Proc. SymCon’03
NuSBDS: Symmetry Breaking made Easy

Tain McDonald

School of Computer Science, University of St Andrews,
Fife KY16 9SS,
Scotland,
iain@dcs.st-and.ac.uk

Abstract. Over the past few years we have seen a marked increase
in the interest of symmetry breaking in constraint programming. Many
new techniques have been introduced to deal with the problems that
symmetrical CSPs create. However, if we are to see symmetry breaking
techniques being used by the constraint community in general we need
to make sure they are implemented to be easy to use. We present such an
implementation: NuSBDS, which has been designed to allow the average
constraint programmer to break symmetry in their CSPs quickly and
easily.

1 Introduction

A constraint solver is made of many parts. There are many different ways to tra-
verse the search space of a CSP: backtrack search, conflict directed backjumping,
limited discrepancy search, depth bounded search etc. There are also many levels
of consistency to enforce such as bounds consistency, forward checking and arc
or path consistency. Finally there are many popular dynamic variable ordering
heuristics we can choose: most constrained first, smallest domain first etc.

At present there are also a large number of different methods of breaking
symmetry in CSPs. A symmetry breaking system is quite simply an implemen-
tation of one or more symmetry breaking methods that can be used to avoid
redundant work performed by the constraint solver.

In the future we hope to see symmetry breaking systems playing an equal role
to search and inference techniques and heuristics for highly symmetric problems
in constraint solvers. This work will look at the importance of implementing
symmetry breaking methods in terms of ease of use and generality. By doing so
we hope to suggest ways to take symmetry breaking research into the mainstream
of constraint solvers.

2 Current methods of Breaking Symmetry
We first saw interest in symmetry breaking in CSPs in [1] in 1991. Since then,

there has been more research into symmetry breaking such as [2—4] however,
over the past few years there has been a marked increase in the number of

153

Proc. SymCon’03

papers published that deal with the study of symmetries in CSPs [5-11]. All
these papers have introduced new techniques for dealing with symmetries in
CSPs. However, in the same way that constraint programmers wish to use an
arc-consistency algorithm or an all-different constraint without needing to know
the theory or implementation behind them, symmetry breaking systems need to
be just as easy to use. We will now briefly review the most recent methods of
symmetry breaking and highlight how applicable they are to being implemented
as a symmetry breaking system.

2.1 SBDS

Symmetry Breaking During Search or SBDS was developed by Backofen and Will
[5] and independently by Gent and Smith [6]. This technique involves maintain-
ing a list of symmetries of a given problem and uses them to produce symmetry
breaking constraints which are posted upon backtracking from a nogood. The
latest EC L{PS¢ release [12] contains an SBDS library and currently this is the
only symmetry breaking system distributed with any constraint solver.

Although effective at reducing the run-times of solving symmetric CSPs, the
main problem with using SBDS is that the constraint programmer needs to
produce an explicit representation of the list of symmetries. For problems that
have even a moderate amount of symmetry, a program needs to be written to
automate the production of such a list. Also, since the number of symmetries
generally varies with respect to the size of the CSP, a list of symmetries is
generally valid only for a specific sized instance of a CSP.

2.2 Lex constraints for Models with Matrices

By modelling problems in matrices, a lot of symmetry can be discarded by lexico-
graphically ordering the vertices [11]. The main advantage in using lexicographic
ordering constraints is their ease of use. Also, there exists an algorithm that en-
forces GAC on a single lex constraint in linear time [13], and an algorithm for
AC on a chain of lex constraints [14].

The problem with breaking symmetry in this method is that the constraint
programmer is restricted at the modelling stage and they can only break sym-
metries of a certain type i.e. symmetries resulting from the interchangeability of
rows and columns of matrices. Also, for an n-dimensional matrix where n > 1,
not all symmetry is broken.

2.3 SBDD and Global Cut Framework

Symmetry Breaking via Dominance Detection or SBDD was developed by Fahle,
Schamberger and Sellman [9] and the Global Cut Framework was developed by
Focacci and Milano [8]. The main idea of these works is that if we can map a
previously visited set of domains to a subset of the current set of domains in
search via some symmetry, we can backtrack from the current state in search.

154

Proc. SymCon’03

Puget simplified this problem in [15] to finding a mapping of a failed set of
decisions into a subset of the current set of decisions in search.

In order to use these techniques the constraint programmer must write a
function called a dominance checker in [9] or a function to produce a Symmetry
Removal Cut for a given “family” of symmetries [8]. Therefore, for any sym-
metric problem that a constraint programmer wishes to solve, they must write
additional code in order to break their symmetries.

2.4 GHK-SBDS

A modification to the original SBDS algorithm was introduced by Gent, Harvey
and Kelsey in [10]. In this paper, the Computational Group Theory programming
language GAP [16] was used to deal with the symmetry in an algebraic way. The
symmetries were broken using a similar method to SBDS (via posting constraints
during search) however, GHK-SBDS represents symmetries as a group rather
than an explicit list. A generator set of a group typically has 2 to 6 symmetries
in it which makes the representation concise.

The problem with this method is that in order to use the GHK-SBDS al-
gorithm, constraint programmers must have some knowledge of group theory,
a pure mathematics discipline, in order to label their CSP and represent its
symmetries as a permutation group.

3 NuSBDS

We now introduce a symmetry breaking system for the ILOG Solver constraint
solving tool [17]. As such the following sections of example code will be clearer
to readers already familiar with the Solver constraint solving tool and more
specifically, C++. NuSBDS is based on the GHK-SBDS implementation! and
as such, can handle over 107 symmetries. However, even now this number is
not as impressive as results matched by other symmetry breaking techniques.
Since NuSBDS is an implementation, it is specific to both ILOG Solver and the
GHK-SBDS algorithm. The main theme of this research can be used for different
constraint solvers and different symmetry breaking algorithms as is mentioned
in Section 3.1. The research contribution that NuSBDS makes is two-fold:

1. The group theory used by NuSBDS is hidden from the constraint program-
mer thus no previous pure mathematics knowledge is needed to use it.

2. A series of macros have been written to allow the constraint programmer to
describe their groups quickly and easily.

These macros are essentially functions representing types of symmetries.
When called they look at the model of the CSP, perform some basic error check-
ing to see if the symmetry can be applied to the model, and internally store the
generators for those symmetries. Different macros can be called repeatedly so

! NuSBDS uses a simple GHK-SBDS implementation e.g. there are no delayed goals.

155

Proc. SymCon’03

that different types of symmetry can be combined to create direct products of
groups. This allows the constraint programmer to describe complicated groups
by using a few simple commands.

For example, say we have an encoding of the n-queens problem which has n
variables, where the value represents which column the queen should be placed
in. In this model, the symmetries of a square act on the assignments. Using
Solver we require an I1loGoal object to search on, which we create like so, where
x is the array of variables and env is an I1oEnv object. The important facts to
take from this are that x contains a list of constrained integer variables and the
IloGoal object will allow us to call functions that will search to find values for
the variables in x.

IloGoal goal = IloGenerate(env, x);

We can use the following code to break the symmetries of the problem, where
solver is an IloSolver object.

Symmetry* sym = new (env) Symmetry(env);
IloIntArray type(env, 1, SQUARE);
IloGoal goal;
if (symBreaking){

goal = NuSBDSGenerate

(env, x, sym->setup(x, solver, ASSIGN, type));

} elseq{

goal = IloGenerate(env, x);

}

The above code contains some new terms that need explanation. Firstly, the
Symmetry class is a part of NuSBDS. We use this to describe and break the sym-
metries of the CSP. The type object is simply an array of integers. The #define
statement in C++ was used to associate each macro with an integer, and the
type array merely contains the list of integers (representing macros) to use. The
NuSBDSGenerate function takes an additional parameter to the IloGenerate
function i.e. the Symmetry object we created to deal with the symmetry. Note
that we must also call the function setup, which records which macros to use
and whether or not the symmetry acts on assignments (ASSIGN) or variables
(VAR).

As another example, say we have the BIBD problem (CSPLib problem:
prob028 [18]) which we can model as a matrix of 0/1 variables, given any solu-
tion we can permute the rows and columns to yield another. This matrix may
not necessarily be a square so in order to describe the group, we need to tell
NuSBDS the number of columns. We can then simply use two macros to describe
the symmetries of this problem. Notice that these macros have “rectangle” in
their name to show that they potentially act on a non-square matrix2.

2 Though all square matrices are also rectangles, a macro for squares is provided for
simplicity.

156

Proc. SymCon’03

Symmetry* sym = new (env) Symmetry(env);
sym->setNum0fColumns (num0fCol) ;
IloIntArray type

(env, 2, SYMMETRIC_RECTANGLE_ROW, SYMMETRIC_RECTANGLE_COL);
IloGoal goal;
if (symBreaking){

goal = NuSBDSGenerate

(env, x, sym->setup(x, solver, VAR, type));

} else{

goal = IloGenerate(env, x);

}

Given a problem that needs to use more macros, we just create a larger type
array where each element represents the macro to be used. Currently there are 11
different macros which can be used for either symmetries acting on assignments
(ASSIGN) or variables (VAR). Here is the list of macros for variable symmetry:

— SQUARE - n? variables with the symmetry of an n x n square acting on
them

— CYCLE_ROW - n? variables make a square where the rows can be cycled

— CYCLE_COL - n? variables make a square where the columns can be cycled

— SYMMETRIC_ROW - n? variables make a square where the rows are inter-
changeable

— SYMMETRIC_COL - n? variables make a square where the columns are
interchangeable

— SYMMETRIC_RECTANGLE_ROW - as SYMMETRIC_ROW but for non-
square matrices

— SYMMETRIC_RECTANGLE_COL - as SYMMETRIC_COL but for non-
square matrices

Here is the list of macros for variable and value symmetry:

— SQUARE - e.g. n-queens

— SYMMETRIC_VAR - interchangeable variables

— SYMMETRIC VAL - interchangeable values

— SQUARE_VAR - n2 variables with the symmetry of an n by n square acting
on them

The reader should note that some classes of symmetry can be broken more
easily than using the underlying GHK-SBDS algorithm e.g. freely interchange-
able values, as found in graph colouring, can be broken using the constraint
described in [19], using the technique in [20] or as is noted in [5], only a sub-
set of the constraints posted by SBDS is needed to break all these symmetries.
NuSBDS is most useful for combinations of symmetries that result in groups for
which there are no efficient methods of dealing with.

157

Proc. SymCon’03

3.1 Using macros with other symmetry breaking methods

Though the NuSBDS implementation is specific to GHK-SBDS, it is possible to
use the same macro approach to make symmetry descriptions simpler for other
symmetry breaking methods.

Using the macros to describe the symmetries of a CSP creates a permutation
group representing these symmetries. This is convenient for GHK-SBDS since
we use group theory algorithms during search to break symmetry. However,
methods such as SBDD try to map a previous failed set of nogoods (or sets of
domains) into a subset of the current set of decisions (or set of domains) by
solving another CSP i.e. a dominance check. This new CSP repeatedly combines
a subset of the symmetries of the problem to find such a symmetry that satisfies
the above condition.

In this case, the subset of symmetries used in the dominance check is simply
a generator set of the group. Such a group can be created with macros as seen
above and it should also be possible to write a function that takes a group as
its parameters and outputs a CSP representing a dominance check. Therefore,
the approach taken with NuSBDS can be modified for other symmetry breaking
systems.

4 Empirical Results

We now present some brief empirical evidence of NuSBDS solving symmetric
CSPs. A Most Perfect Magic Square is an n X n matrix of variables with different
values from 1 to n? that satisfy the following constraints:

1. Each row and column sum to (n3 + n)/2

2. Every 2 x 2 block of cells (including wrap-around) sum to 27" (where T' =
n?+1).

3. Any pair of integers distant 1n along a diagonal (including wrap-around)
sum to T.

This problem has 8n? symmetries which are derived from the symmetries of
a square combined with being able to cycle the rows and columns. Describing
these symmetries was done very simply in NuSBDS by making the following
array act on variables (VAR):

IloIntArray type(env, 3, SQUARE, CYCLE_ROW, CYCLE_COL);

The results of using NuSBDS to break the symmetry in this problem can be
found in Table 1.

5 Conclusions and Future Work

NuSBDS is very successful at making the process of describing symmetries quick
and easy. Although there is initially a small learning curve when presented with

158

Proc. SymCon’03

Parameters Solver 5.2 NuSBDS

n Syms.|[Sols. Time Backtracks|Sols. Time Backtracks
4 128| 384 0.48 1594 3 0.07 73
6 288 02905.12 4176447 0 14.85 25157

Table 1. Most Perfect Magic Squares. There are trivially no solutions for odd values
of n and n = 8 is too complex to find all solutions within a reasonable amount of time.

the syntax of using NuSBDS, the constraint programmer needs no prior knowl-
edge of any symmetry breaking technique or group theory. This is a large step
forward in being able to include symmetry breaking systems in constraint solvers
in general.

There are two main areas where NuSBDS could be improved. Firstly, the
symmetry breaking technique should be improved so that larger symmetry groups
can be dealt with. Secondly, a more expressive way of describing symmetries
should be created so that users can create wreath groups such as those that oc-
cur in the Social Golfer’s problem, and finally users should be able to supply
their own macros. This would make NuSBDS a more complete and competent
symmetry breaking system.

Acknowledgements

The author would like to thank Warwick Harvey and all the members of the
APES research group, most notably Tom Kelsey for continuing to play football
even after his arm was broken. Finally T would like to thank the reviewers for
their enthusiasm and insightful comments. This work is partly supported by
EPSRC grant GR/R29666 and by an EPSRC PhD studentship.

References

1. Eugene Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In American Association for Artificial Intelligence, Vol.1, pages 227-233,
1991.

2. James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Knowledge Representation’96: Prin-
ciples of Knowledge Representation and Reasoning, pages 148-159. Morgan Kauf-
mann, San Francisco, California, 1996.

3. Belaid Benhamou. Study of symmetry in constraint satisfaction problems. In Alan
Borning, editor, Principles and Practice of Constraint Programming, Orcas Island,
Seattle, USA, 1994.

4. Jean-Francois Puget. On the satisfiability of symmetrical constrained satisfaction
problems. In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelli-
gent Systems: Proc. of the Tth International Symposium ISMIS-93, pages 350-361.
Springer-Verlag, 1993.

159

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Proc. SymCon’03

Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based
search. In Alex Brodsky, editor, Principles and Practice of Constraint Program-
ming, pages 73-87. Springer-Verlag, 1999.

Tan P. Gent and Barbara Smith. Symmetry breaking in constraint programming,.
In W. Horn, editor, Proceedings of ECAI-2000, pages 599-603. I0S Press, 2000.

Tain McDonald. Unique symmetry breaking in CSPs wusing group
theory. In Piere Flener and Justin Pearson, editors, SymCon’01:
Symmetry in Constraints, pages 75-78, 2001. Available from

http://www.csd.uu.se/ pierref/astra/symmetry/index.html.

Filippo Focacci and Michaela Milano. Global cut framework for removing symme-
tries. In Toby Walsh, editor, Principles and Practice of Constraint Programming
- CP2001, pages 77-92. Springer-Verlag, 2001.

Torsten Fahle, Stefan Schamberger, and Meinolf Sellman. Symmetry breaking. In
Toby Walsh, editor, Principles and Practice of Constraint Programming - CP2001,
pages 93-107. Springer-Verlag, 2001.

Tan P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints: Symmetry
breaking during search. In P Van Hentenryck, editor, Principles and Practice of
Constraint Programming, pages 415-430. Springer-Verlag, 2002.

Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models.
In P. van Hentenryck, editor, Principles and Practice of Constraint Programming,
pages 462-476. Springer-Verlag, 2002.

Mark Wallace, Stefano Novello, and Joachim Schimpf. ECL!PS®: A platform for
constraint logic programming. Technical report, IC-Parc, Imperial College, 1997.
Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Global
constraints for lexicographic orderings. In P. van Hentenryck, editor, Principles
and Practice of Constraint Programming, pages 93-108. Springer-Verlag, 2002.
Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of lexicographic
ordering constraints. Technical Report Research Report T2001-18, Swedish Insti-
tute of Computer Science, 2002.

Jean-Frangois Puget. Symmetry breaking revisited. In P. van Hentenryck, edi-
tor, Principles and Practice of Constraint Programming, pages 446-461. Springer-
Verlag, 2002.

The GAP Group, Aachen, St Andrews. GAP — Groups, Algorithms, and Program-
mang, Version 4.2, 2000.

ILOG S.A., Gentilly, France. ILOG Solver, Version 5.0, 2000.

Jan P. Gent and Toby Walsh. Csplib: a benchmark library for constraints.
Technical report, Technical report APES-09-1999, 1999. Available from
http://www.csplib.org/.

Jan P. Gent. A symmetry breaking constraint for indistinguish-
able values. In Piere Flener and Justin Pearson, editors, Sym-
Con’01: Symmetry in Constraints, pages 25-32, 2001. Available from
http://www.csd.uu.se/ " pierref/astra/symmetry /index.html.

Pascal Van Hentenryck, Pierre Flener, Justin Pearson, and Magnus Agren.
Tractable symmetry breaking for CSPs with interchangeable values. In Interna-
tional Joint Conference of Artificial Intelligence, pages 575580, Acapulco, Mexico,
2003.

160

