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Abstract. Bundling the symmetrical values in the domain of variables
of a Constraint Satisfaction Problem (CSP) as the search proceeds is an
abstraction mechanism that yields a compact representation of the solu-
tion space. In [3, 9], we showed empirically that dynamic bundling during
backtrack search for finding the first or all solutions of binary random
CSPs is always beneficial. In this paper, we describe a method® to per-
form dynamic bundling during search in non-binary CSPs using a data
structure called a non-binary discrimination Tree (NB-DT). We conduct
experiments using backtrack search with forward checking and dynamic
variable ordering, and compare the performance of solving random non-
binary CSPs with and without bundling. We show that the benefits of
dynamic bundling encountered in binary CSPs continue in non-binary
problems. We observe the phase transition phenomenon for non-binary
CSPs and study how dynamic bundling performs in the phase transition
region. We also describe a generator of non-binary random CSP instances
that guarantees the existence of a solution and can generate constraints
of any arity.

1 Introduction

Many problems in engineering, computer science, and management are naturally
modeled as Constraint Satisfaction Problems (CSPs), which are, in general, NP-
complete. Search remains the ultimate mechanism for solving these problems.
Glaisher [14], Puget [20], Ellman [12] and many others proposed to exploit de-
clared symmetries specific to a class of problems to improve the performance of
search. The majority considered ezact symmetries only, but Ellman also consid-
ered necessary and sufficient approzimations of symmetry relations. While the
above approaches focused on declared symmetry, this paper focuses on enhancing
the performance of search by dynamically discovering and exploiting symmetries
inherent to a particular instance of a problem. The symmetry mechanisms we
study are based on the notions of local value interchangeability of Freuder [13]

! The algorithms described in this paper and their application to databases are the
subject of a pending patent.
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and domain bundling of Haselbock [15], which groups in a bundle (or equiva-
lence class) the interchangeable values in the domain of a variable. Objections
were raised that bundling mechanisms, applied statically (i.e., prior to search)
or dynamically (i.e., during search), are too costly and not worthwhile when one
is seeking one solution to a CSP. In [3,9], we showed how to implement bundling
to reduce drastically the search effort and yield multiple and robust solutions
for less effort than needed to find a single solution. (This holds theoretically for
finding all solutions, and empirically for finding one solution.) We also showed
that dynamic bundling is significantly less expensive and more effective than
static bundling. Our investigations were limited to binary CSPs.

Although most of the research in constraint satisfaction is performed on
binary CSPs, many real-life problems are more ‘naturally’ modeled as non-binary
CSPs. Because it is always possible in principle to reduce a non-binary finite CSP
to a binary one [21, 1], the focus on binary constraints has so far been tolerated by
the research community. Research on non-binary constraints is still in its infancy
and the traditional attitudes on this issue are now being challenged [7]. In this
paper we show how dynamic bundling can be done for non-binary constraints
and demonstrate its advantage on toy and randomly-generated problems. While
one expects real-world problems to exhibit redundancy, which is particularly
amenable to bundling, it is reasonable to expect toy and randomly generated
problems to lack the type of symmetry relations we are looking for, and thus
resist bundling. We show that bundling remains beneficial even under these
unfavorable conditions. Our contributions are as follows:

1. We introduce an algorithm for partitioning the domain of a CSP variable
into equivalence classes given any subset of the constraints that apply to the
variable regardless of their arities.

. We integrate this mechanism with backtrack search for solving the CSP.

3. We introduce a generator of non-binary CSP instances that guarantees the
existence of a solution and can handle constraints of any arity. To the best of
our knowledge, this is the first such generator. It is based upon, but improves,
the generators of [5, 23]. Because pre-processing techniques quickly detect the
inconsistency of most random instances with tight constraints, guaranteeing
the existence of a solution in these instances makes (1) bundling likely less
effective and (2) the evaluation of search algorithms more meaningful.

4. We carry out extensive experiments that demonstrate the benefits of dy-
namic bundling (in terms of number of nodes visited, number of constraint
checks, and CPU time) for finding one solution and all solutions.

[\V]

This paper is organized as follows. Section 2 states the motivations and back-
ground of our work. Section 3 shows how to bundle the domain of a variable in
presence of non-binary constraints. Section 4 discusses how to integrate bundling
in backtrack search using non-binary forward-checking (FC) nFC2 [6] to solve
non-binary CSPs. Section 5 introduces a generator of random non-binary CSP
instances that guarantees the existence of a solution. Section 6 reports our ex-
periments and analysis. Finally, Section 7 concludes this paper and gives future
directions for research.
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2 Motivation and Background

In [2,9] we established that dynamic bundling is guaranteed never to be costlier
than no-bundling when seeking all solutions, and demonstrated empirically that
this result also holds when seeking the first solution. These results are important
in our opinion because they prove that dynamic bundling (which is used to get
multiple, robust solutions) is actually beneficial for reducing the search effort and
drastically reduces the peak cost of search at the phase transition. This counter-
intuitive result can be explained by the fact that dynamic bundling is capable of
bundling no-goods as well as partial solutions, and is thus a double-edged sword
that reduces thrashing during search. Our goal here is to show that the benefits
of dynamic bundling continue in non-binary CSPs and that dynamic bundling
still prevails in the region of the phase transition. To this end, we describe a
technique for partitioning the domain of a CSP variable in the presence of non-
binary constraints and integrate this technique with backtrack search.

2.1 Constraint satisfaction problems

A Constraint Satisfaction Problem (CSP) is defined by P = (V, D, C) where V=
{Vi} is a set of variables, D= {Dy;,} the set of their respective domains, and C a
set of constraints that restrict the acceptable combination of values for variables
Cv,v;,..vi = {((Vi as), (Vj aj), ..., (Vi ax))} such that a; € Dvy;, a; € Dy, ...,
ar, € Dy, . In this paper, we assume that the domains of the variables are finite
and that the acceptable tuples can be enumerated in polynomial time in the size of
the problem. Solving a CSP requires assigning a value to each variable such that
all constraints are simultaneously satisfied and the problem is, in general, NP-
complete. A CSP is often represented by a graph. In this graph, nodes represent
variables and are labeled by the respective domains. Edges linking two nodes
represent constraints that apply to these corresponding variables. The scope of
a constraint is the set of variables to which the constraint applies, and its arity
is the size of this set. Non-binary constraints are represented as hyper-edges in
the constraint network. For the sake of clarity, we choose to represent such a
hyper-edge as another type of node that is linked to the variables in the scope
of the constraint as shown in Fig. 1. In the CSP of Fig. 1 each variable has a
domain of {1, 2, 3} and the constraints are shown in Fig 2. We use this CSP in
Section 3 to show how to partition the domain of V' given the constraints that
apply to it. CSPs are typically solved using depth-first search. In this paper, we
study backtrack search (BT) with forward checking (FC) and dynamic variable
ordering. We use the heuristic that orders variables according to the minimum
ratio of the domain size over the degree (which is the number of adjacent variables
in the constraint network)2. Since we apply this heuristic dynamically, we denote
it DDD. Depth-first search proceeds by choosing a variable (the current variable
V.), and instantiating it, that is assigning it a value that is taken from its domain.

2 For non-binary CSPs, we compute the degree only once, prior to search, in order to
avoid expensive computations during search.
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Fig. 1. Ezample of a non-binary CSP. Fig. 2. Constraint tables.

The variable and the value a assigned to it define a variable-value pair (vvp),
which we denote as (V. a). FC propagates the effect of this instantiation over
the set of all uninstantiated variables, which we call future variables and denote
as Vy. The current variable V. is then added to the set of instantiated variables,
which we call past variables and denote as V. If the instantiation does not wipe
out the domain of any variable in V¢, search proceeds to the next variable based
on the variable-ordering schema chosen. Otherwise, the instantiation is revoked,
its effects are undone, and an alternative instantiation to the current variable is
attempted. When all alternatives fail, search backtracks to the previous level in
the tree. The process repeats until one or all solutions are found. At any point
during search, the path from the root of the tree to the current variable is a
set of vvps {(V; a;)} for the variables V; in V, and their instantiation a;. We
denote by Py, the induced CSP formed by the set {(V; Dy;,)} of future variables
and their respective filtered domains. Search on non-binary CSPs proceeds as
described above. However, FC for non-binary CSPs requires particular attention.
Also, counting the number of constraint checks during search (as a measure of
the cost of search) is slightly different. A constraint check is more expensive in
a non-binary CSP than in a binary one. Section 4 addresses these issues.

2.2 Interchangeability

Interchangeability is about finding redundant solutions in a CSP. When a CSP
has more than one solution, one can define a mapping between the solutions such
that if the mapping is known, one solution can be obtained from another without
performing search. In the broadest sense, this is functional interchangeability
proposed by Freuder [13]. We address here a restricted type of interchangeability:
the interchangeability of the values in the domain of a single variable. This
cannot detect isomorphic interchangeability such as permutation. Below we recall
simplified forms of interchangeability and show in Fig. 3 how they relate.

Definition 1. Full interchangeability (FI): A value a in the domain of variable
V' is interchangeable with value b in the same domain iff every solution to the
CSP that involves a remains a solution when b is substituted for a, and vice
Versa.
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In other words, two values of the variable V' are fully interchangeable when the
only difference between two solutions of a CSP is the value of V itself. Check-
ing all the solutions of the CSP in Fig 4 we find that the values d, e, and f
are fully interchangeable for V5. The computation of full interchangeability may

)

c
* *
4 v,
ax
Fig. 3. Some types of interchangeabil- Fig. 4. Partitioning the domain of
ity and their relationship. Va into equivalence classes.

require finding all solutions and hence is likely to be intractable and imprac-
tical in practice. Freuder [13] also identified a form of local interchangeability,
called neighborhood interchangeability, which can be computed efficiently and
is a sufficient approximation of full interchangeability. Freuder [13] provided an
efficient algorithm, the discrimination tree (DT), for computing the partitions
of a domain into equivalence classes based on neighborhood interchangeability.

Definition 2. Neighborhood interchangeability (NI): A value a in the domain
of variable V is neighborhood interchangeable with a value b in the same domain
iff for every constraint C' incident to V, a and b are consistent with exactly the
same values: {x | (a, x) satisfies C} = {x | (b, x) satisfies C'}.

Neighborhood interchangeability is a sufficient, but not necessary condition for
full interchangeability. Indeed, in Fig. 4, only values e and f are NI for V5, whereas
values e, f, and d are FI for V5. Both full interchangeability and neighborhood
interchangeability do not permit variables other than in the selected variable V
in the CSP to change. Partial interchangeability is a weaker kind of interchange-
ability, based on the idea that when a value for V changes, values for other
variables may also differ among themselves but be fully interchangeable with
respect to the rest of the CSP. We introduce a boundary of change, S, within
which we permit change. Partial interchangeability, like full interchangeability,
is a global form of interchangeability. We can localize partial interchangeability
in the same way we localized full interchangeability, by only considering those
variables whose constraints cross the boundary of S. (These are the variables
in the neighborhood of S.) This is called neighborhood partial interchangeability
(NPI) and was introduced in [10]. Note that NPI is a sufficient but not necessary
condition for NI. In [10] we showed how to extend the discrimination tree of [13]
into the joint discrimination tree (JDT) to partition the domain of a variable V'
into sets of values that are NPT for V. NPI has since been applied in case-based
reasoning [18] and local search [19].
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Freuder [13] noticed that computing interchangeability during problem-solving
results in yet another weak type of interchangeability, dynamic interchangeabil-
ity. In [2,9] we introduced dynamic NPI (DNPI), a weaker version of NPI based
on the dynamic computation of NPI sets during search. DNPI holds only along
the particular path following by search and thus yields larger partitions.

Definition 3. Dynamic NPI: Given a variable ordering in a backtrack search
that integrates any kind of lookahead scheme, DNPI is obtained by partitioning
domain of the current variable, V., obtained by the JDT of V. with S =V,
U{V.}, where V, is the set of past variables in the search tree.

Neighborhood interchangeability has been tested in the context of search by
Benson and Freuder [4]. A weaker form of neighborhood interchangeability, which
we call neighborhood interchangeability according to one constraint (Nlg), by
Haselbock, was also used in search [15]. Both [4, 15] compute interchangeability
sets prior to search. We call such strategies static bundling. Fig. 5 shows a
search tree for the example of Fig. 4 without bundling (left) and with static
bundling (right). In [2,9], we established that recomputing interchangeability

©,
1 Yi{a)

v1
oJoROXC) % 8 CaeD

Fig. 5. Search tree. No (left), static (center), and dynamic (right) bundling.

partitions during search using DNPI is always beneficial: it yields larger bundles
and reduces the search effort. The tree generated by dynamic bundling is shown
in Fig. 5 (right). Some of the computational savings are due to the fact that the
computation of DNPI with the JDT can be directly used for forward checking.
The rest can be traced to bundling and factoring out no-goods. Our tests to find
one solution with search combined with dynamic variable ordering [9] clearly
show that, in comparison to dynamic bundling, static bundling is prohibitively
expensive, particularly ineffective, and should be avoided.

The Cross Product Representation (CPR) of Hubbe and Freuder [16] yields
exactly the same results as dynamic bundling with DNPI, but requires more
space. It operates by doing forward checking for every value of the current vari-
able, comparing the resulting CSPs induced on the future variables, and then
bundling those values of the current variable that yield the same CSPs on the
future variables. Hence, CPR necessarily visits more nodes than DNPI, even if
the difference is polynomially bounded.

2.3 Phase transition

For combinatorial problems, Cheeseman et al. presented empirical evidence of
the existence of a phase transition phenomenon at a critical value (cross-over
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point) of an order parameter as the parameter is varied. They showed that this
transition results in a significant increase in the cost of solving combinatorial
problems for the values around the critical value [8]. They also showed that
the location of the phase transition and its steepness increase with the size
of the problem. Because problems at the cross-over point are acknowledged to
be probabilistically the most difficult to solve, empirical studies are typically
conducted in this area to compare the performance of algorithms.

3 Bundling non-binary CSPs

No technique is reported in the literature for computing the domain partition
of a CSP variable in the presence of non-binary constraints. We report here for
the first time how this can be done by extending the binary case. As for the
binary case, the idea is to identify, for each value in the domain of a variable
the variable-value pairs in the immediate neighborhood of the variable with
which it is consistent. The values that ‘have the same neighborhood’ form an
equivalence class. The difficulty with non-binary constraints is the fact that
the constraints have different arities and the ‘neighborhoods’ of two values are
difficult to compare. Our technique is based on building a separate discrimination
tree for each of the constraints that applies to the variable and intersects the
resulting partitions. We call this tree the non-binary discrimination tree (NB-
DT). Special care must be made to exploit the information embedded in the
individual NB-DTs for forward checking. Algorithm 1 shows how to build the
discrimination tree given a variable V' and a constraint C' that applies to it.
Here o and 7 correspond respectively to the selection and projection operators
in relational algebra. In Fig. 6, we show the non-binary discrimination tree

Input: V, C
Create the root of the discrimination tree
for every value v € Dy do
for every tuple t = (Vi ai), (Vi aj), ..., (Vi ar)) € C do
if oy—y(t) then
Move to if present, construct and move to if not, a child node in
the tree corresponding to v (t)
end
end
Add vV, {v}’ to the annotation of the node (or root)
Go back to the root of the discrimination tree
end
Output: Root of discrimination tree

Algorithm 1: Algorithm to create a NB-DT(V, C)

(NB-DT) for each of the constraints incident to V' in the example of Section 2.1.
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After finding each of these trees, we combine the trees to find the partitioning

NB-DT (V,C,)

NB-DT (V. Ci)eRpor Root NB-DT (V, C;) @ Root
(<A 1>,<B 2>) (<E 2>, <F 3> <G 1> ((E 3>, <F2>,<G 1>)
(<A 1>, <B 3>,<13>) (<A 3>,<B 1>, <I2>)
(<A 2>,<B 3>) (<E 1>, <F 2>, <G 3> (<E2>,<F 1>, <G 1>)

(<A 2>,<B2>) (<A2><BI><I1>) J

A L2 .
BO—0 v B v v F
AQ/C,.1_O I [e3 C3 G

Fig. 6. NB-DTs for the variable V and C1, Ca, and C3 respectively.

=)

of the domain of V. Combining the trees requires three sub-tasks:

1. Traverse a tree from the root to the annotations collecting, for each anno-
tation A;, the nodes on a path P; in the discrimination tree leading to the
annotation. Form a list [; = (P; A;) of the particular path and the corre-
sponding annnotation. Form a list L = {l;} of these lists. For example, for
V and C; in Fig. 6, , we have l; = ((((4 1), (B 2)), ({4 2), (B 3))), {1, 3}),
l» = (((A 1), (B 2), (A 2), (B 2))), {2}), and L = (I, ).

2. Intersect the domain partitions A; obtained from each tree. This yields the
singletons {1}, {2}, and {3} in the example of Fig. 6. The resulting sets are
the equivalence classes E; of the domain of the variable (here V') given the
constraints that apply to it (here, C1, Cs, and Cs).

3. The following step is needed to generate information to be used for forward
checking. For each partition E;, we identify the paths {P;} in each NB-DT
such that E; C Aj. For variable X connected to V' we project each of the
path P; on X. Intersecting the results of the projections gives us the subset
of Dx that is consistent with the values in E;. This would be the new domain
of X obtained after forward checking had we assigned E; to V during search.

4 BT with dynamic bundling for a non-binary CSP

BT with FC using dynamic bundling operates by partitioning the domain of the
current V. using the procedure described in Section 3 and the constraints selected
according to nFC2 (Section 4.1) and updated according to Equation (2) below.
The domains of the future variables are updated as described in Section 4.1.
Note that we provide no guarantee that the bundling obtained by our search
is maximal [17]. Further, implementing a MAC-like, full lookahead schema [22]
results in better filtering of the domains of the future variables, a reduction of the
number of nodes visited during search, and thus ‘fatter’ solution bundles at the
expense of increasing the number of constraint checks. Using MAC is beneficial
for sparse CSPs with tight constraints.

4.1 Non-binary FC with bundles

On binary CSPs, FC works by filtering the domains of the future variables
in Vs connected to V. given the instantiation of V.. When we extend these
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concepts to non-binary constraints, we must decide how to deal with partially
instantiated constraints with one or more future variables. We choose here to
perform consistency checking on every constraint that involves both the current
variable, V., and at least one future variable. This corresponds to the strategy
known as nFC2 [6]. In order to check a non-binary constraint, we must check
every possible combination of the values remaining in the domains of the future
variables. Consider the constraint C', which involves variables A, B, I, and V.
Suppose that A has been instantiated to 2, leaving the domains of B, I, and V
as {2}, {1, 3}, and {3, 4, 5, 6}, respectively, as shown in Fig. 7. When the search

B

{1,3}D1I [ ] Instantiated variable
{3,4,5,6})v () Unstantiated, future variable

Fig. 7. Instantiation order of variables during search.

procedure moves to instantiate V., nFC2 considers all the constraints that apply
to V. and at least one future variable V; € V¢, let C; be one such constraint.
Given V,, the domains of the variables in {V.} U V; might have been already
filtered by FC, and certain tuples in C;, might have become invalid. Thus, we
need to select the tuples of C),; that have survived the filtering by FC according
to {(V; a;)} for the variables V; € V,. We denote this operation:

oy, (Ca)- (1)

In the example of Fig. 7, we have V, = B, V, = {4}, Vy = {I,V}, and {{V; a;)}
{{A 2)}. In order to compute the new domains of the variables in Vy, we first
project 0y, (C;) on the set {V.} U Vp,

Cy = mvyuy, (03, (Cz)). )

For a given value v in the current domain of V., the new domain of a future
variable V; is obtained by first making a selection on C. given (V. v), then
projecting the resulting relation on V:

Dy, = v, (0(v. v)(Cy))- (3)

4.2 Measuring constraints checked in non-binary FC

To assess the cost of checking constraints, we count the number of times a given
vvp is compared to a tuple in a constraint. The comparisons done during non-
binary FC are primarily of two types:

1. When checking whether the instantiation of a variable appears in a tuple of a
constraint definition, we increment the counter by one. This type of compar-
ison is done to select constraint tuples consistent with past instantiations.
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2. When checking whether the value for a variable in a constraint tuple is
present in the current domain (of size a) of that variable, we may do more
than one comparison. In the worst case we will do a comparisons. This type
of comparison is done to select tuples from the constraints that are consistent
with domains of the current and future variables. For example let V be a
future variable whose domain is {1, 2, 4, 3, 5} (the domain is stored in the
order shown). Let Cypy be a constraint that applies to variables A, B, and
V.Let t = {{A 1) (B 2) (V 3)} be a tuple from the constraint Capy. It
takes four comparisons to check whether ¢ is valid given the domain of V.

A constraint check over a k-ary constraint involves a maximum of k& such checks,
one for every variable of the constraint. The worst case occurs when a constraint
check succeeds or fails due to the last variable of the constraint. In case of an
early failure, the number of comparisons of vvps, and consequently the number
of constraint checks, will be less than for the worst case. This measure accurately
reflects the constraint-checking effort in our implementation. Note that we ignore
the cost of making the projection, but include it in the CPU time.

5 Generating random non-binary CSPs

To analyze the performance of search algorithms and compare them, we need
many instances with similar characteristics that can be controlled. Real-world
problems cannot be controled by explicit parameters to enable statistical analy-
sis. We need to generate random CSP instances by controlling the number of vari-
ables, domain size, constraint probability, constraint tightness, and constraint
arity. (Typically, domain size and constraint tightness are uniform throughout
the generated instance.) Few generators exist that allow one to control the arity
of the constraints [5, 23]. Moreover, we have not come across any generator that
guarantees the existence of a solution. Below, we describe such a generator.

Constraint probabilty in non-binary CSPs: Figs. 1 and 2 show that the scope
of constraints may overlap. Here, scope(Ci) C scope(C>). A non-binary CSP
can have an arbitrary number of such overlapping constraints, so it is difficult to
define the overall constraint probability of the CSP. Let py, indicate the constraint

probability of all constraints of arity k, pr = CT’“), where ¢y, is the number of k-ary
k

—~

constraints in the CSP.

Non-binary random CSP generator: Our generator takes as input the following
parameters: number of variables (n), domain size (a), constraint tightness (),
and constraint probability py for each constraint arity k to be generated. Con-
straint tightness ¢ is defined as the ratio of the number of forbidden tuples over
that of possible tuples, which is a* for a k-ary constraint. First, we generate a so-
lution by randomly assigning values to each variable in the CSP. We compute ¢y,
for each k in {2, 3, ... n}. We then assign variables to constraints and check if the
CSP is connected. If it is not connected we try another assignment of variables
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to constraints until we get a connected CSP. We project, on all the constraints,
the solution initially generated thereby ensuring that each constraint has the
tuple necessary for the global solution. We then randomly set ta® tuples to be
disallowed, making sure that the tuples corresponding to the solution are not
eliminated. Thus, we are able to generate random non-binary connected CSPs
with a specified constraint tightness and probability that are guaranteed to have
at least one solution.

6 Experiments

The benchmark problems usually used for symmetric CSPs are not suitable for
testing the performance of bundling for the following reasons:

— Most of these problems exhibit only symmetries in terms of permutation (i.e.,
isomorphic interchangeability, which is orthogonal to domain bunding).

— Most of these problems (e.g., game of life, balanced incomplete block design)
have small domains (e.g., binary), which are not amenable to bundling.

— Most of these problems are modeled using a unique global constraint of
exponential size (e.g., game of life). Defining the constraint in extension
amounts to solving the problem.

— Finally, in coloring problems symmetries are typically permutations. Domain
bundling is beneficial in the case of list-coloring problems and common in
resource-allocation applications and can be easily computed without requir-
ing NB-DTs as shown in [10].

We compared the performance of search with dynamic bundling (DNPI-FC-DDD)
and with no bundling (FC-DDD) on toy problems (e.g., Hoffman-Clowes scene
labeling and Zebra). While dynamic bundling could not bundle up the solutions
of the toy problems, it reduced both the number of constraint checks and CPU
time. This is explained by the fact that DNPI bundles no-goods. We also ran
experiments on problems generated randomly using our generator. We generated
six sets with the same parameters as the ones described in [6], except for the
fourth set. The problems are identified by the tuple (k,n, a, pi, t) as follows.

(3, 10, 10, 0.8300, t): High constraint probability.

(3, 30, 6, 0.0180, t): Moderate constraint probability.
(3, 75, 5, 0.0018, t): Sparse constraint probability.
(4, 10, 8, 1071, ¢): High constraint probability.

(4, 26, 6, 10725, t): Moderate constraint probability.
6. (4, 63,4, 1074, t): Sparse constraint probability.

1.
2.
3.
4.
5.

To find the first solution, we varied tightness ¢ in [0.05, 0.10, ..., 0.95] with a
step of 0.025 around the cross-over point and generated 30 instances for each
case. We averaged the values of number of nodes visited NV, number of constraint
checks CC, the first bundle size FBS, and CPU time. We show the results in Figs. 8
and 9. Tab. 1 shows the results of experiments on three sets of data with 4-arity
constraints at the cross-over point. The results found in the region of phase
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Fig. 8. Constraint checks and nodes visited for finding one solution for the data sets

with ternary constraints.
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Fig. 9. CPU time and first bundle size for finding one solution for the data sets with

ternary constraints.
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| [nla] pa | ¢t | #cc [FBS| #NV [CPU time (secs)]
FC-DDD 10[8] 10~ T [0.650[126.56-10°] 1 | 4322.7 84.13
DNPI-FC-DDD|[10{8| 10! |0.650| 70.25-10° | 1.1 | 4322.7 47.98
FC-DDD 26(6[1072-5/0.625(736.56-10°] 1 [201249.4 1094.16
DNPI-FC-DDD||26|6/10~23]0.625|408.86-10° | 1.86 [201249.3 801.66
4
4

FC-DDD 63|14 107% [0.750] 39.07-10% | 1 |44433.4 45.8
DNPI-FC-pDD|[634] 10=% [0.750] 30.77-10° [68.9| 44432.3 34.91

Table 1. Random problems with constraint arity 4 around the cross-over point.

transition hold uniformly throughout the spectrum, unless specified. To find all
solutions, we ran similar tests on smaller problems (i.e., n = 10 and a = 5).
Observations and analysis. As for binary CSPs, bundling does amazingly well
for finding all solutions and also the first solution. Once again, dynamic bundling
outperforms non-bundling. In particular, DNPI-FC-DDD never visits more nodes
and never checks more constraints than than FC-DDD. Further, DNPI-FC-DDD
always takes significantly less CPU time to find all solutions than FC-DDD, up
to an order of magnitude.

Observation 1 Finding the first solution in non-binary CSPs. DNPI-FC-DDD
never visits more nodes or performs more constraint checks than FC-DDD. CPU
time is also generally better except when DNPI-FC-DDD finds large solution bun-
dles, which usually occurs in low-tightness regions. Even then CPU time is never
significantly higher for dynamic bundling than for no-bundling.

Observation 2 Phase transitions in non-binary CSPs. DNPI-FC-DDD system-
atically performs better than FC-DDD in the phase transition region.

We also tested other variable ordering heuristics such as Static Least Domain
(SLD) and Dynamic Least Domain (DLD). We found that, for our set of random
problems, SLD was not effective. DLD was better than SLD. However, the best
results were obtained with DDD. We do not claim that DDD is always better than
DLD since, in our experience with real-world problems, there is no clear winner.

7 Conclusions and future work

Non-binary constraints are important to model faithfully the constraints of many
real-world problems. In this paper, we described a technique for bundling dynam-
ically the search space of non-binary CSPs. We demonstrate that in non-binary
CSPs, dynamic bundling is capable of bundling the solution space of CSPs and
solving them faster than a non-bundling search procedure. The improvement
is particularly significant in the region of the cross-over point. This result is a
particularly interesting one, heavy with promise for new applications such as de-
sign and relational databases. We are working on applying the compact solution
space generated by dynamic bundling to problems of query optimization using
materialized views in databases.
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