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Abstract. Symmetry breaking by adding symmetric constraints during
search usually assumes that symmetric constraints are simple. We iden-
tify symmetries with complex symmetric constraints, where the symme-
tries nevertheless can be handled by a similar method. For this aim, we
introduce partial symmetries. We identify those symmetries in two prob-
lems. The photo problem is a well known example problem, while the
alignment problem is a real world problem from bioinformatics.

1 Introduction

An important symmetry breaking method works by dynamically adding symme-
try breaking constraints during search (e.g. see [2,4]). This method requires the
notion of a symmetric constraint S(c) for a constraint ¢ and a symmetry S. S(c)
is satisfied by all symmetric assignments of ¢. Recent applications of this sym-
metry breaking method dealt with only simple symmetric constraints, where the
symmetric constraint depends only on ¢ and not on the rest of the assignment.
A typical example are permutations of variables, where for a permutation 7 and
constraint of the form X; = k we have X, ;) = k as a symmetric constraint.

Of course, there are many problems having symmetries, where such a sim-
ple definition of a symmetric constraint is not possible. Unfortunately, complex
symmetric constraints undermine the efficiency of the considered breaking mech-
anism. We identify a class of partial symmetries, where one can apply a slightly
modified breaking method efficiently.

The idea of partial symmetries is that we can describe a subset of assign-
ments by constraints, where the symmetric constraint S(c) again only depends
on c¢. Previously, symmetries were defined as total, bijective functions on the
assignments. In contrast, partial symmetries are defined as partial functions. On
their domain, partial symmetries behave like usual symmetries. We discuss such
symmetries and identify them in two different problems.

1.1 Preliminaries

Our notation follows the one used in [2,3]. In particular, recall that for a con-
straint ¢, ||c|| denotes the set of assignments that satisfy c. Given a constraint
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problem Cp,, we define similar to [2,3] the set of solution variables to be the
variables whose valuation determines the valuation of all other variables by con-
straint propagation. A permutation m is defined as usual, a reversion p;; of
{1,...,n}, is the permutation that just reverses the range {i,...,j}. latex

2 The Photo Problem and Its Symmetries

2.1 Problem Description

In the photo problem, we align n persons in a row on a photo, such that max-
imally many preferences of the persons are satisfied. The persons prefer certain
other persons as their immediate neighbors on the photo.

The photo problem with n persons and preferences P is a pair (n,P) and
described formally as follows. The set of preferences is a subset P C {{i,5}|1 <
i,j7 < n}. The set of solution variables is denoted by {X1,...,X,}. A solution
a is a permutation (au,...,a,) of the numbers (1,...,n), such that a(X;) = a;
for 1 < i < n. We call a solution of the photo problem a photo. The set of
satisfied preferences of a photo « is

satisfied(,, p)(a) = {{as, 0541} € P |1 < i < n}.

An optimal solution of the problem is a photo a where the number of satisfied
constraints satisfaction(a) = |satisfied,,p)(a)| is maximal.

2.2 The Symmetries of the Photo Problem

For this problem, the notion of symmetry is not as obvious as for problems
like N-queens (geometric symmetries) or graph coloring (permutation symme-
tries). Note that two symmetric photos a and 8 have to satisfy satisfaction(a) =
satisfaction(3). As a definition of symmetry this leads to symmetries, which are
far too complex to compute.

Thus, define two photos a and 8 as symmetric iff

satisfied(,,, p) () = satisfied,, p)(8).

Obviously, two symmetric photos still have the same satisfaction, which makes
this definition reasonable. The symmetry functions are permutations under the
condition that the permutation preserves the satisfied preferences. Instead of
dealing with all permutations, it is reasonable to handle only reversions that
keep the set of satisfied preferences constant, this is an example of breaking a
subset of symmetry as e.g. described in [6]. We discuss both possibilities.

We define permutations and reversions on photos a of (n, P) as follows. Let 7
be a permutation. Then, 7V : ||Cp;|| — [|Cp:|| denotes a variable permutation,
such that Vo € [|Cp,[|V1 < i <n:a(X;) = (7" (a))(Xy(;)). Variable reversions
pis" may be defined analogously.
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a)1-234-567-89
b) 3 2-1 9 8-7 4-5-6
c) 1-26-5-437-89

Fig. 1. Permutation and reversion symmetries of the photo problem. Each line rep-
resents a photo for a problem instance with 9 persons, i.e. it shows the order of the
persons 1,...,9. Preferred neighbors are shown by dashes between them. The three pho-
tos are symmetric, in the sense that they satisfy the same preferences. The symmetry
that maps a) to b) is a permutation symmetry and a) is mapped to ¢) by a reversion
symmetry.

The set of permutation symmetries S, of a photo problem (n, P) is defined
as the set of functions s,, where

B {anr(a) if satisfied(,, py(a) = satisfied(, p) (7" (@)
sx(a) = .

undef.  otherwise
where {m,..., 7} is the set of all permutations of the solution variables. For
(n, P), we define a reversion symmetry between i and j for 1 <i < j <n by

_ {p}"-‘r(a) if satisfied(,,, p)(@) = satisfied,, py(pij(@))
sij(a) =Y :

undef.  otherwise.
The set of reversion symmetries S, of (n, P) is defined by {s;; |1 < i < j <
n} U {id}, where id is the identity.

Breaking only reversions raises the question whether the breaking of the all
reversion symmetries is capable of breaking all permutation symmetries. While in
general, the set of reversions is a set of generators for the group of permutations,
we are considering reversions that are only partially defined. Hence, when com-
bining reversions s,1,...,S,m € S, such that Va € dom(sy) : sp10- - 05, (a) =
sz(a), it might happen that the partial domain of s,; does not fit with the
image of s,(;4+1)- Such an incompatibility would forbid to use the composition
Spi O Sp(i+1)-

Hence, we do not show that the (partial) reversions symmetries generate
the permutation symmetries, i.e. Isp1,...,5,m € S,V € dom(sy) : spp0---0
Spm (@) = sz(a). Instead, we show that for each valuation a € dom(s;), we find
a specific sequence of reversions preserving the preferences satisfied in «, i.e.
Va € dom(sy)3sp1,.--,8pm € Sp:8p1 00 8,p(a) = s5(a).

Theorem 1. Fiz an instance of the photo problem. Let S, be the set of permu-
tation symmetries and S, be the set of reversion symmetries for this problem in-
stance. Then, for any s, € Sy and for any photo a of the problem instance, where
sy is defined, there exist sp1,...,Spm € Sy, such that sp1 0+ 05pm () = s(a).

The main idea of our proof of Theorem 1 is to cluster persons who are
connected by preferences. Then, permutations and reversion on these clusters
do not break preferences any more. Thus, any permutation on these clusters can
be expressed by reversions.
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3 Partial Symmetries

The symmetries of the previous section are intuitively formulated as partial
functions. Albeit those symmetries can be represented by total functions®, this
is counter-intuitive and does not help for an efficient implementation due to the
complexity of those functions. This motivates introducing the notion of partial
symmetry.

Definition 1 (Partial Symmetry). A partial symmetry is a partial function
s : ||Cprl]] = |ICpy||, such that the domain restriction of s, which is Sqom :
dom(s) — dom(s),a — s(a), is a bijective function.

Note that by this definition a partial symmetry is not a symmetry as defined
in [2,3], since it is not total and bijective. Nevertheless, partial symmetries can
be handled by the same symmetry exclusion algorithms as presented there with
a small modification.

Similar to a symmetry, a partial symmetry s leads to a symmetry function
on constraints Sq,, with the property that for every a € dom(s)

afEc & s(a) Esconlc).

A partial symmetry s may be intuitively interpreted as a symmetry on a
subset dom(s) of all solutions ||Cp,||. In general, there is a condition cs; € C for
s to decide if a solution is in dom(s). That is, for the condition ¢, dom(s) =
[|Cpr A cs|| is satisfied. Thus, the condition cs tests, whether a partial symmetry
can be applied to a solution.

Proposition 1. Let s: ||Cp,|| = ||Cpr| be a partial symmetry and cs be the
condition for s. Then, a = ¢s iff s(a) E cs.

Note that Proposition 1 implies for symmetry s and condition ¢s for s holds
s(cs) H ¢s and c,-1 H cs, where c¢,-1 is the condition for s—1.

The concept of a condition ¢ for each symmetry s allows to extend the
breaking mechanism for usual symmetries to partial symmetry breaking search.
Recall that for symmetry breaking we add constraints of the form scon(Cp) —
—1Scon(c). Here, scon(Cp) actually tests, whether the insertion of —s¢on(c) exactly
breaks the symmetry s. Similarly for partial symmetries, = scon(c) has to take
effect only if the symmetry s is defined on all possible solutions. That is, we
have to add the test for c¢; to the antecedent of the implication and thus, get
constraints of the form s; A scon(Cp) = =1 Scon(€). 2

Finally, we give a short comparison of partial symmetries to our treatment of
non-partial symmetries in [2,3]. There we defined the terms S-reduced and Cp,-
complete w.r.t. S. These terms are extended to the case of partial symmetry sets

! The corresponding non-partial symmetry extends the partial function to a total one
by mapping values outside of the domain to themselves.

2 Note that an implementation can use reified constraints and boolean variables to
compute Sc A Scon(Cp) incrementally. Compared to a naive implementation, this
reduces the computational work significantly.
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S straightforwardly. Then, we proof, that the partial symmetry breaking search
tree is reduced and complete. The detailed treatment and proof is omitted due
to space restrictions.

4 The Alignment Problem

A further problem with partial symmetries is the alignment problem. The align-
ment problem is a very important problem in bioinformatics, where one searches
for an alignment of two strings, optimizing a certain score. The strings represent
biological macromolecules as DNAs or proteins. The scoring scheme evaluates
the aligned columns.

In the simplest case, alignment is identical to computing the edit distance of
strings. This problem is usually solved by dynamic programming (DP) as e.g.
by Needleman and Wunsch in [7].

However, dynamic programming approaches suffer from their inflexibility. If
the problem is slightly modified, one has to develop a new DP algorithm (if one
exists at all). For example, it is an unsolved problem to align two sequences
incorporating biological knowledge that tells us which sub-sequences/domains
should be aligned.

Further there are many biologically motivated extensions to sequence align-
ment, e.g. protein threading (e.g., [1]) or the contact map problem [5] that are
NP-complete and not solveable by DP at all.

To investigate such problems, where the usual DP approach fails, a constraint-
based formulation of sequence alignment is desirable. We believe that such a
formulation will allow many biologically interesting extension. An extension to
sequence structure alignment as in the contact map problem is discussed.

4.1 A Constraint Model for Alignment

The alignment problem is given by sequences a = ay ...a, and b = by ... by,.
It is modelled as a bipartite graph, where the sequence positions are vertices
and the edges connect aligned positions. We consider the score that sums over
weights w(a;, b;) for aligned edges (4, j) and adds a (linear) gap penalty, i.e. the
number of all unaligned positions times a factor g.

In our constraint model, we introduce variables X; for every position i in
sequence a. Their domain contains the positions in sequence b and a ” gap value”,

2
c
[
c
1 345 67

Fig. 2. The figure shows a graph representing an alignment of the two sequences
ACGTGGAA and CGGATTT. For this alignment, the variables X; (1 <4 < 8) are assigned
to values (0,1,2,0,0,3,4,0) and the variables Y; have the values (0,1,2,2,2,3,4,4).
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here 0. The assignment X; = j means positions ¢ and j are aligned. X; = 0 means
a; is aligned to a gap. Further variables have to be introduced to compute the
score of the alignment, which is optimized by branch-and-bound. Concerning
the constraints, we need to avoid crossing of alignment edges, i.e. the values of
variables X; # 0 have to be ascending. To avoid the use of quadratically many
non-standard ordering constraints, we introduce a second representation of the
alignment. There, we use one variable Y; for each position in a. The domain of
Y; is the set of positions in sequence b. If Y;_; < Y; then ¢ is aligned to the
value of Y;, else if Y;_; = Y3, i is aligned to a gap. On the variables Y}, it suffices
to impose linearly many standard <-constraints. For clarifying the model, an
example is given in Fig. 2.

4.2 Symmetries

We discuss the symmetry that occurs if the sequences contain repeats as in
CTAAAGT, where the A is repeated 3 times. For example, if we align this sequence
to CAGTT the following 6 alignments are intuitively symmetric to each other,
since our score cannot distinguish them.

CTAAAGT- CTAAAGT- CTAAAGT- CTAAAG-T CTAAAG-T CTAAAG-T
C-A--GTT C--A-GTT C---AGTT C-A--GIT C--A-GTT C---AGTT

These symmetries are permutations of values and variables, however as in
the case of the photo problem the permutations yield symmetric assignments
only on a part of all assignments, where for other assignments the same permu-
tation yields non-symmetric assignments. Again these symmetries are intuitively
expressed as partial symmetries in the sense of our previous definition.

We restrict our discussion to symmetries for repeats in sequence a. The case
for sequence b can be handled similarly. Again, it is reasonable to handle only
a subset of all permutations. We deal with translation symmetries s;.,;, which
swap the value of variables z; and x;. The translation ¢ < j is a symmetry,
if there is only one match of the positions in the range {i,...,j}, which forms
our condition for the symmetry s;.,;. The condition is expressed easily by the
constraint ¥;_; +1 =Y.

While we are aware that the use of two representations for the alignment
seems circumstantial, this is justified by the following consideration. On the one
hand the non-crossing of alignment edges and the symmetry conditions are not
expressed easily on the variables X;, on the other hand the symmetric constraint
8ie+;(Y; = j) does not only depend on ¢ and j, but on further variables (especially
it is not Y; = ¢). In contrast, symmetric constraints of the constraints X; = j
are straightforward, namely s;«;(X; = j) = X; =i as long as the condition for
Sierj holds.

4.3 Extension to Sequence Structure Alignment

Sequence structure alignment is the problem of aligning two macromolecules
not only according to their sequence, but taking account of their structure.
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While the sequence is given as a string, the structure can be represented as a
set of arcs that connect positions in one sequence. The constraint model for
sequence alignment can be extended by additional variables for the arcs in the
first sequence, where their domains contains the arcs of the second sequence,
analogously to the variables for sequence positions. The discussed symmetry
still occurs in this problems in repeats that are not disrupted by incidenting
structure.

5 Results

In [2,3], we show that a subset of symmetries can break symmetries from the
generated group. In the photo problem, we observe this effect. The breaking of
all reversion symmetries breaks many symmetries from the group of permuta-
tion symmetries. Some illustrating data is shown in Table 1. There, in column
problem, the instance of the photo problem is specified in the form (n, P). sat.
gives the satisfaction for the problem. The column n,., gives the number of
symmetry classes w.r.t. reversion symmetries, nperm gives analogously the num-
ber of classes for permutation symmetries. Note that the breaking of reversion
symmetries by our breaking mechanism reduces the number of solutions at least
t0 Trey. By Theorem 1, the breaking of reversion symmetries can reduce the
number of solutions to Nperm- #nobr (r€sp. #pr) is the number of nodes in the
search for all solutions without (resp. with) symmetry breaking of reversion sym-
metries. Column 7,04 (resp. ny-) gives the number of solutions found without
(resp. with) breaking of reversion symmetries.

We are interested in how close the breaking of reversion symmetries comes
to the breaking of all permutation symmetries. Therefore, we give the ratio
% for each problem instance. Further, we compare the number of re-
version symmetry classes to the number of remaining solutions by the ratio ’;:TT”

As of yet, we have not done extensive tests and evaluation on the alignment
problem. The use of the current implementation is mainly to demonstrate the
proposed symmetry breaking, further improvements are not investigated yet.
Our implementation breaks the symmetries that are caused by repeats in the
first sequence. We give a few examples in Table 2. There, #br (resp. Fnobr
denotes the number of search steps with (resp. without) symmetry breaking,
which is shown for the search for the best alignment as well as for the search for
all optimal alignments. np; (resp. nyoby) denotes the number of solutions with
(resp. without) breaking of symmetries.
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