Proc. SymCon’03

Using Constraint Programming to Compute
Symmetries

Jean-Frangois Puget

ILOG, 9 avenue de Verdun, 94253 Gentilly, France,
puget@ilog.fr

Abstract. Symmetry breaking methods in constraint programming
rely more and more on an explicit definition of the symmetry group.
Several methods take as input a set of strong generator for the symme-
try group, see [6], [7] for instance. These generators are then used to
compute various useful information using computational group theory
(CGT). Other methods use a second CSP to compute the same infor-
mation. For instance, the SBDD method can use an auxiliary CSP to
compute dominance relation [3], [8]. We present in this paper a thorough
explanation of how we use an auxiliary CSP to search for useful symme-
tries, in the context of the STAB method [11]. We also show how this
method can be significantly improved using a little CGT.

1 Introduction

Computing with symmetries is an essential ingredient of symmetry breaking
methods. For instance, the SBDD method[5] [3] requires to solve the following
dominance problem: given a past state A of the search and the current state B,
is there a symmetry o of the problem such that o(A) is included in B? This
sub problem can be solved with a description of the symmetry group [7]. Others
have explored the use of an auxiliary CSP [8] [10]. We will explore the latter
approach in this paper in the context of the STAB method [11]. This method
requires the computation of the set of symmetries that leave a given partial
assignment unchanged. Such sets are called stabilizers in group theory. We will
show how to use an auxiliary CSP for the computation of stabilizers. We will also
show that our auxiliary CSP ca be used to compute generators of the stabilizers
instead of all their elements. An experimental evaluation will show that stating
symmetry breaking constraints using generators is more efficient in practice than
the original STAB method.

The rest of the paper is organized as follows. Section 2 presents the STAB
method briefly. Section 3 presents the CSP used for the computation of stabiliz-
ers. Section 4 shows how to modify the CSP in order to compute only generators
for stabilizers. Section 5 contains an experimental evaluation using BIBDs. Last,
section 6 contains a discussion of the results obtained so far as well as an indi-
cation of future research topics.

177

Proc. SymCon’03

2 The STAB method

We will only consider variable permutations. We will define a symmetry o by
how it maps any partial assignment A into another partial assignment o(A).

In [2], it is shown that any CSP can be turned into a CSP without symmetries
by the addition of the following constraints to the CSP.

V <pex o(V),foralloc € G (1)

where <pgx stands for lexicographic ordering.

Although very appealing, this technique is not scalable because of the poten-
tially large size of the group G. Indeed, we exhibit in section 5 a problem that
has more than 10'%® symmetries.

Given a partial assignment A, let us define the set of symmetries that leave
A unchanged:

stab(A) = {o€ G| o(A) = A}

This set is called the stabilizer of A, and it is a subgroup of G. Moreover,
its size divides the size of G. In practice the size of the stabilizers is often much
smaller than the size of G. The STAB method [11] amounts to add the following
set of constraints at each node of the search tree:

V <pew o(V), forall o € stab(A) (2)

or some subset of these constraints.

3 Computing stabilizers

There exists algorithms in the computation group theory that efficiently compute
stabilizers if the symmetry group is given as input. These algorithms could be
used to implement STAB. We chosed to compute directly the stabilizers from
the partial assignments A because we think that providing the symmetry group
as input may be too complex for users. We will consider symmetrical matrix
problems! from now on, but the idea of using an auxiliary CSP to compute
symmetries can be used for other problems.

3.1 An example

Let us look at an example to explain how STAB works in more detail. For
instance let us consider a 4 x 5 matrix model. The matrix of variables is:

Tr1 T2 XT3 T4 Ty
Tg Ty T T9 T10
T11 T12 T13 T14 T15
T16 17 T18 T19 T20

L' A symmetrical matrix model is a model where the variables can be arranged into a
matrix such that any row permutation or any column permutation is a symmetry.

178

Proc. SymCon’03

Let us consider the partial assignment A where the first 10 variables, are
assigned values in the following way.

00011
01100

Every symmetry for A is defined by a row permutation ¥ € S* and a column
permutation ¢ € S® such that A = A(3,¢). We will see later how to compute
these symmetries. They are listed below.

01 = (¢1,¢1): ¢1 = [1727374]7 ¢1 = [172737475]
02 = (¢1,¢2)7 ¢1 = [1727354]7 ¢2 = [173727475]
03 = (wla(bS): ¢1 = [1727354]’ ¢3 = [172737534]
04 = (1/)1,¢4) ¢1 = [1,2,3,4], ¢4 = [1,3,2,5,4]
05 ("/}27¢J) o = [Za 17374]a o5 = [17475’273]
g = (1/}2,¢)6), ’Lﬂg = [2, 1,3,4], (ﬁe = [1,4,5,3,2]
o7 = (1/12,¢7); ¢2 = [2~ 1735413 ¢7 = [17574:273]
og = (w27¢8): ¢2 = [2~ 1735413 ¢8 = [17574:372]
09 = (¢3,¢1)7 ¢3 = [172745 3]7 ¢1 = [172737475]
010 = (¢3,¢2) ¢ = [172745 3]7 ¢2 = [173727475]
011 = (¢3,¢3) ¢ = [172745 3]7 ¢3 = [172737574]
012 = (1/137¢4)7 ¢3 = [1:2745 3]5 ¢4 = [17372:574]
013 = (1/}47¢o)7 ¢4 = [2~ 174: 3]5 ¢5 = [17475:273]
014 = (w47¢6)7 ¢4 = [2* 174> 3]5 ¢6 - [17475:372]
015 = (w47¢7)a ¢4 = [27 154: 3]’ ¢7 = [175747233]
016 = (w47¢8)a ¢4 = [2 1 45 3]7 ¢8 = [175747332]

3.2 Computing matrix automorphisms

From the example above, it should be clear that the stabilizer is the group of
the automorphisms of the matrix A representing the partial assignment.

In order to compute it, we construct a labeled graph g(A) whose nodes are
the rows and the columns of A. There exists an arc between row ¢ and column j
with label A[i, j]. Then the symmetry group of this graph is what we are looking
for. We can use an auxiliary CSP to compute it.

Given a graph with labeled edges, we construct a CSP as follows. There is
one variable y; per node i. The domain of the variables are the set of nodes.
There are two constraints. First of all, the variables are all different. Second,
there is a constraint stating that neighbors are mapped onto neighbors. The rest
of this section describes the second constraint into detail.

If 7 is a node, and a a label, let I'*(i) be the set of nodes j such that there
exists an arc labeled a whose ends are ¢ and j. If dom(y;) is the domain of y;,
let I"*(y;) be,

I(y;) = Ujedom(yi) re(j) (3)

179

Proc. SymCon’03

Then the neighbor constraint says that
y; € I'(y;) for all j € I'*(4) 4)

The propagation of this constraint is straightforward. The sets ['*(y;) are
maintained incrementally. Whenever they are reduced, the above condition is
used to reduce the domains of the variables y; for each j neighbor of i.

3.3 Revisiting the example

Let us look at our example to see how the neighbor constraint work. We consider
the following matrix. The stabilizer is in fact the product of the automorphism
group of this matrix and the set of permutations of rows 3 and 4.

00011

01100

We create one node for each row and one for each column. Let integers 1 to

5 represent the columns, and let 6 and 7 represent the rows. For each node we
create a variable. Let y1, y2, ¥3, y4 and ys, be the variables corresponding to the

columns, and yg and y7 be the variables corresponding to the rows.
The sets I'*(7) are

o = {6,734 (1) = {}
r'@E) = {6} I(2) = {7}
r°@) = {6y 13 = {7}
r°@) = {1y 1(4) = {6}
°G) = {71 I'(5) = {6}
o) = {1,2,34 1"(6) = {4,5}
o) = {1,451 I'(7) = {2,3}

Then we can compute the sets I'%(y;) using (3). For instance, we have for
the first row:

Fl(yﬁ) = Ujedom(ys) Fo(j)
i.e.
Fl(yg) = {2,3,4,5,6,7}
Then, using (4), we have that
y; € T (ye) for all j € I'(6)
ie.

Ya,Y5 € {27 37 47 5: 63 7}

180

Proc. SymCon’03

Similar deductions plus the fact that the variables are all different enables
to deduce that y1 = 1. From this, the set I"%(y1) becomes {6,7}. Applying (4)
gives

Ye, Yt € {65 7}

Upon completion of the propagation of the constraints, the domains are

y1 =1
Y2, Y3, Y4, Ys € {2,3,4,5}
Y6, y7 € {6,7}

Similar propagations are made during the search for all the solutions of this
auxiliary CSP. This computes the following 8 solutions. We list the values for
the variables y; for each solution:

U‘U‘»lk:lkw[\.')wl\')
R OOt W W

W KN WK OO
RO Lo N0 Lo A U1 O

NN N0 OO
S O OO NN N~

P ===

This method is quite efficient for computing graph automorphisms. In the
experiments described in section 5, the number of failed nodes explored when
solving the auxiliary CSP is less than the number of automorphisms found. The
time spent in the search for automorphisms ranges from 20 to 80 percents of the
total running time.

3.4 Aggregating identical column

For matrix models, the complexity of symmetry breaking constraints can be
further simplified. We can replace identical adjacent columns by a single repre-
sentative. Indeed, these columns can be freely permuted. We also assume that the
columns and the rows are lexicographically ordered, which implies that identical
lines are adjacent.

Let us look at our example. The idea is to replace each group of adjacent
columns in V' by a single representative, and to replace entries in the matrix by
the original value and a cardinality. The A matrix becomes

(0,1) (0,2) (1,2)
(0,1) (1,2) (0,2)

Then we can use the process described earlier for constructing and solving
an auxiliary CSP. In our example there are only two symmetries for the reduced
matrix.

181

Proc. SymCon’03

o117 = (1/}5’(159)’ 7/)5 = [132]3 ¢9 = [1a233}
o18 = (Y6, P10, Y6 = [2,1], ¢10 = [1,3,2]

The original symmetries can then be reconstructed by composing those with
the permutations of identical columns. The idea can be extended to collapsing
identical rows as well.

For instance, let us consider ¢18. The second and third columns in the ag-
gregated matrix are swapped. This means that in the original matrix, the group
of columns corresponding to the second column of the aggregated matrix should
be swapped with the group corresponding to the third column of the aggregated
matrix. This means that 018 stands for all the permutations of the original ma-
trix where the second and third columns are swapped with the columns 4 and 5,
and where the two lines are exchanged. These permutations are o5, og, 07, 0g,
0’13, 0’14, 0’15, 0'16.

4 STAB with generators

In [1], the authors suggest to only state constraints (1) for group generators, as
it leads to a much smaller set of constraints while breaking many symmetries.
A similar idea can be used in our setting. Let’s look at our example again.
Given the partial assignment A, we computed the automorphism group Aut(A)
of the partial matrix containing the rows for which variables have been assigned
a value. The STAB method then states symmetry breaking constraints for each
automorphism found [11].

4.1 The Schreier Sims representation

We can modify the STAB method by using a set of generators for Aut(A) instead
of Aut(A) itself. It is easy to modify the CSP approach we described in the
previous section to compute a Schreier Sims representation for this group[?].
This representation is based on a chain of stabilizers and coset representatives.
We define Stabgy(i) to be the stabilizer of ¢ in the group G.

Let us look at our example again. There are 8 permutations in the automor-
phism group G:

NN NN OO
SO OO NN N~

W N LoD T O s
B LoD WO R Ut

— == = = T e e
Hkﬂk“wl\')w[\')

B OTOT D W W

v ot

The first step is to consider the stabilizer of the first node.
Stabg(1) = G

182

Proc. SymCon’03

In this case, all permutations fix 7. We then compute the stabilizer of the
second node in this stabilizer (let G1 = Stabg(1)):

Stabe, (2) = [1,2,3,4,5,6,7],[1,2,3,5,4,6,7]

We partition the permutations of G; according to the element to which 2 is
mapped (Let Gp = Stabg,(2)):
Cy =Gy
C’3 = [1a 37 27 47 5: 6’ 7}* []-a 33 23 53 47 63 7]
C4 [1343552335 736}5[174a533325736]
C(5 = [15 57 47 27 37 77 6}7 [17 57 47 37 27 73 6]

and we select one permutation from each of Cs, Cy4, and C5. Those sets are
called right cosets for G5 in Gj.

We then continue with the next node. We compute the stabilizer G5 of the
third node in G:
G3 = StabG2 (3) = Gz

Since G3 = G5 cosets are empty. We compute the stabilizer G4 of the third
node in G3:
G4 = Stabg,(4) =[1,2,3,4,5,6,7]

There is one coset:
Cs =11,2,3,5,4,6,7]

The representation is complete because we are only left with the identity
permutation.

The Schreier Sims representation is the set of coset representatives, plus the
identity, i.e.:

4.2 Computing the Schreier Sims Representation

There is a simple way to compute this representation using the CSP. Remember
that the permutations are obtained as the values of the variables y; for each
solution of the CSP.

Let Go = G, and G; = Stabg, (1)

The step is to see that G;_1 is the set of the permutations that fix all the
nodes 1 to ¢ — 1 included. They correspond to solutions where
y; = jforallj <

Then we must select one coset representative for each coset in G;_1. This
means that we must find one permutation for each k such that there exist a
permutation in G;_1 that maps ¢ to k. That is, for each k we search for a
solution that extends the partial assignment :
y; = jforallyj < i
y; = ksuch that k # j

183

Proc. SymCon’03

The algorithm for finding a Schreier Sims representation is then straightfor-
ward. We first generate all partial assignments such that there exists i and k
such that

y; = jlorallj < 1
yi = ksuch that k # j
y; aren’t assigned a value, for all j > i

Then we try to extend each of these partial assignment to a solution. We
only need one solution for each partial assignment.

The set of all the solutions obtained this way is the Schreier Sims representa-
tion we are looking for. This modified search is easy to implement in any modern
CP system.

For instance, in our example, we will only produce the following 5 solutions.
Remember that the full automorphism group contains 8 elements.

[1,2,3,4,5,6,7]
[1,2,3,5,4,6,7]
[1,3,2,4,5,6,7]
4,5,2,3,7,6]
5,4,2,3,7,6]

» s

1,4,
[]‘7 I bl

N

bl » '

4.3 The STABGEN method

We can then modify the STAB method to only state the symmetry breaking
constraints for the permutations appearing in the Schreier Sims representation
of the automorphism group. Let’s call STABGEN the resulting modified STAB
method.

5 Experimental results

In order to evaluate the effectiveness of STABGEN, we chose the BIBD problems
studied in [11]. We are using the same CSP representation, and the same value
and variable orderings for the search.

We report running times to find all solutions in Table 1. We report the
times obtained for three methods: ordering both row and columns (Lez?)[4], the
STAB method (Stab), and the STABGEN method (StabGen). For each method
we report the running time, in seconds, on a 1.4 GHz Pentium Mobile laptop
with 1GB of memory. We also report the number of solutions found and the
number of symmetry constraints added to the original CSP.

184

Proc. SymCon’03

Lea?® Stab StabGen
vk A |fsym time fisols fct time fsols fct|time fsols fet
638 |5.9e+50 0.47 494 44 0.1 15 206| 0.1 17 144
943 |2.3e+21 1.3 2600 25 0.11 41 537 0.1 41 379
16 6 2|4.3e+26 0.33 46 30 0.34 3 11543|0.15 3 1636
734 |1.5e+33 0.69 3209 33 0.16 116 537(0.17 123 400
21 5 1|2.6e+39 0.28 12 40 0.95 1 37050| 0.2 1 2461
6 3 10{2.2e+67 1.3 1366 54 0.22 26 222|0.24 30 178
932 |2.2e+29 0.82 5987 31 0.34 344 1895| 0.36 383 1413
15 5 2|6.6e+31 6.9 0 34 0.37 0 3006(0.38 0 1700
13 3 1|2.5e+36 4.6 12800 37 0.39 21 2045 0.41 26 1656
15 7 3|1.7e+24 0.5 118 28 0.54 19 12689 0.42 19 4680
25 5 1|4.1e+57 21.6 864 53 0.94 1 30690(0.42 1 3674
22 7 2|1.2e+42 10.8 0 42 3.6 0 94148(0.43 0 4567
735 [5.2e+43 6.9 33304 40 047 542 1086| 0.46 555 729
10 5 4/2.3e+22 11.8 8031 26 0.94 302 2843|0.94 302 2547
31 6 1|6.7e4+67 53 864 60 17.7 1 743434|1.47 1 9158
736 |7.0e+54 64 250878 47 1.5 2334 1816 1.6 2574 1549
737 |3.1e+66 460 1459585 54 6.1 8821 3286 6.8 9905 3049
846 |1.2e+34 605 2058523 34 7.7 17890 7210 8.1 18773 6763
10 3 2|9.6e+38 83 724662 38 9.5 24563 26204|10.1 26683 26247
19 9 4|1.4e+34 544 6520 36 9.6 71 46981|10.7 79 42326
43 7 1|3.6e+105|>120000 >100000 >5400000{ 20 0 78642
738 |3.6e+78 2664 6941124 61 25 32038 6863| 28 35613 6589
36 6 1|5.2e4+92 95057 0 76 684 0 963630 42 0 178347
933 |1.3e+47 1871 14843772 43 76 315531 69458| 85 344543 78186
29 8 2|7.8e+61 30401 0 56 4545 0 1131265 89 0 328703
739 |1.0e4+91 13059 38079394 68 98 105955 13695| 113 120201 13373
15 3 1|1.3e+52 13522 32127296 48 128 6782 280361| 167 11187 368468
21 6 2|1.6e+49 26654 0 47 325 0 477517| 261 0 654662
13 4 2|2.5e+36 15139 3664242 37 410 83337 811396| 448 92005 878793
11 5 4/4.5e+28 15734 6142308 31 481 106522 557127| 507 113305 580824

We can see that STABGEN is always faster than Lex?, which is not true of
the original STAB method. STABGEN is about 35 times faster on average? than
Lea? when the latter can solve the problem. We can also see that STABGEN is
about 2 times faster on the average than STAB. It is also more regular. Indeed,
when STABGEN is slower than STAB, it is about 10 percents slower. However,
when STABGEN is faster than STAB, it is about 6 times faster on average!
Memory consumption is not shown, but we see that the number of constraints
stated by STABGEN is very often smaller than for STAB. When it is greater,
it is not by a big margin. STABGEN may state more constraints than STAB
because it prunes less nodes, therefore the increase in the number of explored
nodes may offset the reduction in the number of constraints stated at each node.

2 We use geometric means instead of the usual arithmetic mean. This avoids to bias
results towards the exceptional values.

185

Proc. SymCon’03

Last, we can see that the number of solutions found by STABGEN is greater
than for STAB, but not more than twice as large.

We also collected information about the computation one solution. We only
report, conclusions here because of lack of space. It has been shown in [11] that
STAB and Lex? have the same efficiency. The STABGEN method is about 40
percents faster on average than both methods for finding the first solution.

6 Conclusion

We presented how to use an auxiliary CSP to compute the stabilizers used in
the STAB method. We discussed a number of improvements as well as a new
global constraint enforcing neighbor conditions. We aslo showed that using a
little computation group theory, one could significantly reduce the number of
symmetry constraints added by the STAB method. An experimental comparison
shows that the resulting STABGEN method is much more efficient and scalable
than previously published methods.

We plan to generalize the STABGEN method to problems others than matrix
problems. We also want to extend the method in order to take into account value
symmetries.

References

[1] F.A. Aloul, I.L. Markov, and K.A. Sakallah. Symmetry Breaking for Boolean Sat-
isfiability: The Mysteries of Logic Minimization. In proceedings of SymCon’02.

[2] Crawford, J., Ginsberg, M., Luks E.M., Roy, A. Symmetry Breaking Predicates
for Search Problems. In proceedings of KR’96, 148-159.

[3] Fahle, T., Shamberger, S., Sellmann, M. Symmetry Breaking. Proceedings of CP01
(2001) 93-107.

[4] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh.
Breaking Row and Column Symmetries in Matrix Models. Proceedings of CP’02,
pages 462-476, 2002

[6] Focacci, F., Milano, M.: Global Cut Framework for Removing Symmetries. Pro-
ceedings of CP’01 (2001) 75-92.

[6] Gent, I.P., Harvey, W., and Kelsey, T.: Groups and Constraints: Symmetry Break-
ing during Search. Proceedings of CP’02, 415-430.

[7] Gent, I.P., Harvey, W., Kelsey, T., and Linton, S.: Generic SBDD using Compu-
tational Group Theory. To appear in proceedings of CP’03

[8] Harvey, W.: Symmetry breaking and the social golfer problem. Proceedings of
SYMCON’01, 9-16.

[9] Donald L. Kreher, Douglas R. Stinson Combinatorial Algorithms: Generation, Enu-
meration, and Search CRC press, 1998.

[10] Puget, J.-F.: Symmetry Breaking Revisited. Proceedings of CP’02, 446-461.

[11] Puget, J.-F.: Symmetry Breaking Using Stabilizers. To appear in proceedings of
CP’03.

186

