Proc. SymCon’03
Why SBDD can be worse than SBDS

Karen E. Petrie

School of Computing & Mathematics
University of Huddersfield
Huddersfield HD1 3DH, U.K.
k.e.petrie@hud.ac.uk

Abstract. A detailed comparison of GAP-SBDS and GAP-SBDD on
the Graceful Graphs problem. GAP-SBDD performs substantially slower
then GAP-SBDS on this problem class. This paper presents full analysis
as to why this is the case.

1 Introduction

Constraint Satisfaction Problems (CSPs) are often highly symmetric. Symme-
tries may be inherent in the problem, as in placing queens on a chess board that
may be rotated and reflected. Additionally the modelling of a real problem as a
CSP can introduce extra symmetry: problem entities which are indistinguishable
may in the CSP be represented by separate variables, leading to n! symmetries
between n variables.

Definition of Symmetry Given a CSP L, with a set of constraints C,
a symmetry of L is a bijective function f which maps a representation
of a search state o to another search state, so that the following holds:

1. If « satisfies the constraints C, then so does f(a).
2. Similarly, if @ is a nogood, then so too is f(a). [12]

Symmetries can give rise to redundant search since subtrees may be explored
which are symmetric to subtrees already explored. To avoid this redundant
search constraint programmers try to exclude all but one in each equivalence
class of solutions. Many methods have been developed for this purpose. Two of
these methods for symmetry exclusion which operate during search are, symme-
try breaking during search (SBDS) [2,9], and symmetry breaking via dominance
detection (SBDD) [3,4]. More recently, computational group theoretic versions
of these methods have been devised, namely GAP-SBDS[7] and GAP-SBDD|8].
The development of these methods has led to the need for investigations into
when each method should be applied. Petrie and Smith [13] carried out a compar-
ison of GAP-SBDS and GAP-SBDD and found unexpected results. This paper
presents a more detailed examination of how the two systems behave during
search, on the problem studied, to clarify their behaviour.

168

Proc. SymCon’03

2 Introduction to SBDD and SBDS

Symmetry breaking during search (SBDS), was developed by Gent and Smith [9],
having been introduced by Backofen and Will [2]. The search tree is built from
decision points, where a decision point has two possible choices; either assign a
value to a variable, or do not assign that value to that variable. When a decision
point is first reached during search a value is assigned to a variable; if at a later
stage in search the decision point is revisited then a constraint is imposed that
the variable should not have the previously assigned value. SBDS operates by
taking a list of symmetry functions (provided by the user) and placing related
constraints when backtracking to a decision point and taking the second branch.

A feature of SBDS is that it only breaks symmetries which are not already
broken in the current partial assignment: this avoids placing unnecessary con-
straints. A symmetry is broken when the symmetric equivalent of the current
partial assignment is not consistent with that assignment.

Definition of Broken Symmetry Given a partial assignment A, where
g(A) is the symmetric equivalent of A, then the symmetry g is broken if
g(A) is inconsistent with A.

The following expression explains how SBDS works:
A & g(A) & var # val = g(var # val)

where A is the partial assignment made so far during search, g(A) is the sym-
metric equivalent of A and var # val is the symmetrical equivalent to this failed
assignment. If A is the current partial assignment and we have established that
var # val, we need to ensure that we are dealing with an unbroken symmetry, so
we check that g(A) still holds. Then to ensure that the symmetrically equivalent
subtree to the current subtree will not be explored, the constraint g(var # val) is
placed. An SBDS library is now available in the ECL'*PS® constraint program-
ming system [1]. As previously mentioned, SBDS requires a function for each
symmetry in the problem describing its effect on the assignment of a value to
a variable. If these symmetry functions are correct and complete, all the sym-
metry will be broken; as a result of this only non-isomorphic solutions will be
produced. Although SBDS has been successfully used with a few thousand sym-
metry functions, many problems have too many symmetries to allow a separate
function for each.

To allow SBDS to be used in situations where there are too many symmetries
to allow a function to be created for each, Gent et. al. [7] have linked SBDS
in ECLiPS® with GAP (Groups, Algorithms and Programming) [6], a system
for computational algebra and in particular computational group theory. Group
theory is the mathematical study of symmetry. GAP-SBDS allows the symmetry
group rather than its individual elements to be described. GAP is used when
a value is assigned to a value at a decision point to find the stabiliser of the
current partial assignment, i.e. the subgroup which leaves it unchanged. Then if
the decision point is revisited on backtracking, the constraints are dynamically

169

Proc. SymCon’03

calculated from the stabiliser and placed accordingly. GAP-SBDS allows the
symmetry to be handled more efficiently than in SBDS; the elements of the
group are not explicitly created which is akin to what the symmetry functions
represent in SBDS. However, there is an overhead in communication necessitated
between GAP and ECLiPSe.

Symmetry Breaking via Dominance Detection (SBDD) [3,4] performs a check
at every node in the search tree to see if it is dominated by a symmetrically
equivalent subtree already explored, and if so prunes this branch. Harvey [10]
explains that SBDS and SBDD are closely related; the difference is where in the
search tree and how, symmetry breaking is enforced. In SBDD, the dominance
detection function is based on the problem symmetry and is hard-coded for each
problem. This means in practise SBDD can be difficult to implement, as the
design of the dominance detection function may be complicated.

Gent et. al. [8] have recently developed GAP-SBDD, a generic version of
SBDD that uses the symmetry group of each problem rather than an individual
dominance detection function and links SBDD (in ECLPS®) with GAP. At each
node in the search tree, ECL:PS® communicates the details of that node to GAP,
and GAP returns false if dominance has been detected and that branch can be
pruned, or true otherwise. Occasionally full dominance is not detected but there
are variable/value pairs which are easily detected as being eligible for domain
deletion; at which point GAP returns true followed by a list of variable/value
pairs for which this is the case. This information is utilised by ECL PS¢ to con-
trol search. This communication overhead between GAP and ECLiPS®, required
in returning a true or false answer, is less than that of GAP-SBDS where fairly
complicated constraints have to be passed. Gent et. al. [8] compared GAP-SBDD
with GAP-SBDS applied to instances of the balanced incomplete block design
(BIBD) problem ! and showed that GAP-SBDD could solve much larger probl-
ems, and was faster than GAP-SBDS on the smaller problem which both could
solve.

3 Test Problem: Graceful Graphs

Petrie and Smith [13] investigated symmetry breaking in the Graceful Graphs
problem. A labelling f of the vertices of a graph with ¢ edges is graceful if f
assigns each vertex with a unique label from {0,1,...,q} and each edge zy is
labelled with |f(z) — f(y)| the edges are all different [5]. (Hence, the edge labels
are a permutation of 1,2, ...,¢.) Figure 1 shows two examples. Gallian [5] gives a
survey of graceful graphs, i.e. graphs with a graceful labelling, and lists graphs
whose status is known. Lustig and Puget [11] give a constraint model for finding
a graceful labelling of the graph Ky x P;.

A basic CSP model has a variable for each node 1,22, ..., z,, each with
domain {0,1, ...,¢} and a variable for each edge di,ds, ..., dy, each with domain
{1,2,...,q}. The constraints of the problem are:

! BIBD is problem 28 of csp-lib http://www.csplib.org

170

Proc. SymCon’03

Fig. 1. Graceful Labellings of K5 x P> and the Double Wheel DWj

1. If edge k joins nodes ¢ and j then dy, = |z; — x;].
2. x1,%9,..., T, are all different.
3. di,ds, ..., d4 are all different.

ECL!PS® provides two different levels of propagation for the alldifferent co-
nstraint. It can either be treated as a set of binary # constraints or as a global
alldifferent which has higher propagation. We use the global alldifferent on the
edge variables and the binary # version on the node variables. They are treated
differently because the values assigned to the edge variables form a permuta-
tion and hence give more scope for domain pruning than the node variables,
which have more possible values than variables. The node variables are used as
the search variables as they are the simplest set to consider symmetry breaking
over.

There are two kinds of symmetry in the problem of finding a graceful labelling
of a graph: first, there may be symmetry in the graph. For instance, if the graph
is a clique, any permutation of the vertex labels in a graceful labelling is also
graceful. If the graph is a path, P,, the labels z1,z>, ..., z, can be reversed to
give an equivalent labelling x,,, ..., £2, 1. We might call this the graph symmetry.
The second type of symmetry is that we can replace every vertex label x; by its
complement n — x;. We can also of course combine each graph symmetry with
the complement symmetry.

4 Tests Undertaken: K,, X P,

The graph K5 x P,, shown in figure 1, consists of two copies of K5, with corre-
sponding vertices in the two cliques forming the vertices of path P». The sym-
metries of K5 x Py are first any permutation of the 5-cliques which act on both
in the same way. Second, inter-clique symmetry: all the node labels in the first
clique can be interchanged with the labels of the adjacent nodes in the second.
These can be combined with each other and with the complement symmetry.
Hence, the size of the symmetry group is 5! x 2 x 2. In general K,,, X P, graphs

171

Proc. SymCon’03

have a symmetry group of size m! x 2 x 2. In this study we will concentrate on
symmetry breaking in 3 such graphs, namely K3 x P», K4 X P» and K5 x P. The
results of finding all graceful labellings of these graphs using either GAP-SBDS
or GAP-SBDD can be found in table 1.

GAP-SBDD GAP-SBDS
BT ECL*PS® GAP Totall| BT ECL*PS® GAP Total
time time time time time time

K3 x P>| 22 030 039 069 9 020 0.34 0.54
Ky x P;| 496 16.65 3.97 20.62(165 7.00 1.32 8.32
Ks x P;|17997 1106 204 1311|4390 344.73 37.69 382.42

Table 1. Comparison of GAP-SBDS and GAP-SBDD showing backtracks (bt) and
the time (in seconds) for finding all graceful labellings of K3 X P2, K4 X Py, K5 X Ps.
On a 1.6 GHz Pentium 4 processor with 512MB of memory.

From table 1 we can see that GAP-SBDD is substantially slower than GAP-
SBDS for all instances.? This contradicts the results reported by Gent et. al.
in [8]. We performed further analysis to investigate why the results differ. It
is also worth noting from the above results that both the GAP times and the
ECLPS® times are longer, for each graph, in GAP-SBDD than in GAP-SBDS.
This shows that it is not one or other of these processes which is causing the
delay, but rather a combined effect.

5 Analysis

We have analysed the difference between GAP-SBDS and GAP-SBDD for the
three graphs K3 x Py, K4 x Py and K5 X P,. The reason for the different times is
consistent, but for reasons of simplicity only the results for K3 x P, are presented
here. A diagram of K3 x P, can be seen in figure 2, for ease of reference the node
variables are named in capital letters, and the edge variables with a letter pairing
corresponding to their attached nodes.

We began analysing where GAP-SBDS and GAP-SBDD differ, by finding
where the first difference in the search tree occurs. In finding all graceful la-
bellings of K3 x P, this actually happens quite late in the search, after the first
two solutions (from a possible 4) have been found. A full diagram of the search
tree until this point can be found in the appendix. Of note is the fact that the
backtrack count in table 1 refers to deep-backtracks. A deep-backtrack is when
the search has moved passed a point it later has to revisit. A shallow-backtrack is
where the var = val branch has been tried, and due to propagation of that choice

2 The results presented do seem to continue to larger problem instances. A solution
was found for K x P> within 12 hours using GAP-SBDS, but no result was returned
in a similar amount of time by GAP-SBDD.

172

Proc. SymCon’03

Fig. 2. Graph K3 x P> showing node variable and edge variable naming

reversed in favour of the var # wval branch. The number of deep-backtracks is
the standard backtrack count in most constraint programming environments,
so eases the comparison of methods across environments, but perhaps in this
case it does not show the most accurate picture of a search tree. In the frag-
ment of the search tree shown there are only 2 deep-backtracks counted, but the
var # val branch is actually followed 18 times. This is important when studying
GAP-SBDS, as every time the var # val branch is followed, symmetry breaking
constraints can be placed.

Looking more closely at the branch of the search tree where the first difference
occurs (this can be found in figure 3) shows that GAP-SBDS enables earlier
pruning than GAP-SBDD. This pruning happens after setting C = 5. GAP-
SBDS immediately reverses from this decision to follow the C' # 5 branch,
whereas GAP-SBDD carries on from here to set E = 1, and ends up performing
a deep-backtrack back to this point later on in search.

To understand why this difference occurs we have to look into the variable
propagation. In the first instance both GAP-SBDS and GAP-SBDD perform
propagation over the current partial assignment, in conjunction with the prob-
lem constraints, to get to the stage shown in figure 4. Past this point GAP-
SBDS, propagates any symmetry breaking constraints previously employed on
this branch. The two that are vital in this case are a combination of the graph
symmetry and the complement symmetry for B # 1: namely E # 8 and F # 8.
These extra constraints are placed on the node variables, but they provide extra
information for propagation to occur on the edge variables as well. As we have
already discussed, the values assigned to the variables form a permutation giv-
ing the alldifferent constraint more scope for pruning. This added propagation
causes C' = 5 to fail and the alternative path to be followed.

In contrast to this, GAP-SBDD just returns a boolean to indicate whether
the current node is dominated or not, and possibly a list of values to prune
from the domains of specific search variables. In the current implementation,
variable/value pairs are returned for domain pruning, when the variable is the
only one in the current partial assignment not to cause domination to be de-
tected. So in this case E/8 and F'/8 are not returned. This successfully breaks

173

Proc. SymCon’03

GAP-SBDS . GAP-SBDD

ffffffff decision made due to propagation, deep-backtrack commences above

decision taken after a deep-backtrack has been made

Fig. 3. The search tree branch where GAP-SBDS and GAP-SBDD differ

the symmetry and prunes the search tree, but it does not provide information
that can propagate on any non-search variables, in this case the edge variables.

DE = {1,4,6,7,8}

CF = {1,4,6,7,8}) — {1,3,5,6,7,8}

EF = {1,4,6,7,8}
F={1,3,56,7,8}

Fig. 4. The domain of the node and the edge variables after propagating C' = 5

6 Conclusion

The fact that GAP-SBDD returns limited information to ECL*PS® allow GAP-
SBDD to solve much larger problems than GAP-SBDS, as found by Gent et. al.
in their BIBDs experiments [8]. However, our results have shown the disadvan-
tage of this reduced communication. We have found that the constraints which
GAP-SBDS places during search, are adding information to the problem, and for
problems this can cause an increase in propagation. In this case the propagation

174

Proc. SymCon’03

of the non-search variables with these constraints gives scope for domain prun-
ing of the search variables. It is not unusual for CP modellers to develop CSPs
like graceful graphs, where only some of the variables are used for search, but
constraint propagation over the full set of search variables is crucial to solving
the problem quickly. Hence the fact that GAP-SBDD may performs badly on
such a model is an important finding,.

In general, we have shown that simple empirical comparisons of symmetry
breaking methods are not always enough to give an accurate guide to which
method should be used when. When thinking about how a symmetry breaking
method may operate on a given problem, it is valuable to consider how the
construction of the problem and the symmetry breaking method may interact.

Acknowledgements

The author is a member of the APES group and would like to thank the other
members; I should especially like to thank Barbara Smith and Tan Gent for their
interest. Tom Kelsey and Steve Linton were very helpful in confirming some of
the data of this study. I am also very grateful to Warwick Harvey for his ongoing
encouragement and Neil Yorke-Smith for his support. This work was supported
by grant GR/R29673.

References

1. The ECLiPSe Constraint Logic Programming System, Mar. 2002.
(http://www-icparc.ic.ac.uk/eclipse/).

2. R. Backofen and S. Will. Excluding symmetries in constraint-based search. In
J. Jaffar, editor, Principles and Practice of Constraint Programming - CP99, vol-
ume LNCS 1713, pages 73-87. Springer, 1999.

3. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,
editor, Principles and Practice of Constraint Programming, volume LNCS 2239,
pages 93-107. Spinger, 2001.

4. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
T. Walsh, editor, Principles and Practice of Constraint Programming, volume
LNCS 2239, pages 77-92. Spinger, 2001.

5. J. Gallian. A Dynamic Survey of Graceful Labeling. In The Electronic Journal of
Combinatorics, 2002. (http://www.combinatorics.org/Surveys).

6. The GAP Group. GAP — Groups, Algorithms, and Programming, Version 4.2,
2000. (http://www.gap-system.org).

7. 1. P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking
during search. In P. V. Hentenryck, editor, Proceedings of Principles and Practice
of Constraint Programing- CP02, volume LNCS 2470, pages 415-430. Spinger,
2002.

8. I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD with GAP and
ECLiPSe. Technical Report APES-57-2003, APES Research Group, January 2003.
Available from (http://www.dcs.st-and.ac.uk/"apes/apesreports.html).

9. I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. In
Proceedings of ECAI-2002, pages 599-603. I0S press, 2000.

175

11.

12.

13.

Proc. SymCon’03

. W. Harvey. Symmetry Breaking and the Social Golfer Problem. In Proceedings
SymCon-01: Symmetry in Constraints, pages 9-16, 2001.

I.J.Lustig and J.-F. Puget. Program Does Not Equal Program: Constraint Pro-
gramming and Its Relationship to Mathematical Programming. In INTERFACES,
volume 31(6), pages 29-53, 2001.

I. McDonald and B. M. Smith. Partial symmetry breaking. In P. V. Hentenryck,
editor, Proceedings of Principles and Practice of Constraint Programing- CP02,
volume LNCS 2470, pages 431-445. Spinger, 2002.

K. Petrie and B. Smith. Symmetry breaking in graceful graphs. Technical Re-
port APES-56a-2003, APES Research Group, University of Huddersfield, June
2003. Available from (http://wuw.dcs.st-and.ac.uk/ apes/apesreports.html)
To appear in Proceedings Principles and Practice of Constraint Programming 2003.
(Springer, ed Francesca Rossi).

Appendix

******** decisions made during propagation, deep backtracks commence above.
e ccision taken after a deep-backtrack has been made

Fig. 5. Search tree for K3 x P> to point where GAP-SBDS and GAP-SBDD differ

176

