables
V. This yields the following result.

Corollary 8. Given a CSP where the variable are
subject to an all different constraint, its group of variable
symmetries G1, and its group of value symmetries Gy,
then the combination of the GE-tree method for breaking
value symmetries with the symmetry breaking constraints
(4) computes a set of solutions S such that:

VS € s0l(P),J0 € G1,30 € G3,35" € S, S7% =5

In our implementation, we did not fully implement the
GE-tree method, because it requires more computational
group algorithms than what we have implemented so far.
We simply use equation (7). This requires the computa-
tion of the orbits for the group G of value symmetries.
Then, only the minimum element of each orbit is left in
the domain of the variable v;.

4.2 Graceful graphs

Let us go back to our example. There are 9 edges. There
is one non trivial symmetry, which maps a to 9 — a.
Therefore, the orbits for this group are the sets {a,9—a},
for0<a<4.
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Therefore, one can restrict the domain of vy to
{0,1,2,3,4}. Together with the constraints given by the-
orem 4, breaking all variables and all value symmetries
can be done with the addition of the following constraints

Vo < U1
Vo < VU3
Vo < Uy
Vo < Us
v1 < Vg

1}054

We have tested this approach on the graceful graphs
of [7]. For each graph we report the number of solutions
of the CSP (sol), the size of the search tree (node) and
the time (time) needed to compute all these solutions
the running time. We also report these figures when the
above symmetry breaking constraints are added (sym).
In this case the running time includes the time needed to
perform all the group computations. It is worth notiing
that the running times are much better than the ones
reported in [7]. Running times are measured on a 1.4
GHz Dell Latitude D800 laptop running Windows XP.
The implementation is done with ILOG Solver 6.0[4].

graph no sym sym
sol node time | sol node time
K3 X Py 96 1518 0.12 8 83 0.01
Ky x Py | 1440 216781 13.6 | 30 1863 0.27
Ks X Py 480 34931511 4454 2 53266 6.5
Ko X Py 0 1326585 305

Table 1. Computing all solutions for graceful graphs.

Let us look at the graph K5 x P,. This graph has 10
vertices and 25 edges. We list the values for the variables
V0, V1,. ..,y for the two solutions:

(0,4,18,19,25,23,14,6,3,1)

(0,6,7,21,25,24,22,19,11, 2)
Let us apply the non trivial value symmetry to the
second one. We get:
(25,19,18,4,0,1, 3,6, 14,23)
Let us apply the following variable symmetry to it:
[4,3,2,1,0,9,8,7,6,5]

This yields the first solution!

This example shows that we did not break all symme-
tries that are a product of one variable symmetry with
one value symmetry. This is so depsite the fact that all
variable symmetries and all value symmetries are broken.
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5 Sub graph isomorphism

The previous results can be applied to a prevalent prob-
lem in computer science applications, namely sub graph
isomorphism (SGI). See [10] for applications in chem-
istry for instance. The SGI problem is easily cast into a
CSP. We are given two graphs, G; and G, and we want to
know if G; is isomorphic to a sub graph of G,. A CSP is
constructed where there is one variable v; per vertex ¢ of
Gy, and where the possible values are the vertices of Ga.
The constraints of the CSP express the isomorphism re-
lationship. First of all, the variable must be all different.
Second, for each edge {i,j} € E; a binary constraint
states that the edge {v;,v;} is in E,. Several global con-
straints have been devised for enforcing this relationship,
see [10]{14][9] for instance. The purpose of this paper is
not to discuss how to efficiently enforce the isomorphism
relationship. It is rather to look at the symmetries in
this CSP. They are induced by the automorphisms of
the graphs G; and G as follows.

Let o € aut(G1) be an automorphism of G;. Then o
induces a variable symmetry. Indeed, let us assume that
we have an isomorphism f between G; and a sub graph
of Ga. Then, (v; = f(i))icr» is a solution of the CSP.
Let us apply o to this solution. We get the following
assignment:

(vie = f(7))icrn (8)

Let us consider an edge e of G;. By automorphism
of o, there exists an edge ¢/ = {i,7} of G; such that
e=¢€"7,ie e={i%j°}. By isomorphism of f, f(e') =
{f(@), f(5)} is an edge of G5. We have proved:

Vi, j € Vi, {i%,§°} € Ex = {f(0), f(§)} € B2

This means that the assignment (8) is a solution of
the CSP. This proves that o is a variable symmetry.

Similarly, let 8 € aut(G2) be an automorphism of Gs.
Then 60 induces a value symmetry. Indeed, let us apply
6 to the solution (v; = f(%))ier~ of the SGI CSP. We get
the following assignment:

(vi = £(5)%)ictn (9)

Let us consider an edge e = {i,7} of G;. By isomor-

phism of f, f(e) = {f(i), f(5)} is an edge of G5. By au-

tomorphism of 8, f(e)? = {f()?, f(5)%} is also an edge
of G5. We have proved:

V1,5 € Vi, {i,5} € E1 = {£(i)°, f(5)°} € Bz

This means that the assignment (9) is a solution for
the CSP. This proves that 6 is a value symmetry.

Corollary 8 states that all the variable symmetries,
and all the values symmetries can be broken by |V;| — 1
binary constraints together with the use of the GE-tree
method. An implementation of these symmetry break-
ing constraint requires an algorithm for computing the
automorphism groups of G; and Gs.
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6 SBDD with sub graph isomorphism

The SBDD method of [9] relies on SGI sub problems
in order to prune search. The symmetry breaking tech-
niques discussed in this paper can be applied to those
sub problems. We chose to evaluate our results on the
balanced incomplete designs (BIBD) (problem 28 in the
CSPLib [3]). A BIBD can be represented as a CSP with
a v by b matrix model. Each variable in the matrix is a
binary variable m;; with domain {0,1}. There are three
sets of constraints:

L. Yjep my; = v, foralli e I”

2. Ve my; = k, for all j € Ib

3. Yjerp myymyry = A forallie IV,i' € IV,i <4
This problem is called the master problem in what

follows. Any permutation of the rows or of the columns

is symmetry of the master problem.

For every node v explored during the search for this
master problem, a graph G, is constructed as follows.
There is a node per line 4, and a node per column j.
There is an edge between a line 7 and a column j if, and
only if, m;; = 1 in that state. For every node s in the
search tree for the master problem, and for each stored
no-good v for the master problem, the SBDD method
checks if v dominates s. If ¥ dominates s, then the node
s is pruned and the search backtracks. We say that v
dominates s if and only if there is an SGI between the
graph G, and the graph Gs;. The symmetry breaking
techniques discussed in this paper can be applied to these
SGI sub problems.

We ran experiments with various instances of the
BIBD problem. For every instance we report the time
needed for three variants of SBDD:

e A : the running time for the SBDD method of [9)]

e B : the running time for the method of A where
constraints (5) are added to the SGI sub problems

e C : the running time of the method of B where the
GE-tree method for breaking value symmetries is
used for the SGI sub problems.

All 3 variants explore the same search tree. They also
compute the same number of solutions. Those are also
reported.

We also report the ratio between the time for A, and
B and C. The geometrical means of the ratios are given.
This shows that B is about 1.8 times faster than A,
and that C is about 2.7 times faster than A on average.
C can be up to 50 times faster than the basic SBDD
method. Those results are quite impressive, given that
we need to compute graph automorphism groups before
solving each SGI sub problem. This can probably be
made even better by using an implementation of the full
GE-tree method instead of simply using (7).
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BIBD | SOLS A B C|A/B|A/C
636 6 0.3 0.15 0.1 2.0 3.0
733 10 | 041 0.31 0.21 1.3 2.0
638 13 0.8 045 0.36 1.8 2.2
1552 0 1.1 0.78 0.77 14 1.4
16 6 2 3 1.2 0.82 0.39 1.5 3.1
1331 2| 0.55 0.6 0.49 0.9 1.1
943 11 1.7 14 1 1.2 1.7
2272 0 2.3 1.7 1.7 14 14
6310 19 2.1 1 0.8 2.1 2.6
1641 1 2.1 1.2 0.29 1.8 7.2
734 35 2.8 1.3 0.97 2.2 2.9
1573 5 3.3 2 092 1.7 3.6
932 36 6.6 3.6 27 1.8 24
1054 21 7.7 6.5 4.8 1.2 1.6
735 109 17 75 6.4 2.3 2.7
2551 1 48 53 0.95 9.1 | 50.5
736 418 | 114 46 43 2.5 2.7
1994 6| 139 112 80 1.2 1.7
Mean 1.8 27
Table 2. Time for computing all solutions for BIBD.

7 Discussion

We have established two major results. First of all, all
variable symmetries can be broken by a linear number of
binary constraints if there is an all different constraints
on all the variables of the CSP. Second, symmetry break-
ing constraints of [1] can be safely used in conjunction
with the GE-tree method of [11]. Both results have been
applied to the SGI problem, which is a prevalent prob-
lem in computer science applications. In particular, the
SBDD method of [9] extensively uses solutions to SGI
sub problems in order to prune search. Experiments on
BIBD problems show that the symmetry breaking tech-
niques discussed in this paper are highly effective.

The results described in this paper can be generalized.
First of all, theorem 4 is valid for all CSPs where the vari-
ables are subject to an all different constraint. It would
be interesting to see if similar results can be obtained
for other forms of CSPs. Second, we assumed that all
graphs were undirected. The same approach for break-
ing symmetries could be applied to the SGI problem for
directed graphs. Third, the same symmetry breaking
method can be used for the graph isomorphism prob-
lem. Indeed, this amounts to assume that the graphs G;
and G have the same number of vertices and the same
number of edges.

It is worth mentioning that we presented a method
for breaking all variable symmetries, and all value sym-
metries. However, our method does not break products
of both kinds of symmetries. It remains to be seen if
a simple combination of variable and value symmetry
breaking techniques can break all such symmetries. It
is also worth mentioning that we consider symmetries
that are either variable symmetries or value symmetries.
Our work does not address cases where symmetries can
permute values and variables.

Acknowledgements. Pascal Massimino pointed out
that the SGI sub problems in the SBDD method could
contains many symmetries. Marie Puget greatly im-

78

proved the readability of this paper. I warmly thank
them both.
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Abstract

We introduce a framework for studying and solving
a class of CSP formulations. The framework al-
lows constraints to be expressed as linear and non-
linear equations, then compiles them into SAT in-
stances via Boolean logic circuits. While in gen-
eral reduction to SAT may lead to the loss of struc-
ture, we specifically detect several types of struc-
ture in high-level input and use them in compila-
tion. Linearity is preserved by the use of pseudo-
Boolean (PB) constraints in conjunction with a 0-1
ILP solver that extends common SAT-solving tech-
niques. Symmetries are detected in high-level con-
straints by solving the graph automorphism prob-
lem on parse trees. Symmetry-breaking predicates
are added during compilation. Our system general-
izes earlier work [10; 2; 29] on symmetries in SAT
and 0-1 ILP problems. Empirical evaluation is per-
formed n instances of the social golfers and Ham-
ming code generation problems. We show substan-
tial speedups with symmetry-breaking, especially
on unsatisfiable instances. In general, our runtimes
with the specialized 0-1 ILP solver Pueblo [26] are
competitive with results reported for ILOG Solver
[28]in [15].

1 Introduction

Traditional constraint programming (CP) techniques such as
generalized arc consistency (GAC) are frequently the meth-
ods of choice for hard problems arising in real-world applica-
tions. Well-known packages such as ECL'PS® [23] and ILOG
Solver [28] offer powerful environments for constraint spec-
ification and solver deployment. These systems provide for
the development of problem-specific solvers using the best
available techniques for a given problem. Another option is
reduction - a problem for which no solver is available can be
reduced to another problem for which a solver does exist.
Boolean satisfiability (SAT) is commonly used in problem
reductions, since it is widely-known and many SAT solvers
are available in the public domain. Unfortunately, in most
cases reduction-based methods are not competitive with CP
approaches developed for a problem. While CP-based tech-
niques can take advantage of problem-specific bounds to re-
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tain tighter control of the search, SAT solvers cannot. This
disadvantage is mitigated to some extent by recent break-
throughs in SAT-solving. With new exact SAT solvers such
as ZChaff [20], the size and scope of application-derived in-
stances that can be solved has widened [21]. Unfortunately,
many applications do not benefit from breakthroughs in SAT
solving due to inefficiencies introduced during encoding. The
CNF format used for SAT instances is very restrictive, and
even encoding constraints with simple linear operations can
result in a blowup in size. Another cause of inefficiency is
the loss of structure during problem reductions. Examples of
structure in constraints include linearity and symmetry.

The presence of symmetries slows down search due to the
existence of redundant search paths. The work in [10] de-
scribes how symmetries can be detected in a SAT instance
by reduction to graph automorphism and broken by adding
lexicographic ordering constraints, called MinLex symmetry-
breaking predicates (SBPs). The addition of MinLex SBPs
accelerates SAT solvers. Linear “counting” constraints pop-
ular in applications are studied in [2]. These constraints
can be efficiently expressed using ILP, where linear equa-
tions are allowed, but expressing them in CNF may be ex-
pensive. On the other hand, generic ILP solvers such as
CPLEX are sometimes not competitive with leading-edge
SAT solvers on Boolean constraints. Linearity can be pre-
served using 0-1 ILP, a problem closely related to SAT but
with an ILP-like input format. Specialized techniques devel-
oped for SAT can be adapted to 0-1 ILP without paying any
penalty for generality. Recently, several specialized 0-1 ILP
solvers such as PBS [2], Galena [8] and Pueblo [26] have
been introduced. Symmetry-breaking techniques from [10;
1] were extended to 0-1 ILP in [4]. In [15], the author pro-
poses symmetry-breaking ordering constraints for CSPs with
matrix models, but it is not clear how these constraints extend
to SAT/0-1 ILP reductions.

This work contributes a framework for structure-aware
compilation of a class of constraint programming problems
by reduction to SAT and 0-1 ILP. We generalize techniques
proposed in [10; 4] to detect symmetries in constraints via
reduction to graph automorphism. Unlike earlier work, we
detect symmetries in high-level input and add symmetry-
breaking predicates to the original specification. Our sys-
tem facilitates comparison of different encoding strategies
and SAT reductions. This is useful since recent work [29;
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5; 6] has shown that the encoding used can dramatically
affect search speed. Our goals here are (1) to generalize
earlier work on the detection of symmetries and linearity
in SAT instances so that it is applicable to a more general
class of high-level CSPs (2) to automate the tasks of re-
duction to SAT/0-1 ILP and structure detection (3) to use
this framework to study whether using structure can im-
prove the performance of reduction-based methods. Earlier
work [10] detects and breaks symmetries after problems have
been reduced to CNF. Our work generalizes these techniques
by detecting structure before reduction and using it to pro-
duce more effective encodings. Our empirical results for
the social golfer and Hamming code generation problems
show that breaking symmetries during reduction vastly im-
proves the performance of both SAT and 0-1 ILP solvers.
On many instances, our runtimes are competitive with re-
sults reported using ILOG Solver [28] in [15]. Symme-
tries detected by our method can be used by any constraints
solver, not just one that assumes reduction to SAT, since
we detect symmetries in high-level input. While we add
SBPs during preprocessing, there are several methods that
focus on breaking declared symmetries during search [25;
13] that can make use of the symmetries we detect.

The rest of the paper is organized as follows. Section 2
discusses background and previous work. Section 3 explains
how symmetries are detected and broken in high-level con-
straints. Section 4 discusses more comprehensive symmetry-
breaking, with empirical results in Section 5. Section 6 con-
cludes the paper. The details of compilation to SAT and 0-1
ILP and the encodings we use are discussed in the Appendix.

2 Background and Previous Work

Boolean Satisfiability (SAT). A SAT instance consists of a
set of 0-1 variables V, and a set of clauses C, where each
clause is a disjunction of literals. A literal is a variable or its
complement. The SAT problem asks to find an assignment to
the variables in V that satisfies all clauses in C, or prove that
no such assignment exists.

0-1 ILP. 0-1 ILP allows a CNF formula to be augmented
with Pseudo-Boolean (PB) constraints, or linear inequalities
with integer coefficients of the form: (a1x; + asxz + ... +
anxy, < b) where a;,b € Z, a;,b # 0, and x; are literals of
Boolean variables.

CNF vs. 0-1 ILP. Recent work has shown that formulat-
ing problem instances as 0-1 ILP instead of SAT can result
in accelerated search. Specialized 0-1 ILP solvers have been
developed in [2; 8; 26], and have been shown to perform bet-
ter than both leading-edge SAT solvers [20] and generic ILP
solvers such as CPLEX on some 0-1 ILP formulas. How-
ever, this is not always the case. For an application, there
can be several reductions to SAT, and some encodings are
more difficult to solve than others. CNF encodings for circuit
layout applications in [2] contain large numbers of symme-
tries, increasing their difficulty. In [29], Warners proposes
an efficient encoding where a PB constraint is replaced by
a linear number of CNF clauses. In [5], a tree-based lin-
ear conversion is proposed to translate 0-1 ILP constraints to
CNF. More recently, [6] discusses a GAC-preserving encod-
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ing, with a solver modification that results in SAT instances
that are solved faster than their 0-1 ILP counterparts. Our
approach constructs a parse tree and instantiates Boolean cir-
cuits for addition, multiplication and subtraction. Most previ-
ous work performs reduction to SAT on a per-problem basis,
but we provide a high-level specification language in which
constraints can be easily expressed and conversion to SAT/0-
1 ILP is automated for all problems. Given the impact that
efficient encodings have on search speed, our framework is
designed so that different encodings can be easily plugged
in and used with our symmetry-breaking infrastructure. Our
work is relevant to the recent Al 2 —SPEC project [7], which
aims to provide a formal specification language for all prob-
lems in A P, and translate them into SAT. However, [7] does
not address symmetry and linearity during compilation.

Symmetry detection and breaking. A symmetry of a dis-
crete object is a reversible transformation of its components
that leaves the object unchanged, for example, permutations
of graph vertices that map edges into edges. Symmetries oc-
curring in a SAT instance indicate the presence of redundant
search paths, and breaking symmetries can prune the search
tree and reduce search time. Detection of symmetries in CNF
formulas by reduction to graph automorphism is proposed in
[10]. A graph is built from a CNF formula such that there
is a one-one correspondence between symmetries of the for-
mula and the graph. The graph automorphism software Nauty
[17] is used to detect symmetries in the graph. The symme-
try group induces an equivalence relation on the set of vari-
able assignments for a CNF formula. Lex-leader symmetry-
breaking predicates (MinLex SBPs) that allow only the lexi-
cographically smallest assignment in an equivalence class are
defined in [10] . A more efficient SBP construction is pro-
posed in [3]. Symmetry detection via graph automorphism
is extended to 0-1 ILP in [4]. Our work generalizes these
methods to a broader class of problems that use integer coef-
ficients, non-binary variables and non-linear operations. In-
stance symmetries are detected at a higher level, eliminating
the risk that some symmetries may be obscured during re-
duction. In [15], the author defines high-level lexicographic
(MinLex), anti-lexicographic (anti-Lex) and multiset order-
ing constraints for CSPs with matrix models that exhibit sym-
metry. However, row and column symmetries must first be
identified in matrix models for individual problems and con-
straints designed accordingly. Our system allows symmetries
to be automatically detected in any problem instance, not just
a matrix model, and used by any solver. This functionality
may be useful to methods that focus on declared symmetries
during search. A modified search procedure that performs
partial symmetry-breaking for matrix models is proposed in
[25], where SBPs are specified for a stabilizer set that is a sub-
group of the symmetry group. We find generators of the sym-
metry group using the graph automorphism program Saucy
[11], and these generators can be used by the algorithms in
[25] to compute SBPs. Another related work is [13], which
takes as input some generators of the symmetry group and
uses them to check for dominating elements in the search tree.
Since our system automatically detects generators it may be
applicable to such algorithms. At present, we use only Min-
Lex SBPs from [10]. We have not yet studied other types of
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SBPs such as those in [15]. Symmetries in linear program-
ming problems have also been discussed in [18].

3 Symmetry Detection

Unlike earlier work [10; 4], which detects symmetries in
SAT/0-1 ILP instances after reduction, we detect symmetries
in high-level input using the parse tree created from the con-
straint specification. Symmetries in high-level input corre-
spond directly to symmetries of the instance and can be used
to prune the search tree by multiple solvers. Symmetries de-
tected in a SAT instance can only be used by SAT solvers,
or must be traced back to the original instance to understand
their significance. This reconstruction may be difficult. Also,

" some symmetries may be obscured during reduction. For ex-
ample, counting constraints are symmetric, but the most com-
pact encodings for these constraints [29] use comparator cir-
cuits which are not symmetric. The methods we describe here
efficiently detect symmetries in high-level constraints and add
SBPs to eliminate redundant search paths.

Detecting symmetries in CNF and 0-1 ILP via graph au-
tomorphism was first proposed in [10]. We follow a similar
approach for high-level symmetry detection. A parse graph is
built from the constraints such that there is a one-to-one cor-
respondence between the symmetries of the constraints and
the graph symmetries. We describe the graph construction
only for the arithmetic operators ‘+’, ‘-’, and ‘*’, but it can
be extended to include more arithmetic or logical operators
by adding more colors. An example formula in our specifi-
cation language and the corresponding graph construction are
shown in Figure 1. The formula declares two 3-bit integers x;
and x», and the constraint x;2 4 x,2 == 25. The specification
language we use is described in the Appendix. Vertex shapes
in the figure indicate different colors. The figure shows the
symmetry between vertices for x| and xs.

int3 x1, x2; Formula

x1*x1 + x2*x2 == 25;
x1l >= 1;
X2 >= 1;
Figure 1: Constraints declaration in our specifica-

tion language and the corresponding parse graph con-
struction. Vertices are shaped differently to indicate
different colors.

The graph construction is outlined as follows.

Step 1. Each binary variable x; in a formula is represented by
two positive and negative literal vertices, v; and v;/, which are
given the same color. The vertices v; and v’ are connected by
an edge to ensure Boolean consistency. Each multi-bit vari-
able x; is represented by a single variable vertex v;. A unique
color is associated with each bit size.

Step 2. For each constraint C;, two vertices 7; and R; rep-
resent the constraint type (<,>,==,! =) and RHS value re-
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spectively. A unique color is associated with each constraint
type and RHS value. The vertices 7; and R; for a constraint C;
are connected by an edge. Additionally, for each C;:
Step 2a. Variables/literals are grouped by the priority of oper-
ations in which they occur. Multiplication between variables
or by coefficients has the highest priority. ‘+’, ‘-” and ‘*’ op-
erators have distinct colors. Each distinct coefficient value in
the formula is also given a unique color. Variables connected
by a “*’ operator are grouped under a single coefficient vertex
that represents the product of their coefficients (if the prod-
uct is unity, this vertex is omitted). This coefficient vertex is
in turn attached to a multiplication vertex. Variables/literals
not involved in multiplication operations are grouped by co-
efficient, with all variables having the same coefficient value
connected to a common coefficient vertex.
Step 2b. After grouping multiplicative terms, we have single
variables/literals or multiplicative groups connected by ‘+” or
‘-’ operations. Variables/groups associated with a ‘+’ sign are
connected directly to the constraint type vertex 7; (‘+’ is the
default operation, so there are no special vertices for it). Vari-
ables/groups associated with a ‘-’ operation are connected to
a negation vertex to indicate subtraction. The negation vertex
is connected to the type vertex 7;.
Theorem 3.1. Assume that a colored parse graph is con-
structed from a given formula of constraints as outlined
above. Then, the symmetries of the constraints correspond
one-to-one to the symmetries of the graph.

Proof. We first prove that a symmetry in the constraints is
a symmetry in the parse graph. Consider a formula with a set
V of formula variables and a set C of constraints. Consider
two variables, vi,v, € V, and let Cy,C; C C be the sets of
constraints that v; and v, occur in respectively. Let vy and v,
be symmetric. Then, for every constraint ¢ in Cj there is a
corresponding constraint in C; that is its symmetric image.

We construct a colored parse graph G(X,E) for the for-
mula where X is the set of vertices in the graph and E the
set of edges. Let x; and x, be the vertices created for v,
and vy respectively, and E; and E; be the edges incident on
x1 and x;. Assume that x| and x; are not symmetric in the
graph construction. For this to be true, it must be true that
the edge sets E| and E, are not symmetric. Without loss of
generality, assume there exists some edge e¢ € E; that does
not have an image in E,. From the graph construction rules,
an edge can connect a variable vertex to one of the following:
(i) a complementary literal (ii) a constraint type vertex (for
addition with unit coefficient) (iii) a negation vertex (for sub-
traction with unit coefficient) (iv) a multiplication vertex (for
multiplication with unit coefficients) and (v) a coefficient ver-
tex that is connected to a multiplication/negation/constraint
type vertex. In the first case, assume that e connects x; to a
complementary literal vertex, and x, does not possess such
an edge. Then, v, is not a binary variable, and it cannot be
symmetric to v;. In the second case, e indicates the presence
of a constraint ¢ € C; where v; is added with a coefficient
of 1. Since v; and v, are symmetric in the formula, there
must be a constraint in C, that matches c. However, if such a
constraint existed, there would be an edge representing it in
E,, symmetric to e. The same argument applies to cases (iii)
and (iv). The only special case occurs in (v), when variables
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are multiplied together with different coefficients. We use the
product of all coefficient values as the resulting coefficient.
This reflects the fact that multiplication is commutative, i.e.
(av1)(bv2) = (ab)(v1)(v2) and (cv3)(dva) = (cd)(v1)(v2), s0
if ab = cd then the expressions are symmetric.

For the other direction, we note that symmetries in the
parse graph can only exist between vertices of the same color.
Additional vertices are created to represent operations, but
they can never be mapped to variable vertices. Thus, the only
spurious symmeltries we need to consider are between vari-
able vertices of the same bit size. It is clear that the proof for
the forward direction can be reversed for this case, i.e. edge
sets incident on both vertices must be symmetric and repre-
sent symmetric constraints in the formula.

O

Avoiding abstraction overhead. Our graph construction
generalizes earlier work in [10; 4] for CNF and 0-1 ILP for-
mulas. Often, generalization involves paying a performance
penalty - in this case, dealing with a more expressive in-
put format that includes non-linear constraints can introduce
additional vertices. This penalty can be avoided by modi-
fying the graph when special cases are detected. Consider
the case where an instance contains only 0-1 ILP constraints
with no non-linear operations and only 1-bit variables. IN
this case, our construction is designed to mimic the con-
struction in [4], and produce exactly the same graphs. For
pure CNF formulas, some modification is required to produce
graphs as compact as the specialized constructions from [10;
1]. Since there are no coefficients or RHS values, construc-
tions in [10] and [1] use only two types (colors) of vertices:
literal and clausal. A clause with > 2 literals is represented
by a clausal vertex, connected to its literal vertices. Bi-
nary clauses are represented by an edge between both liter-
als. Graphs created by our system require constraint type and
RHS value vertices for each constraint. However, CNF for-
mulas are easy to detect. A CNF formula involves only binary
variables. All coefficients are unity. Clauses can be expressed
in two ways: as the logical-or (“||””) of literals, or as the ad-
ditive constraint that the sum of literals must be > 1. These
characteristics can be tested for, and graph construction al-
tered accordingly.

Symmetry-Breaking Predicates (SBPs). The parse graph
is analyzed for symmetries using the efficient automorphism
program Saucy [11], which returns generators of the sym-
metry group. We generate high-level lex-leader SBPs from
the generators, and add them as constraints to the original in-
stance. These SBPs are also compiled into SAT. For multi-bit
variables, SBPs may be large and complex if a generator has
several cycles (for a detailed description of cycles in a gen-
erator, and the resulting predicates, see [10]). We break only
the first few (1 or 2) cycles in multiple-cycle generators for
simplicity. For binary variables, we implement the efficient
linear-sized SBP construction in [3] and add these SBPs to
the CNF formula. The problems we test here all use matrix
models with binary variables. The design of efficient SBPs
for multi-bit variables is a direction for future research.
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4 Comprehensive Symmetry Breaking

In this section, we discuss simple extensions to increase the
system’s coverage of symmetries.

Symmetries in Associative Expressions. Many of the
operators that we support, such as ‘+’ and ‘*’ are associa-
tive, i.e. x1+x2+x3 =x2+x3+x and (x] +x2) +x3 =
X1+ (x2 +x3). However, parse trees built from constraints
often do not reflect this symmetry. In parsing, language
rules are recursively matched. This imposes a non-symmetric
structure on the parse tree. We avoid this non-symmetric
structure by grouping all variables connected by an associa-
tive operation together. For example, given the expression
x1 +x2 +x3 the parser first matches x; +x; as a single group,
and then matches x; and x; individually, which is not sym-
metric. Our construction treats all ‘+’s as a single ‘+’ opera-
tion connecting a number of expressions, which may be either
identifiers or multiplicative terms. Symmetry in associative
operations can also be missed when nested parentheses are
used. Our system currently does not support the nesting of
expressions through the ‘(" and ‘)’ operators, but can be eas-
ily extended to do so. Here we discuss symmetry-detection
for this case. Detecting symmetries in associative operations
has been addressed in the CGRASS system [12]. However,
CGRASS detects symmetries in an ad-hoc way, by keeping
track of the number and type of constraints a variable occurs
in and matching these for different variables. Detection via
graph automorphism is more comprehensive, and given effi-
cient software such as Saucy, incurs hardly any overhead. Our
method, like CGRASS, is not complete - it uses only the gen-
erators of the symmetry group found by Saucy. For complete
symmetry-breaking, the full group would have to be recon-
structed from the generators. This has been found to be very
time-consuming [10], whereas using only generators is more
efficient and often just as effective. CGRASS also undertakes
simplification of constraints in other ways, which our system
does not cover.

Consider the expressions x; + (x3 +x3) +x4 and x; + (x2 +
(x3 4 x4)), which are the same, but are evaluated differently
due to parenthesization. The order of evaluation imposed by
parentheses hides the symmetry between variables, since ex-
pressions enclosed within ‘() symbols are treated as separate
sub-expressions. Evaluating parenthesized expressions sepa-
rately does not account for symmetries due to associativity of
operations. However, it is possible to simplify high-level in-
put so that such symmetry is preserved. We list simplification
rules for the operators ‘+’, ‘-’ and ‘*’,

Rule 1. Nested () symbols must be simplified before the out-
ermost () operation can be simplified.

Rule 2. If an expression within () symbols is flanked by ‘+
and ‘-’ operations on the left and right sides, parentheses are
unnecessary, €.g., in ...+ (x; +x2) + ... the () operators can
be ignored.

Rule 3. If an expression within () symbols is multiplied by
a single term, the resulting expression can be evaluated, e.g.,
X2 % (X1 +x4) is written as xp x| +xp *x4. It is possible to
simplify the parenthesized products, e.g.(x] +x2) * (x3 + x4)
by implementing multiplication rules, but this may cause a
size blowup in graphs for large expressions.
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(%, + x5)

<= 2

Explicit
Symmetry

Hidden
symmetry

Figure 2: Associative symmetry with parenthesized
sub-expressions: x| and x3 are symmetric but the orig-
inal parse tree is asymmetric, since the sub-expression
is represented with a separate node.

The above list of rules can be extended further, but it al-
ready facilitates the detection of symmetries in simple asso-
ciative expressions. This is illustrated in Figure 2, where x;
and x3 are symmetric, but the symmetry is not visible in the
parse graph. With the proposed modifications the associative
symmetry is preserved. Our system already implements this
feature for ‘+’ and ‘-’ operations without parentheses, where
we ignore the order in which the operations occur.

Value Symmetry. Our work so far detects formula sym-
metries, that are determined by the occurrence of variables in
constraints. However, value symmetries that occur between
the actual domains of variables can also be significant. Order-
ing constraints for declared value symmetries are discussed
in [15], and [16] describes an algorithm to detect and break
value symmetries during search. We discuss how our system
may be extended to detect value symmetry.

Value symmetry can arise from operators that control the
value of a variable, e.g. the complement operation on binary
variables, i.e. @’ =1—a. The mapping a <+ a' is known as
a phase shift symmetry. The construction from [10] does not
always account for phase-shift symmetries, but [1] proposes
an improvement that detects phase-shift symmetries in almost
all cases. For the non-binary case, such symmetries may arise
in problems with a cyclic nature, for example, scheduling
problems. Any scheduling solution for {Monday, Tuesday,
Wednesday} can often be shifted to {Tuesday, Wednesday,
Thursday}. Such shifts can also be described by an opera-
tor - if a variable’s domain is a cyclic group modulo 4, we
can say a” = (a+ 1)%4. Intuitively, the graph construction
to represent a cyclic group of values is a cycle of vertices.
However, if the domain size is > 2, this will result in spuri-
ous symmetries if all vertices are given the same color, since
a" can map to (b")", and so on. Each vertex in the cycle must
be given a different color for this construction to work. This
allows cyclic symmetries to be detected. The SBPs we use
may need to be modified for this case, and our ongoing work
is focused on proving correctness in SBP construction.

Giving each value in a variable’s domain a different color
prevents the detection of value symmetries between values in
the domain of the same variable. A set of constraints satisfied
when a = 0 may also be satisfied when a = 2. This type of
symmetry-detection is addressed in [16]. Adapting our tech-
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niques to detect such symmetries is more difficult, since it
may require the enumeration of variable and constraint values
in the graph, resulting in very large and complex graphs. An-
other focus of our current work is developing efficient graph
constructions for this case.

S Empirical Results

We test our system on constraint programming problems with
matrix models with row and/or column symmetries from [15].
Each problem is modeled using the constraints described in
[15] and specified in our system’s input language, followed
by symmetry detection and compilation to SAT and 0-1 ILP.
SBPs are added to the CNF or ILP instances. We use Saucy
[11] to detect symmetries, ZChaff to solve SAT instances, and
the new 0-1 ILP solver Pueblo [26] to solve 0-1 ILP instances.
We show results for the balanced incomplete block design
problem (BIBD), social golfer problem (SG) and Hamming
code generation (HC) problems. Results here are obtained
using a Intel Pentium processor processor at 1GHz for the
SG and HC problems, and an Intel Xeon dual processor at
2 GHz. Both systems have 1GB of RAM and run RedHat
Linux 9.0. ZChaff and Pueblo runtimes are the average of 3
starts. Timeout is set at 600 seconds. For BIBD instances,
we use the Xeon processor at 2GHz to compare our encod-
ings with those in [24]. For SG and HC instances, we use the
1GHz Pentium processor to allow runtime comparisons with
[15]. Symmetry-breaking ordering constraints in [15] are im-
plemented using ILOG Solver and tested on a 1 GHz Pen-
tium processor running Windows XP. We note that [15] also
reports a “number of failures” metric, which is the number of
incorrect decisions made by Solver at nodes in the search tree.
We do not have access to Solver and the SAT/0-1 ILP solvers
we use do not report such a statistic. The SBPs we use are
added as part of the instance and a SAT/0-1 ILP solver can-
not distinguish between SBPs and regular constraints. There-
fore, we cannot report a similar metric for our techniques,
and runtime is the only comparable statistic!. However, we
use exactly the same hardware as [15] so that runtime com-
parisons are fair. Since it is not possible for us to use Solver,
we use results directly from [15].

Balanced Incomplete Block Design Problem (BIBD).
This problem asks to find & > 0 subsets of a set V of v > 2
elements such that each subset contains exactly k elements
(v > k > 0), each element appears in exactly r > 0 subsets,
and each pair of elements appears together in exactly A > 0
subsets. An instance is expressed as the 5-tuple (v,b,r,k,A),
and named bibd (v, b, r, k, A) in the results table. We use
the matrix model described in [15] (originally from [19]).
We initially tested encodings with and without SBPs using
ZChaff and Pueblo on the large instances used in [15] (origi-
nally from [9]). However, our observation on these instances
was that adding MinLex SBPs actually affects performance
negatively for the Pueblo solver (ZChaff is unable to solve
most instances within the time limit, with or without SBPs).
For satisfiable instances, this is not unusual and has been
noted earlier in [10]. When there are several solutions, adding

'Due to lack of space, we cannot report both number of failures
and runtime from [15]
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SBPs may prevent some solutions from being found earlier in
the search. This is borne out by our results on other prob-
lems. However, this does not explain the poor performance
on unsatisfiable instances of this problem, which may be be-
cause MinLex SBPs are not useful in this case. In [15], sev-
eral types of SBPs are tested, and the most effective SBPs
for the BIBD problem anti-Lex ordering constraints. Since
anti-Lex orderings are the reverse of MinLex orderings, they
permit different assignments than MinLex, and may be more
helpful in finding solutions for BIBD. However, we use this
problem to illustrate the importance of efficient encodings.
SAT encodings for the BIBD problem have been developed
in [24], where the instances used are difficult for many SAT
solvers, but are solved by CP solvers in a few minutes. These
encodings are available at [14], with and without symmetry-
breaking clauses from [24]. Table 1 shows a comparison of
both encodings. The first column gives the instance param-
eters, followed by Saucy statistics for high-level symmetry-
detection. This is followed by ZChaff and Pueblo runtimes
for our encoding, and ZChaff runtimes for encodings from
[24] with and without SBPs. Pueblo does not accept instances
without 0-1 ILP constraints. Both Pueblo and ZChaff solve
all instances with our encoding in a few seconds, but ZChaff
times out on several instances from [24]. All instances pos-
sess symmetries, but Saucy runtimes are negligible.

Social Golfers (SG). This problem seeks to divide g x s
golfers into g groups of size s for each of w weeks. Each
golfer must play once a week. Any two golfers play in the
same group at most once. A problem instance is described
by its parameters (g,s,w) and is named sg (g, s, w) in the
results table. We use the modified 3-D matrix model from
[15], and the same instances used in [15]. Instances are tested
on ZChaff and Pueblo with and without SBPs.

Results are shown in Table 2. The first column gives
instance parameters (sg for SG instances).followed by the
number of symmetry generators and runtime for Saucy. Next,
we show approximate instance sizes and runtimes with and
without SBPs. For SAT conversions, we show the number of
variables and clauses. For 0-1 ILP instances we also show the
number of PB constraints, which is the same as the number of
high-level constraints in the instance specification. The best
runtimes for a given instance are boldfaced. For this prob-
lem, adding SBPs speeds up Pueblo considerably on unsatis-
fiable benchmarks. For all cases where Pueblo is slower with
SBPs, the instance is satisfiable. ZChaff is faster with SBPs
for both SAT and UNSAT cases, but is not competitive with
Pueblo. All instances possess large numbers of symmetries.
The last column shows results reported in [15]%. Pueblo is
usually competitive with Solver results from [15] on SAT in-
stances without the addition of SBPs. However, on UNSAT
instances, SBPs are needed to make it competitive, and are ef-
fective in doing so. For the larger instances, Saucy runtimes
are significant. This increases the overall time for our flow.
However, [15] requires SBPs to be designed and implemented
separately for individual problems. Our system is automated
and generalized. Moreover, [15] reports results for four mod-

ZResults in [15] are on a logarithmic scale, so our numbers are
not exact, but all runtimes are rounded down for fairness.
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els of SBPs. Two of these are basic SBPs that assign values
to a subset of the variables in an instance, thus forcing as-
signments that satisfy constraints on the remaining variables.
The other two models use MinLex and anti-Lex constraints.
Here, we report the best results among all models. Given an
instance it may not be clear which model to use for best re-
sults until several have been tried. There is no model in [15]
which consistently performs well for this problem. Our sys-
tem uses only MinLex SBPs.

Hamming Code Generation (HC). This problem seeks
to find b—bit code words to code 1 symbols, where the Ham-
ming distance between two symbols is at least d. An in-
stance is specified by the parameters (n,b,d). We use the
matrix model from [15], and report results with and without
symmetry-breaking in the last four rows of Table 2.- The in-
stances hc (10, 15,9) and hc(12,. 20, 12) are unsat-
isfiable, and the other two are satisfiable. [15] Results for the
first two instances are available in [15], the last two are listed
as N/A. We observe that symmetry-breaking is useful for both
SAT and UNSAT instances, with greater benefit for UNSAT
instances. Adding SBPs speeds up ZChaff in all cases, but it
is not competitive with Pueblo and Solver. Results reported
from [15] are the best out of several combinations of lexi-
cographic and multiset-ordering SBPs. However, several of
these combinations are not competitive with our results using
Pueblo with SBPs.

Overall, the detection of structure - both linearity through
0-1 ILP and symmetries by the addition of SBPs - improves
performance considerably for both Pueblo and ZChaff. For
most unsatisfiable instances, the best results are obtained us-
ing Pueblo with SBPs added. For satisfiable instances, Pueblo
is not improved by SBPs, and in some cases is actually slower.
However, ZChaff benefits from SBPs for both SAT and UN-
SAT instances. This may be because SBPs have greater im-
pact on variable orderings for Pueblo. In most cases Pueblo’s
results are competitive with results reported for Solver in [15]
over a variety of symmetry-breaking ordering constraints.
For the cases where Pueblo is faster with SBPs, the aver-
age speedup over its performance without SBPs is 83.2, not
including timeouts for the no-SBP version. On satisfiable
instances, the average slowdown with SBPs is 5.6, but it is
much less than that in most cases and there are no timeouts
with SBPs. Our system uses academic solvers whose source
code and/or binaries are publicly available, but runtimes are
comparable with those of Solver, a highly optimized commer-
cial tool.

All results here use problems with matrix models, which
frequently possess large numbers of symmetries by construc-
tion. While row and column symmetries can be detected man-
ually in a matrix model, our system provides a way to detect
and break these symmetries automatically without having to
give it any knowledge of the problem semantics. Moreover,
it is not restricted to matrix models, and may be used for
problems that are likely to have symmetry, but for which ma-
trix models do not exist. It is also applicable in cases where
added constraints may disrupt the symmetry in matrix mod-
els, e.g. for instances with “customized” requirements. For
example, in the social golfer problem, we can add the con-
straint that certain pairs of golfers must never be in the same
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Symmetry Stats Our Encoding Encoding in [24]
Instance Symm. | Gen. | Saucy W. SBPs W/o. SBPs W. SBPs | W/o. SBPs
Name Time | ZChaff | Pueblo | ZChaff | Pueblo | ZChaff ZChaff
bibd(7,7,3,3,1) 2.54e7 12 0 0.08 0 0.01 0 0.29 T/0
bibd(6,10,5,3,2) || 2.61e9 14 0 0.54 0 0.03 0 54.24 T/0
bibd(7,14,6,3,2) || 4.3%¢14 19 0.01 0.38 0.01 1.25 0.01 T/O T/O
bibd(9,12,4,3,1) || 1.73el4 19 0.02 0.64 0.01 1.89 0.013 T/O T/O
bibd(8,14,7,4,3) || 3.51el5 | 20 0.02 0.72 0.01 1.57 0 T/O T/O

Table 1: ZChaff results and Saucy statistics for BIBD instances using our encodings and those in [24],
with and without SBPs. T/O indicates timeout at 600s. Pueblo is not tested on encodings in [24], since

they are not available as 0-1 ILP.

Saucy Stats - Size with SBPs Size w/o SBPs

Instance G. Tm. CNF - ZChaff 0-1 ILP - Pueblo CNF - ZChaff 0-1ILP - Pueblo Sol
Params Var. ClL Tm. Var. Cl. PB Tm. Var. CL Tm. Var. CL PB Tm. ver
sg(2,5,4) 16 | 0.02 6311 33K 0.06 | 1694 | 1361 141 .003 6139 32K 0.12 1522 721 141 0.01 .01
5g(2,6,4) 18 | 0.02 9076 48K 0.14 | 2418 | 1835 178 006 8868 46K 0.15 2210 | 1057 178 0.01 0.1
sg(2,7,4) 20 | 0.03 12K 65K 0.31 | 3270 | 2373 219 0.01 12041 63894 0.14 3026 | 1457 219 0.02 5
5g(2,8,5) 24 | 0.07 22K 125K 1.25 | 5320 | 3761 300 0.02 22K 123K 0.89 4962 | 2401 300 0.02 30
sg(3,5,4) 25 | 0.09 26K 155K 227 | 5645 | 4138 249 0.05 26K 152K T/O 5222 | 2521 249 7.54 0.5
5g(3,6,4) 28 | 0.14 37K 221K 1.63 | 8072 | 5629 321 0.09 37K 219K T/O 7562 | 3673 321 25.7 0.4
sg(3,7,4) 31 0.21 51K 299K 7.7 10K | 7336 402 0.17 50K 296K 120 10K | 5041 402 24.8 0.5
sg(4,5,4) 34 | 030 70K 430K 11.5 13K | 9115 382 0.25 69K 426K T/O 12K 6081 382 T/O 0.2
58(4,6,5) 42 | 075 134K 837K T/O 23K 15K 556 0.5 132K 831K T/O 22K 11K 556 T/O 2
sg(4,7,4) 42 | 0.79 135K 829K T/O 25K 16K 634 0.62 134K 824K T/O 24K 12K 634 T/O 5
sg(4,9,4) 50 1.75 | 221K | 1.35M | T/O 42K 25K 950 141 220K 1.34M T/O 40K 20K 950 T/O 25
sg(5,4,3) 33 | 0.26 64K 394K 171 12K 8502 340 0.37 64K 391K 315 11K | 5701 340 0.07 0.1
5g(5,5,4) 43 | 0.89 145K 911K 300 25K 16K 540 1.3 144K 906K T/O 24K 12K 540 1.17 0.9
sg(5,7,4) 53 | 279 | 281K | 1.76M | T/O 50K 30K 915 1.8 279K 1.75M T/O 48K 23K 915 T/O 7
5g(5,8,3) 53 23 250K | L.SIM 107 48K 29K 1050 | 1.76 | 248K 1.5IM T/O 47K 23K 1050 | T/O 0.6
5g(6,4,3) 40 | 0.61 118K 733K 496 21K 14K 456 0.86 117K 729K T/O 20K | 9937 456 0.47 0.5
58(6,5,3) 46 1.25 182K | 1.13M | T/O 33K 20K 651 1.9 181K 1.12M T/O 31K 15K 651 1.02 0.6
58(6,6,3) 52 | 251 260K | 1.6IM | T/O 47K 28K 882 2.57 259K 1.60M T/O 46K 22K 882 0.1 50
5g(7,5,3) 54 | 3.06 | 301K | 1.89M | T/O 52K 32K 847 3.85 299K 1.88M T/O 50K 24K 847 1.9 1K
sg(7,5,5) 68 114 | 551K | 3.55M | T/O 87K 54K 1015 | 59.2 | 547K 3.53M T/O 84K 41K 1015 37 20
he(10,15,9) 38 | 0.07 32K 206K 93.4 | 5842 | 3762 45 0.59 32K 205K T/O 5552 | 2701 45 T/O 7.2
he(10,10,5) 28 | 0.04 19K 122K T/O | 3892 | 2487 45 22.2 19K 121K T/O 3702 | 1801 45 T/O 0.4
he(10,15,8) 38 | 0.07 32K 206K T/O | 5842 | 3762 45 275 32K 205K T/O 5552 | 2701 45 286 | N/A
hc(12,20,12) 50 | 0.19 66K 426K T/O 11K | 7023 66 2.77 65K 10K 424K | 5281 10K 66 T/O | N/A

Table 2: Results for social golfers and Hamming code generation problems. Best results for a given instance are
boldfaced. T/O indicates timeout at 600s. The last column shows results from [15]. ‘K’ and ‘M’ in instance
sizes indicate multiples of one thousand and one million.For UNSAT instances, using Pueblo with SBPs generally
performs best. For SAT instances Pueblo is slowed down by SBPs, however ZChaff benefits from SBPs even on
SAT instances. All runtimes are in seconds. N/A in the last two rows indicates that results for these instances are

not shown in [15].

group. The present matrix model has symmetry along all
three dimensions - groups, weeks and golfers. Adding pair-
wise constraints for specific golfers would leave only partial
symmetry between golfers, which poses more effort for man-
ual identification of symmetries. However, with our method
added constraints can be analyzed and surviving symmetries
detected without any modification. Even if row/column sym-
metry between certain rows and columns is destroyed, we can
still detect symmetries that exist between specific variables in
these rows and/or columns automatically. We also hope to
identify problems that can be analyzed using our system, but
for which matrix models are not applicable.
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6 Conclusion

We present an integrated framework for studying and solving
a class of CSPs by reduction to SAT and 0-1 ILP. The frame-
work provides for the specification of constraints in a high-
level language and automatic compilation into SAT. Special-
ized methods for SAT have improved considerably over the
last 10 years, but these improvements do not necessarily ap-
ply to more sophisticated domains because SAT encodings
are not always possible and may introduce inefficiencies due
to the loss of structure in problem reductions. Our system au-
tomatically detects certain types of structure, such as linearity
and symmetries during compilation and uses them to produce
more efficient encodings. Linearity is preserved through the
use of 0-1 ILP, a comparatively more sophisticated problem
with specialized solvers that can use leading-edge techniques
for SAT solving.

We extend earlier work on symmetry-detection in SAT and
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0-11ILP [10; 4] to a more general class of CSPs that may use
non-binary variables and non-linear operations. Symmetries
are detected in high-level input by solving the graph automor-
phism problem on parse trees. MinLex symmetry-breaking
predicates (SBPs) from [10] are added to the resulting SAT/0-
1 ILP encodings. Other work [15] has focused on symmetry-
breaking ordering constraints for known or declared symme-
tries in generalized CSPs, but we detect and break symme-
tries automatically. Empirically, we evaluate our system on
the balanced incomplete block design (BIBD), social golfers
(SG) and Hamming code generation (HC) problems. We de-
tect large numbers of symmetries in all instances, and show
that breaking symmetries produces substantial speedups for
the 0-1 ILP solver Pueblo [26] on unsatisfiable instances of
the SG and HC problems. When symmetry-breaking is useful
on unsatisfiable instances, the average speedup is 83.2 over
the no-SBPs case (not including several timeouts). For satis-
fiable instances, there is a small slowdown with SBPs, but
no timeouts. For CNF reductions, the SAT solver ZChaff
[20] exhibits speedups for both satisfiable and unsatisfiable
instances when symmetries are broken. Overall, CNF reduc-
tions are not competitive with 0-1 ILP reductions. A some-
what surprising observation is that on many satisfiable in-
stances, Pueblo is slowed down by the addition of symmetry-
breaking predicates (SBPs). This may be because adding
SBPs to satisfiable instances prevents some solutions from
being found by Pueblo. More effective SBPs need to be de-
veloped for this case. Overall, our runtimes for Pueblo with
SBPs added are competitive with Solver runtimes reported in
[15] on unsatisfiable instances of the SG and HC problems.
We also show that our circuit-based CNF encodings for the
BIBD problem are more efficient than those proposed in [24].
In general, our system facilitates the comparison of differ-
ent SAT encodings, since any encoding can be plugged into
our framework and automatically tested on several instances.
This is useful since encodings often have a huge impact on
search speed [29; 2; 5; 6]. Symmetries detected in high-level
input can be used by any constraints solver and by other meth-
ods that add SBPs for declared symmetries during search [25;
13]. Moreover, SBPs can be added to a SAT/0-1 ILP re-
duction even if the actual encoding used obscures symme-
tries, since they are detected before reduction. We provide
an extensible framework that can be easily modified to in-
clude other types of constraints and operations, and discuss
two such extensions for symmetries due to associative op-
erations and value symmetries. We plan to release code in
the public domain to facilitate experimentation with different
problems and encodings. At present, more information on
this project, and contact addresses for source code, binaries
and sample input files are available at [27].

Our current and future work is focused on extending our
system to allow more comprehensive coverage of symme-
tries, e.g. symmetries in associative expressions and value
symmetries briefly discussed in Section 4. We plan to extend
our compiler to allow more operations and different types of
constraints, and to support more OPL-like [22] syntax. An-
other direction is the development of efficient SBPs for non-
binary variables and of symmetry-breaking constraints that
are more effective on satisfiable instances.
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Appendix: Compilation into SAT/0-1 ILP

Below, we describe how constraints are translated into CNF
and 0-1 ILP. We use a C-like language for high-level con-
straint specification, and a customized parser that builds a
parse tree for the system of constraints. Compilers for SAT
and 0-1 ILP then walk the parse tree and translate the con-
straints into CNF/0-1 ILP formulas. The formulas are handed
to SAT/0-1 ILP solvers and solutions are translated back into
a form that is meaningful to the original problem. The input
language uses C-like syntax to declare variables and specify
constraints. Variables are specified as unsigned integers of
varying bit sizes, e.g. int1 represents a 1-bit (binary) vari-
able, etc. The mathematical operators allowed are addition
(4), subtraction (-) and multiplication (*). Relational oper-
ators may be <=, >=, ==, and ! = (not-equal constraint).
Complement notation is allowed to express the negative literal
for a binary variable (x1’ for x1). Numeric constants are al-
lowed as coefficients or as the right-hand-side (RHS) value of
equations. Division is not presently supported. The compiler
also does not support the use of nested parentheses or unary
negation but can be easily extended to do so. Support for
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more sophisticated language constructs, e.g., those used by
OPL [22], may be added in the future. An example of con-
straint declaration in the input language is shown in Figure 1
in Section 3.

To compile into SAT, Boolean “circuits” are instantiated
to carry out mathematical operations. An n—bit variable is
represented by n binary variables in the CNF instance plus a
sign bit, which is necessary to perform subtraction with 2’s
complement notation. The size of the CNF circuits depends
on the operation to be performed. Ripple-carry adders are
instantiated for addition operations, and subtraction is per-
formed using 2’s complement representation. Both adder and
subtractor circuits are linear in the input size. Multiplication
is implemented using circuits for Booth’s algorithm which are
quadratic in the input size. Comparison against RHS values
uses a linear comparator circuit. There are some built-in opti-
mizations, e.g. smaller circuits for 1-bit addition and subtrac-
tion. 1-bit multiplication uses an AND gate. Circuits with
a constant as input are partially evaluated. For compilation
into 0-1 ILP, linearity is preserved by stating ‘+’ and ‘-’ op-
erations directly as 0-1 ILP constraints. Inequalities (<, >,
==) are also directly expressed in 0-1 ILP, with no need for
comparator circuits. Coefficients can be directly written and
not multiplied. Multiplication between variables uses CNF
clauses, but multiplier outputs can be added/subtracted as part
of a linear constraint.
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Abstract

Symmetry-breaking has been proved to be very
effective when combined with complete solvers.
Conversely, it has been conjectured that the use of
symmetry-breaking constraints has negative effect
on local search-based solvers. This work presents
an attempt to model the effect of symmetry-
breaking on the search landscape explored by lo-
cal search. The results, on the one hand, exclude
that symmetry-breaking constraints negatively af-
fect the topology of the search space. On the
other hand, they strongly suggest that symmetry-
breaking perturbs the configuration of local and
global optima basins of attraction, making global
optima more difficult to be reached.

1 Introduction

Symmetry-breaking has been proved to be very effective
when combined with complete solvers [Crawford et al.,
1996; Puget, 2002]. This can be explained by observing
that symmetry-breaking constraints considerably reduce the
search space. Nevertheless, the use of symmetry-breaking
constraints seem to have opposite effect on local search-based
solvers, despite the search space reduction. In [Prestwich,
2001;2002] some examples of this phenomenon are reported.
When the problem is modeled with symmetry-breaking con-
straints, the search cost! is higher than the one corresponding
to the model with symmetries. In [Prestwich, 2002], and also
in [Ebner et al., 2001] in a related context, it is suggested to
use models that maximize the number of symmetries, con-
trarily to the case of complete solvers.

An important point to investigate is why, despite the search
space reduction — that is often dramatic — local search-
based techniques seem to be penalized by the introduction
of symmetry-breaking constraints. Simplifying, the reasons
why this happens can be either that (i) symmetry-breaking
constraints modify the topology of the search landscape (e.g.,
by making the space not connected), or that (ii) they reduce
the basins of attraction of global optima, or both.

In this paper, we introduce a model to study the effect of
symmetry-breaking constraints on the search landscape ex-

'Runtime and number of variable flips
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plored by local search. This enables us to provide an abstrac-
tion of the system we want to investigate and to formulate
general hypotheses, not bound to a particular problem. In
the following sections, we will formulate more formally the
search process performed by local search-based techniques
and the conjectures we want to verify/falsify2. The model we
present introduces some simplifications and should be con-
sidered as a case study on the topic.

The structure of the paper is the following. In section 2,
we define the model we use, along with the conjectures to be
tested. Section 3 reports the experimental results concerning
the previously defined hypotheses. Finally, we conclude in
section 4 with a brief discussion and an outlook to the future.

2 A model for symmetry-breaking and local
search

The aim of this section is to provide a model of the phe-
nomenon we want to study. First of all, we will define the
execution of a local search algorithm as a ‘walk’ along a
graph. This enables us to outline important features of the
search space and to relate them with the symmetry-breaking
constraints. Then, we will introduce the kind of symmetries
and the class of instances we consider.

Local search can be used to attack both constraint satisfac-
tion problems and combinatorial optimization problems. The
main operative difference is that, in the former case, the algo-
rithm succeeds only if it finds a feasible solution to the orig-
inal problem, which means that the local search algorithm
must find a global optimum in the search landscape. In the
latter case, the goal is usually to find, at least, a near-optimal
solution. In the following, global optima can be considered
either solutions better than any other solution or solutions be-
longing to the set of ‘acceptable solutions’, i.e., solutions con-
sidered good to the application at hand.

2.1 Local search and search graph

The local search process can be viewed as the exploration of
a landscape aimed at finding a global optimum.
The search landscape is defined by a triple:

L=, N, F)

2 According to [Popper, 20021, scientific empirical theories can
only be falsified.
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S, F(S2)

S;, F(S;)

Figure 1: Example of undirected graph representing a search
landscape. Each node is associated with a solution s; and its
corresponding fitness value F'(s;). Arcs represent transitions
between states by means of ¢. Undirected arcs correspond to
symmetric neighborhood structures.

where:
e S is the set of solutions (or states);

e N is the neighborhood function A : § — 29 that de-
fines the neighborhood structure, by assigning to every
s € S aset of states N'(s) C S.

e F is the objective function F: § — R™T.

The search landscape can be interpreted as a graph (see
Fig. 1) in which nodes are solutions (labeled with their fitness
value) and arcs represent the neighborhood relation between
states.

The neighborhood function A implicitly defines an op-
erator @ which takes a state s; and transforms it into an-
other state s, € N (s1). Conversely, given an operator ¢,
it is possible to define a neighborhood of a variable s; € S:
Ny(s1) = {s2 € S\ {s1} | s2 can be obtained by one appli-
cation of ¢ on 1}

Usually, the operator is symmetric: if s1 is a neighbor of
so then sg is a neighbor of s;. In a graph representation
(such as the one depicted in Fig. 1) undirected arcs represent
symmetric neighborhood structures. A desirable property of
the neighborhood structure is to allow a path from every pair
of nodes (i.e., the neighborhood is strongly optimally con-
nected) or at least from any node to an optimum (i.e., the
neighborhood is weakly optimally connected). Nevertheless,
there are some exceptions of effective neighborhood struc-
tures which do not enjoy this property [Nowicki and Smut-
nicki, 1996].

The search process of local search methods can be seen as
the evolution in (discrete) time of a discrete dynamical sys-
tem [Bar—Yam, 1997; Devaney, 1989]. The algorithm starts
from an initial state (the initial solution) and describes a tra-
jectory in the state space, that is defined by the search graph.
The system dynamics depends on the strategy used; simple al-
gorithms generate a trajectory composed of two parts: a tran-
sient phase followed by an attractor (a fixed point, a cycle
or a complex attractor). Algorithms with advanced strategies
generate more complex trajectories which can not be subdi-
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vided in those two phases. The characteristics of the trajec-
tory outline the behavior of the algorithm and its effectiveness
with respect to the instance it is tackling. It is worth under-
lining that the dynamics is the result of the combination of
problem representation, algorithm and instance. In fact, the
problem representation defines the search landscape (and, in
particular, the neighborhood structure defines the topology of
the search landscape); the algorithm describes the strategy
used to explore the landscape and, finally, the actual search
space characteristics are defined by the instance to be solved.

For instance, let us consider a deterministic version of
the Iterative Improvement local search (DII). The trajectory
starts from a point sg, exhaustively explores its neighborhood,
picks the neighboring state s’ with minimal objective func-
tion value? and, if s’ is better than sg, it moves from sq to s'.
Then this process is repeated, until a minimum 3 (either local
or global) is found. The trajectory does not move further and
we say that the system has reached a fixed point (8).

The relations between local search-based algorithms
and dynamical systems is beyond the scope of this paper.
Nevertheless, in the following, we will make extensive use
of the notion of basin of attraction (BA), that stems from
dynamical system theory. We will initially consider the case
of deterministic systems, then we will relax this hypothesis
and extend the definition to stochastic systems.

Definition Given a deterministic algorithm 4, the basin
of attraction B(Als) of a point s, is defined as the set of
states that, taken as initial states, give origin to trajectories
converging to point s. The cardinality of a basin of attraction
represents its size (in this context, we always deal with finite
spaces).

Given the set S* of the global optima, the union of the BA
of global optima I* = |J;.g. B(Ali) represents the set of
desirable initial states of the search. Indeed, a search starting
from s € I* will eventually find an optimal solution. Since
it is usually not possible to construct an initial solution that is
guaranteed to be in I*, the ratio |I*|/|:S| can be taken as an
indicator of the probability to find an optimal solution. On the
extreme case, if we start from a random solution, the proba-
bility to find a global optimum is exactly |I*|/|:S|. Therefore,
the higher this ratio, the higher the probability of success of
the algorithm.

In the case of stochastic local search, we may define a
probabilistic basin of attraction, as a generalization of the
previous case.

Definition Given a (stochastic) algorithm A, the basin of
attraction B(A|s;p*) of a point s, is defined as the set of
states that, taken as initial states, give origin to trajectories
converging to point 8 with probability p > p*. Also in
this case, we define the union of the BA of global optima:
I*(p) = U;es+ B(Ali;p). For simplicity, in the following
we will write B(s; p*) instead of B(A|s; p*) when the algo-
rithm involved is clear from the context.

This definition includes the previous one as a special case.

3Ties are broken by enforcing a lexicographic order of states.
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Indeed, if p* = 1 we are interested in finding the states that
will eventually converge to s. It is also important to note that
if p1 > p,, then B(s; p1) C B(s; pa).

Given a local search algorithm .4, the topology and struc-
ture of the search landscape determine the effectiveness of
A. In particular, the reachability of a global optimum is the
key issue. Therefore, the characteristics of the BA of optimal
solutions are of dramatic importance. The graph properties
that affect the structure of BA are (i) the graph topology and
(ii) the graph shape, namely, the number and distribution of
local optima, the auto-correlation of the landscape, the pres-
ence/absence of plateaus, etc*. Hence, the goal of the algo-
rithm designer is to have an algorithm A such that the result-
ing total BA of global optima I*(p) is as large as possible,
given a reasonably high value of p. It is clear that this is an a
posteriori property, since it is the result of the application of
a particular algorithm to a particular problem instance. How-
ever, this property can be used to explain why an algorithm
is or is not effective on a problem instance, or a class of in-
stances.

Finally, we would like to remark that, while the search
graph topology is only dependent on the neighborhood struc-
ture, the BA and other related landscape characteristics (here-
inafter referred to as search graph shape) depend also on the
particular algorithm used.

In the following, we give the definition of a class of in-
stances characterized by controlled properties of the search
graph. This we will lead us to the study of the effect of
symmetry-breaking constraints on the structure of the search
graph and, consequently, on the behavior of local search al-
gorithms.

2.2 A case study

In the following, we define the case study we analyze. We
will first describe the search landscape that has some similar-
ities with random landscapes and NK-landscapes [Kauffman,
1995; 1993]. Then, we will define the specific class of sym-
metries we consider in the model. Such a symmetry class is
the one of permutations over problem variables.

The search graph

The class of problems we consider are defined over binary
variables x; € {0,1}, ¢ = 1,...,n. Since our goal is to
directly analyze the effect of symmetry-breaking constraints
on the properties of the search graph, we directly define
a model to construct a search landscape, abstracting from
the specific problem we may deal with. Studies concern-
ing random landscapes and NK-landscapes [Kauffman, 1995;
1993] can be found in the literature. In this work, we consider
alandscape, in which the objective function is defined as fol-
lows. All the complete assignments are considered feasible
(this is typically the case when local search is applied to prob-
lems defined on binary variables). Every assignment is given
a value randomly chosen in a range [r1, 72]. Since usually the
landscape has some degree of correlation, i.e., neighboring

*We forward the interested reader to specific literature on the
topic [Hordijk, 1996; Merz and Freisleben, 1999; Reeves, 1999;
Stadler, 1996].
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solutions have objective values that are close, we introduce
a distribution on the objective values such that some correla-
tion is guaranteed. In practice, the distribution used is such
that the higher the distance between two solutions, the larger
the range of the difference of their objective values.

The topology of the graph is defined by the neighborhood
structure. In our case, we use the neighborhood defined on
unitary Hamming distance, that is the most used neighbor-
hood for binary variables. Therefore, since n are the pos-
sible flips of an assignment, each node of the graph is con-
nected with n other nodes. It is important to observe that
this neighborhood structure generates a graph with a uni-
form degree (i.e., number of node edges) and this value is n.
The impact of graph properties on system behavior has been
recently received attention, as witnessed by the wide spec-

.trum of publications on the subject [Watts and Strogatz, 1998;

Adamic and Huberman, 2000].

Permutation symmetries
An important category of symmetries that can occur in
combinatorial problems is the one of permutation symme-
tries [Gallian, 2001; Aloul et al., 2002; Crawford et al.,
1996]. A permutation of a (finite) set Z is a function from
Z to Z that is both injective and surjective. It is customary to
use as set Z a (finite) set of naturals {1,2,...,n}. A permu-
tation can be expressed in the so called cycle notation, which
is a composition of disjoint cycles of the form (z; ...
zi € {1,2,...,n}. For example, given Z = {1,2,..
a permutation can be the composition of a 2-cycle and a 3-
cycle such as (1 2)(3 4 6), which means that 1 is mapped into
2 (and viceversa) and there is a cycle such that 3 is mapped
into 4, 4 mapped into 6 and 6 into 3. Element 5 is mapped
into itself. An important theorem [Gallian, 2001] states that
every permutationin {1,2,...,n}, n > 1, is either a 2-cycle
or a product of 2-cycles’. Therefore, every possible permu-
tation can be expressed as a composition of pairs (z; %),
3,5 € {1,2,...,n}.

We restrict our case study to permutation symmetries over
a subset of problem variables. These symmetries can be ex-
presses as a combination of 2-cycles. Moreover, we also add
phase shifts in analogy with satisfiability problems. Phase
shifts are such that exchanging a literal 2; with T; keeps
the satisfying property of the assignments. We generated in-
stances with n binary variables and m symmetries, each be-
ing either a 2-cycle or a phase shift. The m symmetries are
randomly generated (without repetition), with the aim of cov-
ering a wide spectrum of cycle and phase shift combinations.
The choice of random generation of cycles is motivated by
the observation that, except for very specific cases occurring
in structured instances, there is no regularity of permutation
symmetries across the instances of a benchmark. The symme-
tries introduced by a 2-cycle (¢ j) are simply cut by enforc-
ing the constraint 2; < 2:; (we did not apply any reasoning to
strengthen the constraints). Phase shifts (e.g., on variable z;)
are cut by postitig the constraint z; = 0. Symmetry-breaking
constraints are combined and enforced in such a way that the
resulting feasible solutions are the symmetry class represen-
tatives.

zm)’
.,6

’

SThe decomposition is not unique.
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The effect of the symmetry-breaking constraints on the
search graph can be directly analyzed by comparing the
properties of the search graph with and without symmetry-
breaking constraints. Since the search space is completely
enumerated, only small size instances can be considered. In
the next section, we presents and discuss experimental results
on the case study defined.

3 Experimental results

In [Prestwich, 2001; 2002] it has been conjectured that
symmetry-breaking has a negative effect on local search-
based techniques. From the standpoint of the model of local
search process defined in section 2.1, we can formulate the
hypothesis that symmetry-breaking constraints perturb the
search graph in such a way that the algorithm effectiveness
is reduced. The perturbation on the search graph can be of
two kinds:

e topology perturbation
e shape perturbation (BA, local/global optima, etc.)

The negative effect could be originated from one or both
the kinds of perturbation. In order to test this, we analyze
the modification introduced in the search graph by symmetry-
breaking constraints.

3.1 Topology perturbation

The topology of the search graph corresponding to the model
with symmetries is highly regular (indeed, it is an hypercube)
and each node has a degree equal to n (see an example in
Fig.2). The graph is connected, therefore there is a path be-
tween any node and any global optimum. More important,
given the structure of the graph, there are many alternative
paths connecting every pair of nodes. Such a regular and
redundant structure is particularly suitable for local search.
‘Irregular’ graph topologies, such as scale-free and small-
world graphs [Watts and Strogatz, 1998; Strogatz, 1998;
Barabasi, 2002], strongly affect the graph exploration pro-
cess. As a consequence, it is natural to look for spe-
cial topologies in graphs derived by models with symmetry-
breaking constraints. An example of the resulting search
graph is drawn in Fig.3, that is the counterpart of the one de-
picted in Fig.2. The outcome of our simulations, in which we
tested graphs up to 10 variables®, can be summarized as fol-
lows. In the search graph related to the model with symmetry-
breaking constraints, we observe that:

1. Node degree varies among nodes;

2. node degree frequency has a bell-shape, analogous to the
Gaussian distribution characterizing random graphs (a
typical case is reported in Fig.4);

3. the width of the bell-curve increases as the number of
symmetries increases and it is independent of the relative
number of 2-cycles and phase shifts.

Effect 1 is not surprising, since the constraints cut some
parts of the search space, so they are very likely to introduce

%Since the analysis of the graph is complete, the instance size is
strongly limited.
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Figure 2: Search graph corresponding to an instance of size
5. The node degree is the same for every node and it is equal
to 5.

Figure 3: Search graph corresponding to an instance of size
5, with the following symmetries: (1 2), (1 4) and a phase
shift involving variable z5. The maximum node degree is 4
and the minimum is 2.
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Figure 4: Node degree frequency of a search graph corre-
sponding to an instance of size 10, with the following sym-
metries: (8 10), (6 8),(3 4), (6 10),(7 9). The maximum
node degree is 9 and the minimum is 6.
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differences in the node degree. However, the second effect is
extremely important, since it definitely exclude the possibility
that symmetry-breaking constraints introduce a graph topol-
ogy that negatively affect local search behavior — at least in
our model. In fact, the node degree frequency is such that the
reachability of global optima is not dramatically perturbed, as
can be also confirmed by observing the properties of random
graphs [Newman et al., 2001]. In fact, such graphs are con-
nected, the average path length connecting any pair of nodes
is quite short, there are many alternative paths connecting any
pair of nodes and there are no bottlenecks. Finally, effect 3
just shows that, even if the number of symmetries increases,
the graph topology keeps its basic characteristics. It is impor-
tant to note that the graph is still connected and there are no
disconnected regions.

Concluding, we can definitely reject the conjecture that lo-
cal search effectiveness and efficiency are reduced by topo-
logical modification of the search space.

3.2 Basin of attraction perturbation

The second way symmetry-breaking affects the search space
is by perturbing its shape. In particular, we studied how
the basins of attraction of global optima vary as a conse-
quence of symmetry-breaking constraints. The primary ef-
fect of symmetry-breaking is to reduce the number of optimal
solutions, which seems to negatively influence the efficiency
of local search [Clark et al., 1996]. Nevertheless, this effect
should be counterbalanced by the parallel reduction of local
minima’.

Our experiments show that the relative size of basins of
attraction of global optima is reduced in the model with
symmetry-breaking constraints. We compared the relative
size of global optima BA of instances of different size and
different number of symmetries. Table 1 reports the statistics
concerning the search graph with and without symmetries (re-
sults are averaged over 20 instances). The first two columns
of the table report the number of variables and the number of
symmetries, respectively. The third column is computed as
follows. The ratio of the total size of the global optima BA
and the number of feasible states is computed for both the
model with symmetry-breaking constraints (0% = |I¥|/|Ss|)
and without them (Q* = |I*|/|S|). The reported value is the
average of the ratio Q}/Q* (along with the standard devia-
tion in the fourth column). Very important are columns five
and six, in which we reported the percentage of times ¥ is
smaller (col.5) or larger (col.6) than Q*. Q* < Q* means
that the fraction of nodes from which the algorithm can reach
a global optimum is higher in the model without symmetry-
breaking constraints. For example, consider the row corre-
sponding to 10 variables and 1 symmetry: in the 60% of
the instances, the percentage of states leading to a global op-
timum is lower in the model with symmetry-breaking con-
straints, and in the 30% is higher (for the remaining 10% is
equal). When the total size of global optima BA is higher in
the model with symmetries, it means that symmetry-breaking

"In some models, symmetry-breaking constraints introduce new
local optima [Prestwich, 2002]. This is not the case for our model,
that should be considered as a ‘best’ case.
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constraints reduce the probability of reaching the global op-
tima (at least in the deterministic case). We can observe that,
in most of the cases, 2 < Q*. Therefore, despite the search
space reduction achieved by symmetry-breaking constraints,
a deterministic local search, such as DII, has not a higher
probability of reaching a global optimum. Indeed, in most
of the cases the inequality is strict.

The analysis we made only considered the deterministic
case, however the results are an important clue about the gen-
eral effect of symmetry-breaking constraints also concerning
the stochastic case. In fact, even stochastic local search
methods have a strong greedy component, that characterizes
DIL Therefore, even if they can move away from ‘wrong’
basins of attraction, their efficiency is lessen by the reduction
of global optima BA.

In summary, the experimental results enable us to reject
the hypothesis that symmetry-breaking affects local search
by perturbing the topology of the search space. Further-
more, we have some interesting clues concerning the effect
of symmetry-breaking on the shape of basins of attraction.

4 Discussion and future work

In this work, we have presented a model to study the effect of
symmetry-breaking constraints on local search and we have
exemplified this methodology on a case study. The search
landscape explored by a local search algorithm can be seen
as a labeled graph and the algorithm execution as a path on
this graph. Moreover, since relevant properties of the search
process can be modeled via dynamical system theory, con-
cepts such as attractors and basin of attractions can be used to
characterize the algorithm execution. This standpoint enables
us to study the effect of symmetry-breaking constraints on lo-
cal search by analyzing their impact on the search landscape
and, in particular, on its topology and its shape. We have re-
ported a preliminary study based on an example of symmet-
ric problem, characterized by permutation symmetries. Re-
sults exclude that symmetry-breaking constraints perturb the
search graph topology in such a way that local search is penal-
ized (at least for this case study). We have also found some
interesting results indicating that the global optima basin of
attractions are reduced in the model with symmetry-breaking
constraints. This may be the reason why these constraints
have a negative effect on local search behavior.

The problem model we used, while quite general and plau-
sible as an abstraction of a real problem, has some limits,
though. First of all, since the instances are randomly gener-
ated and only expressed by the composition of 2-cycles and
phase shifts, the model does not capture the generality of
cases that can occur in real-world problems. Furthermore, the
experiments should be extended to study in detail the struc-
ture of the search graph, for instance by considering the re-
duction of number of optimal solutions. We should also expe-
rience with real problems and larger size instances and taking
into account diverse local search algorithms, also stochastic.

An important observation concerns the rejection of the
hypothesis on the perturbation of the search graph topol-
ogy. This result enables us to conjecture that robust and
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adaptive local search methods, such as Variable Neighbor-
hood Search®, might not be negatively affected by symmetry-
breaking constraints.

The problem of dealing with symmetries when a local
search technique is applied is of considerable relevance, since
stochastic approximate algorithms are often used to attack
real-world problems. Very few works in the literature tackled
this issue and there is a lot of room for future research. Be-
sides studies on models, practitioners may need guidelines on
both modeling and algorithm design. For instance, it would
be extremely interesting trying to apply local search on mod-
els with symmetry-breaking constraints and to use these con-
straints in a tabu search fashion or by relaxing them whenever
a diversification step is required. Finally, it would be of prac-
tical relevance the discovery of criteria to decide when using
a model with symmetry-breaking constraints, or — at the other
extreme — a super-symmetric model.
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Table 1: Statistics of the relative size of total basins of attraction of global optima. Statistics are computed over 20 randomly
generated instances (see description of the model in section 2). Q} = |I3|/|S,| and Q* = |I*|/|S|, where I* and S, (resp.
I* and S) are the total size of global optima BA and the number of feasible states in the search space in the model with
symmetry-breaking constraints (resp. without).

[ n]| m[{Q7/9%) [ o(Q/Q%) [ frac. OF < OF [ frac. QF > OF |
5 1 0.98 0.03 0.50 - 0.05
51 2 1.00 - 0.09 0.45 0.15
51 3| 097 0.05 0.45 0.05
5| 4 1.01 0.11 0.20 0.30
6| 1 1.00 0.08 0.50 0.20
6| 2 0.96 0.08 0.45 0.15
6] 3 1.02 0.11 0.25 0.35
6| 4 1.01 0.15 0.45 0.20
7 1 0.99 0.04 0.40 0.15
71 2 0.98 0.08 0.60 0.10
71 3 0.98 0.06 0.65 0.25
71 4 1.00 0.13 0.60 0.30
71 5 0.96 0.14 0.55 0.15
8 1 0.99 0.02 0.50 0.15
81 2 0.99 0.05 0.60 0.35
81 3 1.00 0.12 0.50 0.35
8| 4 0.97 0.06 0.75 0.10
8|1 5 1.12 0.70 0.55 0.15
8] 6 0.96 0.08 0.50 0.35
9 1 1.01 0.03 0.40 0.35
91 2 0.99 0.06 0.55 0.25
91 3 0.99 0.07 0.60 0.35
91 4 0.97 0.07 0.55 0.20
91 5 0.96 0.18 0.65 0.20
91 6 1.01 0.12 0.55 0.35
91 7 0.99 0.09 0.50 0.35
91| 8 1.01 0.20 0.55 0.35
91 9 1.03 0.19 0.45 0.40

10] 1 0.99 0.03 0.60 0.30
10| 2 0.99 0.03 0.50 0.40
10| 3 0.97 0.05 0.80 0.20
10| 4 0.98 0.06 0.65 0.35
10| 5 0.98 0.09 0.55 0.40
10| 6 1.02 0.16 0.55 0.25
10 7 1.12 0.28 0.30 0.60
10| 8 0.95 0.14 0.50 0.25
10 9 1.16 0.71 0.65 0.30
10 | 10 1.00 0.15 0.60 0.30
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Abstract

In a constraint satisfaction problem, two values of
a variable are interchangeable if every solution in-
volving one value remains a solution with the value
replaced by the other one. Although interchange-
ability occurs in many problems, there are also
problems where little interchangeability occurs. In
this paper, we study conditional interchangeability
and substitutability for problems where values are
interchangeable or substitutable under certain con-
ditions.

1 Introduction

A binary Constraint Satisfaction Problem (CSP) consists of a
set of variables, each of which has a finite domain, and a set of
binary constraints on these variables. A solution to a CSP is
an assignment of values to variables such that all constraints
are satisfied.

Given a constraint satisfaction problem, two values of a
variable are interchangeable [Freuder, 1991] if every solu-
tion involving one value remains a solution when the value
is replaced by the other one. Derived from this concept of
interchangeability are concepts of substitutability, partial in-
terchangeability, and functional interchangeability etc. These
variations are present in many real-world problems and help
to solve, abstract, and compile CSPs [Freuder and Sabin,
1997; Rainer Weigel, 1999]. However, for some problems,
there is little or no interchangeability. For example, consider
a CSP with only one constraint z < y with z,y € [1..10].
No values of z (or y) are interchangeable, but if we know that
y > 6, the values from 1 to 6 of x are interchangeable with
each other. In other words, under certain conditions, some
values of a variable become interchangeable.

In this paper, we introduce conditional interchangeability
(CI) and conditional substitutability (CS), and their restricted
version to neighboring variables. We also present alternative
ways to express the *condition’ and compare this work with
the existing work.

*This work has received support from Science Foundation Ire-
land under Grant 00/P1.1/C075.

fCurrent address: Department of Computer Science, Texas Tech
University, Lubbock, Texas. Email: yzhang @cs.ttu.edu

2 Conditional interchangeability and
substitutability

A CSP is usually represented as a triple (V, D, C), where
V is a set of variables {z1,...,2,}, D a set of domains
{D1,...,Dy,}, and C a set of constraints. A constraint be-
tween x and y is denoted by c,,,. In this paper, the values of
a variable are referred to by letters of a,b, ¢, d,e, f,.... dis
also used to denote the size of the maximum domain in a CSP.
We assume that a constraint is given explicitly by a set of al-
lowed tuples. For simplicity, z.a refers to value a of variable
T

Definition 1 A condition on a set of variables X is defined
as a set of constraints on these variables X.

The idea of conditional interchangeability is to consider the
interchangeability under a solution space restricted by certain
conditions, as shown by the example of z < y in the first
section whose solution space is reduced by the condition y >
6.

Definition 2 Given a CSP (V, D, C) and a variable x, two
values a,b of x are conditionally interchangeable (CI) un-
der condition Con iff they are interchangeable in (V,D,C U
Con).

In this section, a condition is assumed to consist of primi-
tive constraints of the form z = a where x is a variable and a
a value, and logical conjunctions and disjunctions.

Example 0 Assume a CSP with a list of variables <
x,1, z > has a solution space

{(a,a,a), (a,b,c), (b,b,c), (a,c,c), (b,c,c), (b, b,b)}.

A tuple, e.g., (a,b,c), is an instantiation of the variables
< z,y,z > in that order. The values a and b of z are not
interchangeable due to the existence of the solutions (a, a, a)
and (b, b, b). After exposing the conditionof y = bAz =c
ory = c A z = c, these two solutions are excluded, and thus
values a, b of z are interchangeable. It can be written as

(y=bAz=cVy=cAz=c)—za=cb

where = denotes interchangeability.
1t is straightforward to verify the following observation.

. Proposition 1 Given a condition, ClI is reflective, symmelric,
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As such, CI provides a way to put the values of a variable into
equivalent groups.

Substitutability is defined in [Freuder, 1991] as follows.
Given a CSP and two values a and b of a variable z, a is sub-
stitutable for b if any solution involving b remains a solution
after a is substituted for b. Similar to the interchangeability
under conditions, an otherwise non-substitutable value could
become substitutable under some condition.

Definition 3 Given a CSP (V, D, C) and two values a and b
of a variable z, a is conditionally substitutable for b under a
condition Con iff it is substitutable for b in (V, D, C'U Con).

Consider Example 0 again. Neither a nor b of z is substi-
tutable for the other. After introducing the condition

y=bAz=cory=cAz=cory=aAz=a,

solution (b, b, b) is excluded and thus « is substitutable for b.
However, under this condition, b is not substitutable for a and
consequently not interchangeable with b. The fact that b is
conditionally substitutable for a is denoted by

(y=b/\z:ch=c/\z=cVy:a/\z:a)—>ajb,

where < means “substitutable for”.
Conditional substitutability describes a relationship be-
tween values of a variable, and has the following property.

Proposition 2 Given a condition Con, conditional substi-
tutability is reflexive and transitive.

The following stronger substitutability will be useful later.

Definition 4 Given a CSP and a variable z, a value a of x
is completely substitutable if it is substitutable for any other
value in the domain of x.

The conditional version of this concept is given below.

Definition 5 Given a CSP (V,D,C) and a variable z, a
value a of x is conditionally completely substitutable under
condition Con iff it is completely substitutable in (V, D, C' U
Con).

Since the solution space of a CSP is not known a priori, it
is usually not easy to identify the (conditionally) interchange-
able values in the problem. In the next section, we study the
conditional interchangeability of the values of a variable z by
considering only the constraints between x and its neighbors.

3 Conditional Neighborhood
Interchangeability

We first explain some notations on the neighborhood of a vari-
able. Given a constraint gy, value a € D,, is compatible with
b€ D, if (a,b) € cyy and a is also called a support of b. Two
variables are neighbors if there is a constraint between them.
N (z) is used to denote an ordered list of all neighboring vari-
ables of @1 < @q,...,7 >. Given a CSP and a variable z,
the neighborhood subproblem on x refers to the problem of
variable z, its neighbors, and the constraints between z and
its neighbors. Note that the subproblem of & does not in-
clude any constraints between its neighbors. Once a CSP is
restricted to a neighborhood subproblem, it is easy to recog-
nize the conditions for the values to be interchangeable.
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Definition 6 Given a CSP, two values a and b of a variable x
are conditionally neighborhood interchangeable (CNI) under
condition Con iff under Con, a and b are interchangeable
with respect to the neighborhood subproblem on .

The conditional interchangeability has the following rela-
tionship with CNI.

Proposition 3 Tiwo values of a variable are conditionally in-
terchangeable under a condition Con if they are condition-
ally neighborhood interchangeable under Con.

Figure 1: A CSP instance. The big circle represents a domain
of a variable. The alphabets inside a circle are values. Two
values are compatible if there is an edge between them. The
constraint between two variables are exactly the set of all the
edges connecting values of these variables.

Example 1 Consider the neighborhood subproblem, of a
CSP, on z in Fig 1. values e, f € D, are CNI under the
condition y = b A z = c. Hence,

y=bAz=c—oe=f.

Figure 2: Values e and f are CNI under many conditions

Example 2 In Fig 2, e and f share many supports in y and
z respectively. They are CNI under any one of the four in-
stantiations of (y, 2): (a1,b1), (a1,b2), (ag, b1), and (azg, b2).
We could have
y=aNz=0b -e=f,
Yy=a1ANz=by—oe=f
y=aANz=0b —e=f
Yy=aNz=by—e=f.
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Here we are interested in finding all conditions under
which two values are CNI. Consider two values a and b of
a variable x;. Let < z1,...,x; > be the neighbors of z;.
For a neighboring variable z;(j € 1..1), let $S;({a,b})
be the shared supports of a and b with respect to the con-
straint c;;. Every tuple in SS1({a,b}) x --- x SSi({a,b})
is a condition for a and b to be CNI. In the example above
SSy({e, f}) = {a1,a2} and SS.({e, f}) = {b1,b2}. The
number of conditions can be exponential to the number of
neighboring variables. Given the fact that all the conditions
for a and b to be CNI are from a Cartesian product of their
shared supports, the conditions can be simplified as

1 €ESSIA---ANz; €85 —a=h (@))]
Specifically, in Example 2, we have :
y € {a1,a2} Az € {b1,b2} m e=f. ?2)

It can be shown that the shared supports of two values pro-
vide the “weakest” condition under which they are CNI.

Proposition 4 To represent the weakest condition for two
values of © to be CNI, we need a space of size O(|N(z)|d)
where d is the size of the maximum domain of the problem of
concern.

Now let us turn to the neighborhood substitutability under
conditions.

Definition 7 Given a CSP and two values a and b of a vari-
able x, value a is conditionally neighborhood substitutability
(CNS) for b under condition Con iff under Con, a is substi-
tutable for b with respect to the neighborhood subproblem on
T

Example 3 Consider the CSP in Fig 3. Neither e nor f of
variable z is substitutable for the other. If we restrict y to be
in {a1, ag,as}, i.e., y € {a1,a2, a3}, value e is substitutable
for f. Since e and f share the same supports in z, it is not
necessary to put any condition on z for e to be substitutable
for f. The substitutability of a for b under the condition above
can be expressed as

y € {a1,a2,a3} — e 2 f.
Is there a condition under which e is completely substi-

tutable (i.e., substitutable for f and g of x)? For this example,
it can be verified that
y € {a1,a2,a3} Az € {b,ba} e X fAe=Xg.

In fact, we can identify a general condition for any value a
of a variable z to be completely substitutable: If each neigh-
boring variable of z contains only values that are supports of
a, a is then substitutable for any other value of z.
Proposition 5 Given a CSP and a value a of a variable =,
for any neighboring variable x; of x, let S; be the set of sup-
ports for a with respect to the constraint on x and x;. a is
completely substitutable under the condition

T ES1 Az €Sy NNz €5

Conditional neighborhood substitutability implies condi- *

tional substitutability.

Proposition 6 Given a CSP and two values a and b of =,
if a is conditionally neighborhood substitutable for b under
condition Con, a is conditionally substitutable for b under
condition Con.
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Figure 3: More complicated constraint ¢y

4 Extension of conditional interchangeability
and substitutability

The interchangeability and substitutability of values of a vari-
able can be generalized to those of instantiations of a set of
variables. Since a set of variables can be regarded as one vari-
able whose values are consistent instantiations of the original
variables, it is not difficult to extend the conditional inter-
changeability and substitutability of values to those of instan-
tiations.

Given a list of variables X, an instantiation of X is consis-
tent iff it satisfies all the constraints involving only variables
in X. We use a, b, ... to refer to an instantiation of X.

We are interested in the set of variables each of which is
outside X and is a neighbor of some variable in X. These
variables are called neighbors of X and denoted by N (X).

Two consistent instantiations of X are interchangeable iff
every solution involving one instantiation remains a solution
with the instantiation replaced by the other one.

Definition 8 Given a CSP (V, D, C) and a set of variables
X, let @ and b be two consistent instantiations of X. a and
b are conditionally interchangeable under condition Con iff
they are interchangeable in CSP (V, D, C U Con).

The conditional substitutability of a consistent instantiation
is defined below.

Definition 9 Given a CSP (V, D, C) and a set of variables
X, let @ and b be two consistent instantiations of X. @ is
conditionally substitutable for b under condition Con iff it is
substitutable for b in CSP (V, D,C U Con).

Given a CSP, the neighborhood subproblem on X is the
one consisting of X and N(X), the constraints involving
variables in X, and the constraints involving one variable in
X and the other in N(X). In other words, the subproblem
on X includes constraints on X and constraints connecting
a variable in X with a neighbor of X. Now we are able to
list the neighborhood version of conditional interchangeabil-
ity and substitutability.

Definition 10 Given a CSP and two consistent instantiations
@ and b of a set of variables X, @ and b are conditionally
neighborhood interchangeable under condition Con iff under
Con, @ and b are interchangeable with respect to the neigh-
borhood subproblem on X.
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Definition 11 Given a CSP and two consistent instantiations
a and b of a set of variables X, @ is conditionally neighbor-
hood substitutable for b under condition Con iff under Con,
a is substitutable for b with respect to the neighborhood sub-
problem on X.

In the following we discuss conditions to make instantia-
tions interchangeable or substitutable.

For any consistent instantiation @ of X, and a neighbor
yi € N(X), let S;(a) be the set of values of y; that are com-
patible to a, i.e., each value of S;(@) and @ satisfy the con-
straints between y; and any variable in X. Given two instanti-
ations @ and b of X and a neighbor y;, their shared support set,
denoted by SS;({@, b}), is the intersection of the support set
of @ and that of b. Assuming that N(X) = {y1,¥2,...,Ym},
we are able to list the general conditions for neighborhood
interchangeability

y1 € SS1Ay2 € SSo A+ Aym € SSp —

where 55;, i € 1..m, refers to SS;({a, b}).
Under the condition

Y1 € Sl(a) Nys € 52(5.) N--ANym € Sm(a),

a is completely substitutable, i.e., substitutable for every
other consistent instantiation of X.

=b

S On the application of conditional
interchangeability and substitutability

In the case of checking the satisfiability of a CSP, conditional
interchangeability and substitutability may be used to prune
the search space. The conditional interchangeability, as an
equivalence relation, partitions the values of a variable into
equivalent groups. Given a group of interchangeable values
(under certain condition), we can choose to keep only one
value of the group in the domain of the variable while not
affecting the satisfiability of the original problem. The reason
is that if there is any solution including another member of the
group, it remains a solution if we replace the member by the
value we choose to keep.

Consider a value a of a variable z. Assume z has [ neigh-
bors, for neighbor z;(¢ € 1..1), S; is the support set of a, and
S8} is the shared support set of a and another value b of z.

By the condition in (1), if we have

1 €SSIN--- ANz €85,

we can keep a and prune b and all other values which are
interchangeable with a under this condition.

By the condition in Proposition 5, conditional neighbor-
hood substitutability results in

T ESIANT2 €Sy AN ANz €S =z =a. 3)

Concerning the pruning ability, the CNS is clearly more
powerful than CNI. CNI can only remove values interchange-
able with a while CNS removes all other values. Further-
more, each S.5; is a subset of .S;, implying that the CNS pro-
vides a weaker premise than CNI.

In the rest of this section, we study the relationship between
the concepts here and those in the work reported in [Bowen
and Likitvivatanavong, 2004; Prestwich, 2004; Chmeiss and
Sais, 2003].
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5.1 Domain transmutation

The work by Bowen and Likitvivatanavong embeds the idea
of conditional neighborhood interchangeability without ex-
plicitly introducing condition. They introduce the concept of
domain transmutation by splitting a value into two or merg-
ing two values in terms of CNI. In other words, [Bowen and
Likitvivatanavong, 2004] creates virtual values for those con-
ditions making values interchangeable.

Consider Example 1 (Fig 1). For values e and f of z, their
shared supports are S, = {b}, SS, = {c}. We know that

yeESSyNzeSS, »e=f.

But we can not remove either e or f because they are in-
terchangeable only when the condition holds. The method
in [Bowen and Likitvivatanavong, 2004] simply introduces
a new value, say g, whose support sets are exactly SS, and
SS.,. Now that some role of e has been assumed by y, we only
need to figure out the other role e plays when the condition is
not true (i.e., y # bV y # c). When y # b, e is supported
by a of y and c of z, but when z # c, e is not supported by
any value of z and thus all its supports in y are useless. See
the picture in Fig. 4 for the supports of e. Similarly, when the
condition is false, the supports of f are {b} (for y) and {d}
(for 2).

Figure 4: New value g is introduced and the constraints c,
and ¢, are updated to reflect the conditional neighborhood
interchangeability

5.2

Since the work in [Prestwich, 2004] is based on a different
representation of constraints, to establish the connection, we
first explain a “nogood” (disallowed) representation of a con-
straint.

Consider the constraint ¢,,, in Example 2 (Fig 2). The dis-
allowed tuples by ¢, are:

{(a(): e)’ (a3a f)}

is not allowed is expressed by # and logical con-

“Interchangeability constraints”

That (ao, €)
nectives

y#FaVa#e.
Similarly, disallowing (as, f) is expressed as

y#agVa#f
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To represent c,;, we connect the two formulae above by and:

y#aVz#e)A{y#asVa#f) ©)
Now a constraint is represented by a formula with conjunc-
tive normal form, instead of a set of allowed tuples. Conse-
quently, the conjunction of all constraints of CSP is still of
conjunctive normal form. The CSP in Example 2 is repre-
sented as
(y#asVa#e)Ay#aVe#[) [/ey
A
(z#£bsVa#e) [/co
We are now able to introduce the idea to prune values in
[Prestwich, 2004]. Given a variable z and a term = # a, we
first select all conjuncts containing © # a from all constraints
(for simplicity, we consider only binary constraints here al-
though non binary constraints can be treated similarly)

r#a V 11 Fan
T#a V T #ain,
z#a V z3#an
; Q)]
1177(:(1 V a:27éa2n2
z#a V xFan
$7éa \% :El‘—/'éalm

Note, in the formulae above, we group the conjuncts with
the same variables together. For instance, the first group in-
volves x and z7.

By assuming an ordering “<” on the values in the do-
main of x, Prestwich gives the following pruning “constraint”
[Prestwich, 2004] for all b such that a < b,

:vl#-all/\---/\:cl;éalnl/\
Cl,‘27é0,21/‘\"'/\332¢a2n2/\---/\
ml#all/\-n/\zl;éaln,—wc;éb.

This constraint is named by Prestwich as interchangeabil-
ity constraints (IC). Its premise is the conjunctions of all the
conjuncts in (5) with * # a removed. Since conjuncts in
(5) include all those involving @ # a, if the premise of (6)
is true, we can simply let z be a, which makes all other #’s
on z (in the whole CSP of concern) true and thus the satisfi-
ability of the whole problem is not affected. The IC can be
strengthened as follows

©)

Il}17éa11/\"'/\.’1,‘17éa1n1/\
Ty Fap N ATy 7 Agny Ao+ A
.7;17&&11/\---/\.7:1#(117”—>m:a.

7

In fact, with the traditional representation of ccnstraints in
mind, z; ...2; are exactly the neighbors of x, and a;; ... ay
are the values which are not consistent with a of z. The con-
straint (7) could be written as

.’E1¢(D1—51)/\.’132¢(D2—Sg)/\"'/\
(Di—=51)—z=a

®
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where S; is the support set of a of = with respect to x;, as de-
fined as before. Obviously, this pruning constraint is equiva-
lent to (3) that is derived from CNS directly.

In summary, the conditional neighborhood substitutability
facilitates stronger pruning and more intuition than IC’s.

5.3 Generalized neighborhood substitutability

In this subsection, we switch back to the traditional represen-
tation of a constraint as a set of allowed tuples.

The generalized neighborhood substitutability (GNS) pro-
posed in [Chmeiss and Sais, 2003] says that two values of a
variable is GNS iff they share at least one support with respect
to each neighboring variable. _

.There is a relationship between GNS and CNL

Proposition 7 Two values are GNS iff there exists a condi-
tion Con such that they are CNI under Con.

However, when a value is CNS for another value, these two
values might not be GNS. For example, consider e and g of =
in Fig. 3. e is CNS for g, but they do not share any support in
the domain of variable z and thus they are not GNS.

A “constraint” to prune search space is also proposed in
[Chmeiss and Sais, 2003]. By assuming a total ordering on
the values, the key component of that pruning constraint on
a variable x can be translated, by using notations developed
here, to

T1 €SI AT €S A--- ANz €5
- (T=aVz=a2V---Vrx=apVz=a)

®

where a is a value of z, a; - - - a,, are the values smaller than
a, x1 . ..z are the neighbors of z, and again S; is the support
set of a with respect to ;.

It is interesting to observe that this constraint is equivalent
to the IC (6) if the same ordering on values is used in both
constraints.

As we have been aware, under the premise of (9), a is
completely substitutable for every other value of x, and thus
the pruning constraint can be strengthened by letting © = a,
equivalent to (3).

There is no obvious connection between the constraint (9)
and GNS. But the relationship between the specific pruning
constraints (3) and CNS is immediate.

6 Other related work

6.1 Partial interchangeability

Two values of a variable ¢ are partially interchangeable
[Freuder, 1991] with respect to a set of variables X iff any
solution involving one implies a solution involving the other
with possibly different values for X. Partial interchangeabil-
ity is a special type of conditional interchangeability where
the condition is on the assignments of X.

In this section, we present a result on a property of partial
interchangeability. If x is not a neighbor of any variable in X,
partial interchangeability is equivalent to interchangeability.

Proposition 8 Given two values a and b of a variable x and
a set X, if a and b are partially interchangeable with respect
to X, and x is not a neighbor of X, then a and b are inter-
changeable.
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Proof. Consider any solution where x takes value a . Let
a be the list of values for X in the solution and a’ the list of
values for other variables in the solution. We represent the
solution by a list (a, @, a’). We need to prove that (b, @, a’) is
also a solution.

Since a and b are partially interchangeable, there exist a
list of values b for X such that (b, b,a’) is a solution. The
fact that 2 is not a neighbor of any variable in X implies that
the neighbors (recalling the definition of the neighbors of a
set of variables) of X have the same values in both solutions.
Both @ and b are consistent with the values taken by their
neighbors. Hence, replacing b in the second solution with a,
(b,a,a’) is still a solution.

Similarly, we can show that any solution containing b re-
mains a solution by substituting a for b. Hence, they are in-
terchangeable. O

6.2 Context dependent interchangeability

Context dependent interchangeability (CDI) [Weigel et al.,
19961 is equivalent to conditional interchangeability. Instead
of focusing on the neighborhood of a variable, [Weigel et al.,
1996] resorts to a rather sophisticated decomposition method
to identify CDI values under certain “conditions”.

The identification of conditional neighborhood inter-
changeability is at least tractable for binary CSPs and could
be a practical tool to prune the search space.

6.3 Domain partition

The idea in [Haselbock, 1993] is that although two values
of a variable may not be neighborhood interchangeable, they
could be (fully) interchangeable with respect to only one,
rather than all, neighboring variable. Based on this obser-
vation, the domain of a variable is partitioned with respect
to each constraint on it such that values in each partition are
interchangeable with respect to a certain constraint. One im-
mediate advantage of this method is that a filtering procedure
(e.g., AC algorithms) could be implemented more efficiently
by taking each partition as one value. A search procedure is
also introduced to make use of the neighborhood interchange-
ability (but not CNI or CNS).

6.4 Inferred Disjunctive Constraints

The inferred disjunctive constraints [Freuder and Hubbe,
1993] make use of the complete substitutability of CNS and
some other observations to decompose a CSP.

7 Conclusion

When two values of a variable are not (neighborhood) inter-
changeable or substitutable, there exists some “interchange-
ability” and “substitutability” among them under some con-
dition. The condition is usually a restriction on the do-
main of each neighboring variable. we propose conditional
(neighborhood) interchangeability and substitutability which
could be used to prune search space. They further strengthen
the pruning constraints and concepts proposed by Prest-
wich [Prestwich, 2004] and Chmeiss & Sais [Chmeiss and
Sais, 2003]. They also offer a uniform perspective on the
previous work (e.g., [Bowen and Likitvivatanavong, 2004;

Freuder and Hubbe, 1993; Prestwich, 2004; Chmeiss and
Sais, 2003]). Prestwich has studied IC’s, based on SAT
solver. We are planning experiments to study the efficiency
to prune the search space by using conditional neighborhood
substitutability in a CSP solver.
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