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Abstract. Symmetries have adverse effects on the CSP solving pro-
cess, because symmetrically equivalent regions of the search tree may
be traversed more than once. Symmetry breaking can reduce the search
space of the problem and is beneficial. In this paper, we focus on us-
ing symmetry breaking constraints statically to remove symmetries in
CSPs. In particular, we formalize the ideas of two types of symmetries
in CSPs, namely variable symmetries and value symmetries. The former
type is easier to express with symmetry breaking constraints than the
latter in general. Therefore, we introduce a general principle in devis-
ing another viewpoint from a given viewpoint and the two viewpoints
are connected together using channeling constraints. By using a second
viewpoint, we can transform value symmetries in the original viewpoint
into variable symmetries in another so that we can express symmetry
breaking constraints more easily. We demonstrate our approach using
the social golfer problem by building several models which use multi-
ple viewpoints to break different types of symmetries of the problem.
Since we can express symmetry breaking constraints more succinctly in
another viewpoint than in the original one, this usually leads to bet-
ter constraint propagation and fewer total number of constraints, which
are the potential sources of speedup. Experimental results confirm that
models using multiple viewpoints for symmetry breaking exhibits extra
efficiency than those using only single viewpoint.

1 Introduction

The task at hand is to tackle constraint satisfaction problems (CSPs) [16], which
are, in general, NP-complete. A recent important line of research in the com-
munity is to investigate symmetries in CSPs. Symmetries in CSPs are mappings
from solutions to solutions, and also non-solutions to non-solutions. They have
adverse effects on the CSP solving process, because symmetrically equivalent
regions of the search tree may be traversed more than once. Symmetry breaking
is beneficial because it can reduce the search space of the CSPs.

There are two main types of methods in breaking symmetries in CSPs. The
first approach breaks symmetries statically [18]. Symmetry breaking constraints
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are added to a CSP to make all but one of the symmetrical regions violate the
constraints. This approach reformulates the CSP before search to reduce the
CSP’s initial search space. Symmetrical solutions are removed in the reformu-
lated CSP and only non-symmetric solutions remains. Other examples of this
approach include the lexicographic ordering constraints [7] for breaking row and
column symmetries in matrix models [6]. The constraints help breaking symme-
tries of indistinguishable objects, each of which represented by more than one
variable in the CSP.

The second approach breaks symmetries dynamically [9,1]. Search algorithms
for solving CSPs are modified such that symmetric states are pruned from the
search tree as it develops. Examples of such approach are Symmetry Breaking
During Search (SBDS) [9,8] and Symmetry Breaking via Dominance Detection
(SBDD) [4,19,2]. Upon backtracking of the search, SBDS adds symmetry break-
ing constraints to the CSP to remove all the states which are symmetric to the
one that causes backtracking. In SBDD, whenever the search algorithm generates
a new search node, we check whether it i1s dominated by another node previously
visited. If this is the case, the current search node can be pruned.

Cheng et al. [3] introduces redundant modeling, in which two models of the
same problem are combined together using channeling constraints. They show
increased constraint propagation and efficiency by using this approach. Chan-
neling constraints are used to connect two viewpoints together. In this paper, we
focus on expressing static symmetry breaking constraints using multiple view-
points and channeling constraints. In particular, we formalize the ideas of two
types of symmetries in CSPs, namely variable symmetries and value symmetries.
The former type is easier to express with symmetry breaking constraints than the
latter in general. We introduce a general principle in devising another viewpoint
from a given one and the two viewpoints are connected together using channeling
constraints. By using a second viewpoint, we can transform value symmetries in
the original viewpoint into variable symmetries in another so that we can express
symmetry breaking constraints more easily. We demonstrate our approach using
the social golfer problem by building several models which use multiple view-
points to break different types of symmetries of the problem. Since we can express
symmetry breaking constraints more succinctly in another viewpoint than in the
original one, this usually leads to better constraint propagation and fewer total
number of constraints, which are the potential sources of speedup. Experimental
results that models using multiple viewpoints for symmetry breaking exhibits
extra efficiency than those using only single viewpoint.

The rest of the paper is organized as follows. Section 2 provides the necessary
background to the paper. We give definitions to concepts ranging from view-
points to CSP models. Section 3 introduce our method of transforming value
symmetries into variable symmetries. We also give definitions of variable and
value symmetries, and a general principle in devising another viewpoint from a
given one in the section. We present the experimental results using the social
golfer problem in Section 4. Finally, in Section 5, a summary of our ideas and
possible directions of future work are presented.
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2 Background

There are usually more than one way of formulating a problem P into a CSP.
Central to the formulation process is to determine the variables and the do-
mains (associated sets of possible values) of the variables. Different choices of
variables and domains are results of viewing the problem P from different an-
gles/perspectives. Following the definition of Law and Lee [15], we define a view-
point to be a pair (X, Dx), where X = {z1,...,2,} is a set of variables, and
Dy is a set containing, for every € X, an associated domain Dx (z) giving the
set of possible values for x.

A viewpoint V = (X, Dx) defines the possible assignments for variables in
X. An assignment ¢ — ain V (orin U C X) means that variable z € X (or U) is
assigned the value a € Dx (x). We overload the — operator to accept assignments
of a set of variables {x;,,...,2;,} such that [z;,...,2;] — [v1,...,v5] means
{oi, = i1 < j < k).

When formulating a problem P into a CSP, the choice of viewpoints is not
arbitrary. Suppose sol(P) is the set of all solutions of P (in whatever notations
and formalism). We say that viewpoint V' is proper [15] for P if and only if we
can find a subset S of the set of all possible complete assignments in V' so that
there is a one-one mapping between S and sol(P). In other words, each solution
of P must correspond to a distinct complete assignment in V.

A CSP model M (or simply model or CSP hereafter) of a problem P is a pair
(V,C), where V is a proper viewpoint of P and C'is a set of constraints in V' for
P. A constraint can be considered a predicate among a subset of the variables in
V' that maps to true or false. A solution of M = (V,C) is a set of assignments
of all variables in V' such that the assignments maps all the constraints to true,
i.e., all the constraints are satisfied.

3 Symmetry Breaking via Channeling

In this section, we introduce a method to break symmetries in CSPs using multi-
ple viewpoints [15, 14] of a problem and channeling constraints. In the following
subsections, we first formally define two types of symmetries in CSPs, namely
variable symmetry and value symmetry. Then, we describe a general principle
in devising another viewpoint from a given one. The general form of channeling
constraints to connect the two viewpoints are also given. Finally, we present our
method of transforming value symmetry into variable symmetry so that we can
express symmetry breaking constraints more easily.

3.1 Types of Symmetry

In this subsection, we define variable symmetry and value symmetry in CSPs.
Given a solution, variable symmetry allows swapping the values assigned to some
variables to obtain another one, while value symmetry allows permutating some
domain values on a subset of variables to obtain another solution.
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Variable Symmetry A variable symmetry [5] of a CSP is a bijective mapping
of the set of variables X to itself, o : X — X, which maps solutions of the
CSP to solutions and non-solutions to non-solutions. That means two (or more)
indistinguishable objects in the problem appear as variables in the CSP. Variable
symmetry can be found in many problems which have symmetries. The social
golfer problem, “prob010” in CSPLib [10], is an example.

32 social golfers play golf once a week, and always in groups of 4. No
golfer can play in the same group as any other golfer on more than one
occasion. How many weeks can the golfers play for?

The problem can be generalized to that of finding a w-week schedule of g groups,
each of which contains s golfers, such that no two golfers can play together more
than once. Therefore, the total number of golfers is n = g x s. We denote an
instance of the problem as (g, s, w).

The social golfer problem is highly symmetric [4,2]:

. Players can be exchanged inside groups.

. Groups can be exchanged inside weeks.

. Weeks of schedule can be exchanged.

. Players can be permutated among the n! combinations.

o N —

To model the social golfer problem into a CSP, consider the viewpoint V; =
(X, Dx) which contains a variable p; 1 for each golfer i in week k with 0 <i < n
and 0 < k < w. The domain of the variables Dx (p; x) = {0,...,9 — 1} contains
the group numbers that a golfer can play in. Using viewpoint V;, the constraints
of the problem can be expressed accordingly. Fig. 1 shows a solution of the
(3,3,3) instance.

wee5T[012345678

0 000111222
1 012012012
2 012120201

Fig. 1. A Solution of the (3, 3,3) Instance of the Social Golfer Problem

Symmetry 1 is broken implicitly using Vi because we simply use a group
number to represent a group and do not distinguish different positions within
a group. Symmetry 4, however, exists in V;, because all the golfers are indis-
tinguishable objects, but we name the golfers from 0 to n — 1 and use differ-
ent variables for them. Given a solution of the problem, we can always ex-
change the values assigned to any two golfers and yet obtain another solu-
tion. Since the golfers appear as variables in V;, such symmetry is variable
symmetry. For example, consider the solution in Fig. 1. For golfers 0 and 1,
we have [po0,po1,po,2] = [0,0,0] and [p1,0,p1,1,p1,2] — [0,1,1]. We can ex-
change the values assigned to golfers 0 and 1 and obtain another solution with
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[po,0,P0,1,p0,2] — [0,1,1] and [p1,0,p1,1,p1,2) — [0,0,0]. In this example, we
have the bijective mapping o1 as the identity mapping except o1(pok) = pi,k
and o1 (p1,x) = pox with k =0,1,2.

Symmetry 3 is also variable symmetry in V;. In the problem, the weeks are
indistinguishable, but we name the weeks from 0 to w — 1 and use different
variables for the weeks. Given a solution, we can again exchange the values
assigned to any two weeks of golfers and obtain another solution. Since the
weeks appear as variables in Vi, symmetry 3 is also variable symmetry. For
example, in the solution in Fig. 1, we have [poo, ..., ps,0] — [0,0,0,1,1,1,2,2,2]
and [po1,...,ps,1] —[0,1,2,0,1,2,0,1,2]. By exchanging the values assigned to
the variables of week 0 and 1, we obtain another solution with [pg o, ..., ps0] —
[0,1,2,0,1,2,0,1,2] and [po,1, - ..,ps,1] — [0,0,0,1,1,1,2,2,2]. In this example,
we have another bijective mapping oz which is the identity mapping except
o2(pio) = pi1 and oo (ps1) = pio for all 0 <4< 9.

Variable symmetry in CSPs can be broken by introducing symmetry break-
ing constraints to impose an ordering on the indistinguishable variables. In
the above example of the social golfer problem, we can break symmetry 4 of
golfers 0 and 1 by imposing an ordering to restrict that the values assigned
to golfer 0 must be lexicographically smaller [6] than that assigned to golfer 1,
i.e., [Po,0, Po,1,P0,2] <tew [P1,0,P1,1,P1,2]. In general, the symmetry breaking con-
straints are [p;o,. .., Piw-1] <tes [Pi+1,0,- - Pit+1,w-1) forall0 <i < n—1.Sim-
ilarly, we can break symmetry 3 of weeks 0 and 1 by the symmetry breaking con-
straints [po,o, - - -, Ps,0] <tex [P0,1,---,Ps,1), and in general [pok, ..., Pn-14) <iew
[Pok+1, - - -»Pn—1,5+1] for all 0 < k < w — 1. The above two kinds of symmetry
breaking constraints correspond to breaking the row and column symmetries
in matrix models [6]. Flener et al. [6] show that in a matrix model with row
and column symmetries, while lexicographically ordering all the rows (columns)
breaks all row (column) symmetries, lexicographically ordering both the row
and columns fails to break all the compositions of the row and column sym-
metries. However, there is always a solution with the rows and columns both
lexicographically ordered. The solution in Fig. 1 has all the rows and columns
lexicographically ordered. Exchanging any two rows or columns breaks the lexico-
graphic ordering constraints. Therefore, the symmetric solution after exchanging
will not be accepted as a solution of the resultant CSP.

Value Symmetry Another type of symmetry in CSPs is value symmetry [6].
A value symmetry acts on a subset X’ C X of the variables in the viewpoint
(X, Dx) of a CSP where Dx(z) = Dx(2') for all 2,2’ € X'. It is a bijective
mapping on the set of domain values, o : Dx (z) — Dx (z) where z € X', which
maps solutions of the CSP to solutions and non-solutions to non-solutions. That
means two (or more) indistinguishable objects in the problem appear as domain
values in the CSP.

Value symmetries, alongside with variable symmetry, is also very common in
CSPs with symmetries. In the social golfer problem, symmetry 2 is an example
of value symmetry in Vi. Given a solution, consider the set of variables X’ =
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{po,0,--.,Pn=1,0} C X representing all the golfers in week 0. We can permutate
all the values assigned to X’ from 0 to 1, from 1 to 2, and from 2 to 0 to obtain an-
other solution symmetric to the original one. For example, consider the solution
in Fig. 1, we have [pgo,...,ps,0] — [0,0,0,1,1,1,2,2,2]. If we follow the above
mapping, we obtain another solution with [poo,...,ps0o] — [1,1,1,2,2,2,0,0,0].

Value symmetry is difficult to tackle using symmetry breaking constraints in
general, because we do not know beforehand which variable will be assigned what
particular value. Therefore, we do not know how an ordering can be imposed. In
practice, value symmetries are handled by pre-assigning the affected variables as
far as possible with some values without loss of generality. These pre-assignments
must be able to be extended to solutions. However, whenever we cannot pre-
assign some variables (which is usually the case), there is the chance of not
breaking part of the value symmetries but wasting search efforts. For example,
in the social golfer problem, we can always pre-assign, without loss of general-

ity, the variables [pog,...,Pn-1,00 = [0,...,0,1,...,1,...,¢g—1,...,9—1] and
——’

S S s
[poj,---sPs—1.5) — [0,...,s—1] for all £ > 1. The former breaks the value sym-
metries for week 0, and the latter breaks part of the value symmetries in week 1
and so on. While it is possible to pre-assign variables to break value symmetries
of values 0 to s — 1 starting from week 1, the value symmetries of values s to
g — 1 remains unbroken. Therefore, fewer value symmetries can be broken when
sK g.

Sometimes, it is possible to express symmetry breaking constraints, although
unnaturally, for value symmetries as well. Consider the value symmetriesin V; of
the social golfer problem. We devise the following symmetry breaking constraints
to break the value symmetries:

i1

pik=J— \ pix=7

i'=0
forall0<i<n,0<j <j<g, and 0 < k < w. The constraints are unnatu-
ral because they make use of disjunctions, which are handled less efficiently in
many CSP solvers. Besides, the number of constraints is large. We need a total
of O(ng?w) = O(g3sw) constraints to break the value symmetries, which can
impose a large overhead for solving.

3.2 Multiple Viewpoints and Channeling Constraints

In this subsection, we describe a general principle in devising another viewpoint
with a given one. We also give the general form of channeling constraints for
connecting the two viewpoints together.

There are usually more than one way of formulating a problem into a CSP.
The formulation process i1s to determine the variables and the domains of the
variables. We observe that in many problems, we can devise two different view-
points which are reciprocal of each other in the sense that in one viewpoint,
objects of type X is assigned to objects of type Y, while in another viewpoint,
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objects of type Y is assigned to objects of type X. For example, in a generic
job-shop scheduling problem, we can either assign jobs to machines or assign
machines to jobs. Note that the objects appear as different roles in the two
viewpoints. An object which appears as a variable in one viewpoint becomes a
domain value in the other viewpoint, and one which appears as a domain value
in one viewpoint becomes a variable in another.

Given two models M1 = ((X, Dx),Cx) and Ms = ((Y, Dy ),Cy). Cheng et
al. [3] define a channeling constraint ¢ to be a constraint that relates variables
not just in X, in Y, but in X UY. Thus, ¢ relates M1 and M» by limiting the
combination of values that their variables can take. Cheng et al. show how a
collection of channeling constraints can be used to connect two mutually redun-
dant models of the same problem to form a combined model, which exhibits
increased constraint propagation and thus improved efficiency. We note in the
definition of channeling constraints that the constraints in the two models are
immaterial. Channeling constraints relate actually the viewpoints of the mod-
els. In other words, channeling constraints set forth a relationship between the
possible assignments of the two viewpoints.

The channeling constraints for connecting two mutually reciprocal viewpoints
can be stated generally. Suppose there are two objects in a problem and objects
1 and 2 is paired in a solution. Object 1 is associated with variable z in the first
viewpoint, and with value v in the second viewpoint. Object 2 is associated with
value u in the first viewpoint, and with variable y in the second. The channeling
constraints for connecting the two viewpoints is then in the form:

Variable x has value u if and only if variable y has value v.

Note that we cannot simply state # = u or y = v, because x and y can be set
variables [11,12], which can be assigned multiple values instead of one value in
integer variables.

Take again the social golfer problem as an example. In viewpoint V;, we are
assigning groups to the golfers. The groups appear as values and the golfers
appear as variables. We can devise another viewpoint V5 in which golfers are
to be assigned to groups. In such case, the groups appear as variables and the
golfers appear as values in V5. In viewpoint V3, we use variables G for each
group j in week k. Since a group contains multiple golfers, the variables G 5, are
set variables and their domains are the set of all possible sets of the n players,
ie, Dy(Gjr) = 2{0,n=1} "where 2% is the power set of X. Fig. 2 shows the
same solution as in Fig. 1, but expressed in V5.

week

group 0 1 2
0 {0,1,2} {0,3,6} {0,5,7}
1 {3,4,5} {1,4,7} {1,3,8}
2 {6,7,8} {2,5,8} {2,4,6}

Fig.2. A Solution of the (3,3, 3) Instance, Expressed in V5
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In order to channel the viewpoints Vi and Vs, we need to specify the chan-
neling constraints. In this example, the channeling constraints are p;x = j &
1€ Gy forall0 <i<n, 0<j<yg, and 0 <k < w. Note that we use the
membership operator “€” for the set variables. The channeling constraints are
of the same form as in the general case we state before.

3.3 Transforming Value Symmetry into Variable Symmetry

In this subsection, we exploit another use of channeling constraints and model
channeling, which is to help breaking value symmetries in CSPs. In particular, we
transform value symmetries of a CSP into variable symmetries, so that symmetry
breaking constraints can be expressed more easily.

In the previous subsection, we introduce a general principle in coming up
with a second viewpoint. Domain values in the given viewpoint become variables
in the other viewpoint. Value symmetry in the given viewpoint also becomes
variable symmetry in the other. Recall that variable symmetries are easier to
express with symmetry breaking constraints than value symmetries. It is a good
idea to transform value symmetries in one viewpoint into variable symmetries
in another. Suppose we are given a viewpoint Vi, and V; is another viewpoint
where domain values of the variables in V; become variables in V5. By using
channeling, we connect the two viewpoints V; and Vs together. The original
symmetry breaking constraints for the variable symmetries in V; can be used
as usual. The value symmetries in V; can be tackled by symmetry breaking
constraints for breaking the corresponding variable symmetries in V5. Therefore,
the two types of symmetries can be broken by symmetry breaking constraints
altogether. Note that the viewpoint V5 is solely used for expressing the symmetry
breaking constraints for the value symmetries in V;. We need not express the
problem constraints there because they are expressed in V; already.

Consider symmetry 2 in the social golfer problem again, which is a value
symmetry in V5. The groups inside a week are indistinguishable objects. In V3,
we are using a set variable G  for each group j in week k. Therefore, symmetry 2
is a variable symmetry in V5. To break the symmetry, we can impose an order
on the groups in each week. Since for each week, each of the n golfers must be
assigned to one of the g groups once, the groups in a week must be disjoint sets
of each other. Therefore, we can use the smallest numbered golfer in each group
as a key for ordering the groups. The symmetry breaking constraints are then
minGj; < minGj4q for 0 <j < g—1and 1 <k < w. Using these constraints
and the channeling constraints, the value symmetry in V; can be broken as
variable symmetry in V5. Fig. 2 shows a solution of the (3,3, 3) instance which
satisfies the symmetry breaking constraints in V5.

To further illustrate our ideas, we give another example of transforming value
symmetries into variable symmetries for the social golfer problem using a third
viewpoint V3. In V3, we use a variable z; . ; for each golfer ¢ in group j of week k.
The domain of the variables z;  ; is {0, 1}. Variable z; ; ; takes value 1 if golfer
7 is in group j of week k, and value 0 otherwise. The channeling constraints for
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connecting V; and V3 can be expressed as p;x = j < zix,; = 1forall 0 <i < n,
0<j<yg,and 0 <k < w.

Symmetry 2 of the problem becomes variable symmetries in V3. We can use

the symmetry breaking constraints [z k j, - - -, Zn—1,k,j] >iex [20,k j+1s - - -5 Zn—1,k j+1]

forall 0 < j <g—1and 0 < k < w to tackle such symmetries. Note that
we order the array of variables in decreasing order instead of increasing order.
This is because the latter conflicts with the other lexicographic ordering con-
straints in V;. For example, consider the ordering constraint [po o, po,1, Po,2] <iew
[P1,0,P1,1,p1,2] in V1 of the (3,3, 3) instance. Suppose [po 0, Po,1,Po,2] — [0,0,0]
and [p1,0,p1,1,P1,2] = [0,1,1] (as in the solution in Fig. 1). These assignments
correspond to zo — [1,0,0,1,0,0,1,0,0] and z; — [1,0,0,0,1,0,0,1,0] respec-
tively, where zo = [20,0,0,20,0,1,20,0,2,20,1,0,20,1,1,20,1,2,20,2,0120,2,1,20,2,2] and
Z1 = [21,0,0, 21,0,1, 21,0,2, £1,1,05 £1,1,15 21,1,2; 21,2,0, %1,2,1, #1,2,2]. Note that the for-
mer is lexicographically larger than the latter, i.e., zg >y z1. Therefore, the
row ordering constraints in V; impose a decreasing order on the array of vari-
ables in V3. The situation is similar for the column ordering constraints in Vi.
Hence, we have to impose a decreasing order instead of an increasing order for
tackling symmetry 2 in Vs.

Flener et al. [6] suggest that it is always possible to transform a viewpoint
with variable and value symmetries into another viewpoint that only contains
variable symmetries. They suggest transforming a n-dimensional matrix of vari-
ables into a (n 4+ 1)-dimensional matrix where the (n + 1)-st dimension corre-
sponds to the domain values of the original matrix variables. For example, if x

is a variable in the original matrix having domain {vg ..., vm_1}, we introduce
variables [zo, ..., Zm_1] in the new viewpoint. The new variables have domain
{0,1}, with the semantics # = v; & z; = 1. In the transformed viewpoint,

there are no value symmetries anymore because 0 and 1 are clearly distinguish-
able. Symmetry breaking constraints are then expressed in the new viewpoint
to break all kinds of symmetries of the problem. The viewpoint V3 in the so-
cial golfer problem can be viewed as a transformed viewpoint of V; with an
extra dimension on the groups. We extend Flener et al.’s suggestion by allowing
multiple viewpoints coexist for symmetry breaking. Different symmetry break-
ing constraints can be expressed in different viewpoints, whichever is easier to
express. As we shall see, expressing symmetry breaking constraints in multiple
viewpoints is more beneficial than that in a single viewpoint.

When transforming value symmetry in one viewpoint into variable symme-
try in another, we should be careful that the symmetry breaking constraints
expressed in V5 does not conflict with those expressed in V;. That means in
each set of mutually symmetric solutions of a problem, there should be at least
one element satisfying all the symmetry breaking constraints. If all the elements
in the set violate some of the symmetry breaking constraints, we lose a unique
solution of the problem and this is not desired. Ideally, there should be exactly
one element in each set satisfying the symmetry breaking constraints, so that
all the symmetries are broken and all the solutions of the resultant model are
unique ones of the problem. However, stating symmetry breaking constraints for
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breaking all symmetries in a CSP may be costly and the effort of propagating
the constraints may outweigh the gain of reducing the search space. Hence, prac-
tically, partial symmetry breaking [17] is acceptable and popular. For example,
the method used by Flener et al. [6] for breaking row and column symmetries in
matrix models also falls into the partial symmetry breaking category.

4 Experimental Results

In this section, we present experimental results in supporting our idea using the
social golfer problem. The experiments are run using ILOG Solver 4.4 [13] on a
Sun Ultra 5/400 workstation with 256 MB memory. We use the global constraint
by Frisch et al. [7] for lexicographic ordering® which maintains generalized arc
consistency (GAC) of the constraint.

In the previous section, we give two examples of the social golfer problem
to break value symmetries in V; using viewpoints V5 and V3 and channeling
constraints. We call the models using viewpoints V; and V5 golferViv2 and V;
and V3 golferV1V3 respectively in subsequent discussions.

Having two models golferVivV2 and golferViV3 that use multiple view-
points, we can also build models using a single viewpoint only. Note that besides
symmetry 2, symmetries 3 and 4 also appear as variable symmetries in V3. There-
fore, it is possible to use V3 alone to model the problem and also express all the
symmetry breaking constraints. Although we impose a decreasing order for sym-
metry 2 in golferViV3, we can still express the ordering constraints either all
in increasing order or all in decreasing order when using V3 alone. We call the
models with symmetry breaking constraints in V3 all in increasing order and all
in decreasing order golferV3 and golferV3’ respectively.

Finally, we have another model that uses a single viewpoint V; only. The
variable symmetries are broken using lexicographic ordering constraints as usual.
The value symmetries are broken using the symmetry breaking constraints ex-
pressed directly in Vi, which are introduced in the previous section. We call the
model using single viewpoint V; golferVi.

Table 1 shows the experimental results using the models golferVi, golfervs,
golferV3’, golferViV2, and golferViV3 of the social golfer problem. The top
table shows results for solving for the first solution, while the bottom one shows
results for solving for all solutions. We report the number of fails, number of
choice points, and CPU time for each execution of each instance. The first three
models use single viewpoint only, while the latter two use multiple viewpoints.
A cell labeled with “” means that execution does not terminate within 2 hours
of CPU time. All models are solved using default variable and value ordering
(i.e., smallest variable indices first and smallest value first) except golferV3’.
The model golferV3’ is solved using default variable ordering coupled with the
value ordering heuristic of trying value 1 before 0 (i.e., largest value first). This
configuration is used because it mimics the default variable and value ordering as

! We acknowledge The University of York for providing the source of the global con-
straint for lexicographic ordering for our reference.
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in golferVi, golferViV2, and golferViV3. Trying 1 first for the variable with
smallest indices in V3 is equivalent to trying the smallest value for the variable
with smallest indices in V3. We do not use this configuration in golferV3 be-
cause golferV3 uses a different lexicographic ordering from golferV3’. There
is no need to mimic the variable and value ordering in the other models.

Experimental results show that model golferV1iVv3, which uses multiple view-
points, is the fastest model. Model golferViv2, another model that uses multi-
ple viewpoint, together with golferV1 have the same and fewest number of fails
and choice points. The figures are slightly smaller than those of golferViv3. Al-
though golferV1 have the same number of fails and choice points as golferViv2,
its execution is much slower than that of golferViv2. This is because the sym-
metry breaking constraints for the value symmetriesin V) are expressed cumber-
somely. There are O(ng?w) such symmetry breaking constraints in golferVi.
However, in golferViV2, we only need O(gw) symmetry breaking constraints
plus O(ngw) channeling constraints for connecting V4 and V. Thus, only a to-
tal of O(gw + ngw) = O(ngw) constraints are required. Since golferV1iV2 uses
fewer constraints than golferV1 by an order, its execution is faster.

The models golferV3 and golferV3’ differs only in the increasing or de-
creasing ordering of the symmetry breaking constraints and the value ordering.
However, golferV3’ is more efficient than golferV3, which shows that ordering
the arrays of variables in V5 in decreasing order (and thus in V; in increasing
order) is a better choice than that in increasing order.

Furthermore, golferV1iV3 and golferV3’ follow the same lexicographic or-
der and equivalent variable and value orderings. However, the former has fewer
number of fails and choice points than the latter. This is because propagating a
lexicographic ordering constraint in V3 obtains less pruning information than in
V1. For example, consider the constraint @y <je; ®1 on two arrays of variables
o = [0,0, 0,1, To,2) and ®1 = [21,0, £1,1, %1,2] with the following domains:

Maintaining GAC on the constraint will prune values from the variable domains:

ao | {1}1{0,1}] {2}
931“{1} {1a2}|{071}

When using a 0/1 viewpoint, we use the variables z; ; ; for i = 0,1, 0 < j < 3,
and 0 < k < 3. Let zq = [20,0,0, 20,0,1, 20,0,2; 20,1,0, 20,1,1, 20,1,2, 20,2,0; 20,2,1, £0,2,2]
and z; = [2'1,0,0, 21,0,1, %1,0,2, £1,1,0, #1,1,1, #1,1,2, £1,2,0, #1,2,1, 2’1,2,2]~ The initial do-
mains of the z; ; ; variables become:

zo[|{0} {0,1} {0,1}]{0,1} {0,1} {0,1}| {0} {0} {1}
z[{0} {1} {0} [{0,1} {0,1} {0,1}[{0,1} {0,1} {0}
By propagating the constraint zg >j.; 21 and the constraints > zo = 1 and

> z1 = 1 which ensure that only one of zy and one of z; can be 1, we obtain
the following result:
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Table 1. Experimental Results Using Various Models of the Social Golfer Problem
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zo|[{0} {1} {0}[{0,1} {0,1} {0,1}] {0} {0} {1}
z1[[{0} {1} {0}[{0,1} {0,1} {0,1}[{0,1} {0,1} {0}

This corresponds to the following state for ®g and ®;:

xo||{1}]{0,1,2}] {2}
@ [{1}]{0,1,2}[{0,17

We can see that fewer values can be pruned by zg >jer 21 than ®y <jer @®1.
Hence, golferV1V3 has better number of fails and choice points than golferV3’.

In the social golfer problem, using multiple viewpoints and channeling con-
straints for symmetry breaking is clearly more beneficial than using models with
only single viewpoint. When using a single viewpoint to tackle all the symmetries,
we either choose a viewpoint that does not contain value symmetries (like the
0/1 viewpoint V3) or express symmetry breaking constraints to break the value
symmetries in the viewpoint (like model golferV1). However, the former makes
propagation of the constraints less informative, as we have shown in the previous
example. It also incurs an execution overhead because more variables have to
be used. The latter has the main difficulty that symmetry breaking constraints
for value symmetries are difficult to express. If we have to use a large num-
ber of constraints to break the value symmetries (as in golferV1), an overhead
would be expected. By using multiple viewpoints and channeling constraints,
we avoid both drawbacks. We do not have to express constraints in a viewpoint
that allows less propagation. We also have better constraint expressiveness be-
cause value symmetries in one viewpoint become variable symmetries in another.
Symmetry breaking constraints for variable symmetries can be expressed more

succinctly. With better constraint expressiveness, it is more possible for extra
constraint propagation and fewer total number of constraints, which incurs less
overhead. Our experimental results demonstrate such benefits of our approach.

5 Conclusion

In this paper, we introduce a method to break symmetries in CSPs using multi-
ple viewpoints of a problem and channeling constraints. We formalize the ideas
of two types of symmetries in CSPs, namely variable and value symmetries.
As we find that value symmetries are more difficult to express with symme-
try breaking constraints than variable symmetries in general, we introduce a
general principle in devising another viewpoint from a given one. By using a
second viewpoint, we can transform value symmetries in the original viewpoint
into variable symmetries in the other viewpoint so that symmetry breaking con-
straints can be expressed more easily. The two viewpoints are then connected
using channeling constraints to obtain a channeled model with symmetry break-
ing constraints expressed in two viewpoints. We demonstrate our approach using
the social golfer problem by building several models which use multiple view-
points to break different types of symmetries of the problem. Since we can express
symmetry breaking constraints more succinctly in another viewpoint than in the
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original one, this usually leads to better constraint propagation and fewer total
number of constraints, which are the potential sources of speedup. We confirm
with experimental results that models using multiple viewpoints for symmetry
breaking show extra efficiency over those using single viewpoint only.

There can be several possible directions of future research from our current
work. First, symmetry breaking constraints for different symmetries of a problem
interact with each other. We have to ensure that different symmetry breaking
constraints do not conflict. For example, Flener et al. [6] show that for a matrix
model with row and column symmetries, each symmetry class must have an
element where both the rows and columns of the matrix are lexicographically
ordered. Therefore, the row ordering constraints and column ordering constraints
do not conflict. When using multiple viewpoints to tackle different symmetries,
since the symmetry breaking constraints are expressed in different viewpoints,
it is more difficult to ensure that the constraints do not conflict. It is important
to study when will (or will not) different symmetry breaking constraints for
different symmetries interact adversely.

Second, our work currently shows benefits of using multiple viewpoints for
symmetry breaking in the social golfer problem. It would be worthwhile to use
the same approach to other problems that contain symmetries to seek for fur-
ther evidence. Besides, we are conducting more theoretical work to confirm that
there is a correspondence between value symmetries in one viewpoint, and vari-
able symmetries in another viewpoint. Theoretical results are important for the
applicability of our approach.

Third, we define two types of symmetries in CSPs, namely variable and value
symmetries. However, these two types of symmetries are not general enough to
represent arbitrary symmetries in CSPs. For example, there are seven symmetries
in the n-queens problem through rotations and reflections. If we use a variable for
each row of the chessboard, we can only capture reflections along the horizontal
and vertical axes as variable and value symmetries. The other symmetries of the
problem (e.g., reflections along the diagonals and rotations) are neither variable
nor value symmetries. It would be interesting to extend our multiple viewpoint
and channeling constraints approach to handle arbitrary symmetries.

Fourth, our work currently focuses on adding symmetry breaking constraints
to a model before search. An alternative approach to break symmetries is to
dynamically add symmetry breaking constraints during search. It would be in-
teresting to investigate how using multiple viewpoints and channeling constraints
can be related to symmetry breaking during search. Research can be conducted
to design a system for dynamic symmetry breaking making use of multiple view-
points and/or channeling constraints.
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