Proc. SymCon’03
The Fully Social Golfer Problem

Warwick Harvey

IC-Parc, Imperial College London
Exhibition Road, London, SW7 2AZ, UK
wh@icparc.ic.ac.uk

Abstract. We present a variant of the Social Golfer Problem where
every pair of players must play together at least once instead of at most
once. We discuss its modelling and solution, and look at some of the
features of the problem that are interesting from a symmetry point of
view.

1 Introduction

In November 2002 I received an email from Dave Erb. He and 11 friends were
going on a golfing trip, during which they would play 5 rounds of golf, playing in
groups of 4 each round. (Yes, people really do go on golf trips, and they really do
care about the scheduling.) He and his friends had been sitting round the table
discussing how they should divide themselves up into groups when somebody
suggested that everybody should play with everybody else at least once. It was
agreed that this would be nice, but they were all sure it could not be done.
However, Dave started to wonder, and eventually found my email address on
the internet.

Ostensibly, this problem (which we will refer to as the Fully Social Golfer
Problem) is very similar to the original Social Golfer Problem (problem 10 in [5]):
the only difference is that instead of each pair meeting at most once, they must
meet at least once. (The two problems are equivalent when the parameters are
such that they are feasible instances of the resolvable balanced incomplete block
design problem.) But unlike the Social Golfer Problem (and assuming players
must meet at least two other players more than once) it is more obvious that all
solutions need not be considered equally good, due to differences in the number
and kind of repeated pairings (a given player might only meet one other player
more than once, or a player’s repeated pairings might be distributed among a
number of other players). Potential (conflicting) optimisation criteria (assuming
a fixed number of rounds) are:

— Minimise the number of occurrences of the most repeated pairing.

— Minimise the number of pairs that meet more than once.

— Minimise the largest number of players in common between any two groups
(and then perhaps minimise the number of times this occurs).

— Minimise sequences of pairings repeated across consecutive rounds.

75

Proc. SymCon’03

Of course one can also try to simply minimise the number of rounds required
for all golfers to meet at least once.

When solving the problem in the first instance, we ignored the issue of op-
timisation, and just looked for all solutions; optimisation is discussed further in
Section 3.

The rest of this paper presents our approach to solving the problem, the
solutions found, and some discussion.

2 Solving the problem

2.1 Model

Assume the problem is to find a schedule for g groups of s players for w rounds,
written g —s —w, and let N = gs be the total number of players. Dave’s problem
is then 3 — 4 — 5, with 12 players.

We used a set-based model, with each group represented by a set; denote
the Ith group in round k by Gj,; the players are numbered from 1 to gs. The
cardinality of each set was constrained to be s:

#Gry=s Vke {1...w},le{l...g}
Within each round the groups were constrained to be disjoint:
Gk,lﬂGk’m =0 Vke {1...w},l,m S {1...g},l7ém

Let C;,j,x,; be the number of players from the pair ¢ and j that appear in group
Gk,l; i.e.:

Cijki =#{,jINGry) Vi,je{l...N}yi<jke{l...w},le{l...g}

We added a redundant constraint corresponding to the fact that ¢ and j will
each appear exactly once each round, for a total of two occurrences:

Y Cijea=2 Vi,je{l...N}i<j,ke{l...w} (redundant) (1)
le{1...9}

Let P; ;1 be the number of times players ¢ and j play together in round %, i.e.:
Pk =#{GriCijry =2,1€{1...g}} Vi,je{l...N},i<jke{l...w}
Of course a given pair can play together at most once in a round:
0<P;r<1lVije{l...N},i<j,ke{l...w} (redundant) (2)

Let P; ; be the number of times players ¢ and j play together in total, i.e.:

Py= Y Py Vi je{l..N}Li<j
ke{l..w}

76

Proc. SymCon’03

In order to ensure that each pair does meet at least once:
Pz'yj >1 Vi,je {1N},Z <jJ

And one final redundant constraint, based on the number of pairings each player
is involved in (P; ; is assumed to be a synonym for P;; if i > j):

Z P;=w(s—1) Vie{l1...N} (redundant) (3)
JE{L N} i

Due to the symmetries of the problem the first round can be fixed arbitrarily:
Giu={(l-1)s+1...1s} Vle{l...g9}
Player 1 can also be assigned to the first group in the remaining rounds:
1€Gry1 Yee{2...w}

Note that while in the standard Social Golfer Problem player 2 can be assigned
to the second group in the remaining rounds, we cannot automatically do this
here. This is because the 1-2 pairing is allowed to be repeated, meaning player
2 may need to be assigned to the first group in some or all of the subsequent
rounds. One could still exclude player 2 from groups three and above, exclude
player 3 from groups four and above, etc., but we did not try this. Note also that,
in general when using a dominance detection-based symmetry breaking approach
[1,2] (see Section 2.2), the impact of this kind of initial labelling typically has
more to do with changing the labelling order of the search than it does with not
having to consider the alternative choices. This is because if we were to backtrack
to any of these choices and try the alternative, a dominance check would quite
quickly show that the state is indeed dominated and can be pruned. Since the
number of such dominance checks avoided is typically small in comparison to the
number performed in during a complete search (and they would only be needed
during a complete search), the overall impact can also be expected to be quite
small.

2.2 Symmetry breaking

Due to the large amount of symmetry inherent in the problem, we employed a
symmetry breaking technique. Specifically, we used the SBDD implementation
described in [4], updated to work with set variables rather than integer variables,
and augmented with the symmetry expression interface described in [6]. The ex-
tension to support sets was a straightforward one, exploiting the fact that the
ECLPS® set library we used represents a set as a vector of boolean variables,
each boolean indicating whether a particular element is in the set or not. This
meant a wrapper for the SBDD implementation could be written which effi-
ciently translates the user’s set-based model and set-based search decisions into
an integer-based model and integer-based search decisions, suitable for passing
to the existing SBDD implementation.
The symmetries used were:

71

Proc. SymCon’03

— consistent renaming of the players;
— reordering of the groups in a round; and
— reordering of the rounds.

Note that the symmetry among the players in a group is avoided through the
choice of a set-based model.

2.3 Search heuristics

We experimented with two different search heuristics. The first was that used
by Stefano Novello in his original program for solving the Social Golfer Problem
[7]. This approach takes each player in turn and goes through each round in
turn, assigning the player to one of the groups in the round, trying them from
left to right. The second search heuristic was simply to label each round in turn,
from left to right. A comparison of the results of these two heuristics appears in
Section 4.1.

3 Solutions

The (unique) solutions to the problem are given in Table 1. The figures to the
right of each solution show the repeated pairings of the solution; that is, there is
one line between a pair of players for each time they meet beyond the required
minimum of once. These figures illustrate (some of) the different structural prop-
erties of the solutions.

Solution 1 is equivalent to pairing up the players and finding a solution for
3 groups of 2 playing for 5 rounds. Such a configuration corresponds to a trivial
resolvable balanced incomplete block design with a unique solution, the (6,2,1)-
design.

Solution 9 is of interest because it is the only solution which does not have
at least one pair of players playing together in every round, and seems most
likely to be the solution of choice for a schedule (unless, say, some pair of players
consider themselves inseparable or something).

(Note that there are no solutions if we restrict ourselves to just four rounds.
This is perhaps not immediately obvious: there are 66 pairings we need to sched-
ule, and a four-round schedule yields 72 pairings; this means that any feasible
schedule must have exactly 6 repeated pairings. Since there are four players to a
group and only three groups to a round, by the pigeon-hole principle each group
from, say, the first round must have at least two members appearing together
in at least one group in each other round. Since there are three groups in the
first round and three other rounds, this immediately means there must be at
least 9 repeated pairings: too many to allow all the other pairings we need in
the schedule.)

When setting up the symmetry breaking, we assumed that reordering the
rounds of a schedule would yield an equivalent schedule. While it is true that
reordering the rounds of any solution yields another solution, it may be that the

78

Proc. SymCon’03

{{1,2,3,4},{5,6,7,8},{9,10,11,12}}
{{1,2,5,6},{3,4,9,10},{7,8,11,12}}
Solution 1 {{1,2,11,12},{3,4,5,6},{7,8,9,10}}
{{1,2,7,8},{3,4,11,12}, {5,6,9,10}}
{{1,2,9,10},{3,4,7,8}, {5,6,11,12}}

102 T3
3604 910
506 1l 12

{{1,2,3,4},{5,6,7,8},{9,10,11,12}}
{{1,2,5,6},{3,4,9,10},{7,8,11,12}}
Solution 2 {{1,2,11,12}, {3,4,5,6},{7,8,9,10}}
{{1,2,7,9}, {3,4,8,11}, {5, 6, 10,12} }
{{1,2,8,10},{3,4,7,12},{5,6,9,11}}

{{1,2,3,4}, {5,6,7,8},{9,10,11,12}}
{{1,2,5,9},{3,4,6,10},{7,8,11,12}}
Solution 3 {{1,2,6,11}, {3,4,5,12},{7,8,9,10}}
{{1,2,7,10}, {3,4, 8,9}, {5,6,11,12}}
{{1,2,8,12},{3,4,7,11},{5,6,9,10}}

{{1,2,3,4},{5,6,7,8}, {9, 10, 11,12}}
{{1,2,5,9},{3,4,6,10}, {7,8,11,12}}
SOIUtlon 4 {{17 2) 67 11}) {3) 47 5) 12}7 {77 87 97 10}}
{{1,2,7,12},{3,4,8,9}, {5,6,10,11}}
{{1,2,8,10},{3,4,7,11},{5,6,9,12}}

{{1,2,3,4},{5,6,7,8},{9,10,11,12}}
{{17 2) 57 9}7 {37 47 67 10}) {7) 8) 117 12}}
Solution 5 {{1,2,6,10},{3,5,11,12}, {4,7,8,9}}
{{17 27 77 11}7 {37 57 87 10}9 {4! 67 97 12}}
{{1’ 27 8’ 12}’ {37 79 97 10}9 {4! 59 69 11}}

{{1,2,3,4},{5,6,7,8}, {9,10,11,12}}
{{1,2,5,9},{3,6,7,10}, {4, 8,11, 12}}
Solution 6 {{1,2,6,11}, {3,5, 8,12}, {4,7,9,10}}
{{17 2) 77 12}’ {3) 57 107 11}7 {4! 67 87 9}}
{{17 27 87 10}’ {3’ 67 9’ 12}7 {47 57 77 11}}

{{1,2,3,4},{5,6,7,8},{9,10,11,12}}
{{1, 2,5, 9}, {3, 6,7, 10}7 {4, 8,11, 12}}
Solution 7 {{1,2,6,11}, {3,5,10,12}, {4,7,8,9}}
{{1,2,7,12},{3,5,8,11}, {4,6,9,10}}

9 4
{{172a8710}!{3a679a12}7{47577711}} 6’—‘7
3 3
{{1,2,3,4},{5,6,7,8},{9,10,11,12}} . 10
{{17 27 57 9}7 {37 67 77 10}1 {41 85 117 12}}
Solution 8 {{1,2,6,11},{3,5,10,12}, {4,7,8,9}} !*==2 ¢ 0
{{172a8710}!{3a577a11}7{47679712}} 8 12

{{1,2,7,12},{3,6,8,9}, {4,5,10,11}}

{{1,2,3,4},{5,6,7,8}, {9,10,11,12}}
{{1,2,5,9},1{3,6,10,11}, {4,7,8,12}}
Solution 9 {{1, 2, 6,12}, {3,5,7,10}, {4,8,9,11}}
{{17 3) 87 10}1 {2) 77 9) 11}7 {47 57 67 12}}
{{17 5) 77 11}1 {2) 47 8) 10}7 {37 67 97 12}}

79

Table 1. All unique solutions to the 3-4-5 instance of the Fully Social Golfer Problem

Proc. SymCon’03

result is not considered equivalent by the players. This is because the rounds
form a sequence from the players’ point of view, and changing the sequence may
change the pattern of repeated pairings from a player’s point of view. Taking
Solution 9 as an example, consider the pairings that occur three times in the
schedule. All of these pairings appear in the third round of the schedule as
printed, distinguishing that round from the others (which each contain only half
of these pairings). Also, it is impossible to avoid having at least one pair play
together for three consecutive rounds, but the number of such pairs can vary
from one (when round three is moved first or last) to three (when round three
is in the middle; for the schedule in Table 1 the pairs playing three consecutive
rounds together are 1 — 2, 3 — 10 and 6 — 12). On the other hand, for Solution 1
the order of the rounds appears to be irrelevant, since the repeated pairings
occur in every round.

As can be seen from the above, optimisation criteria based on properties
such as the sequence of the rounds may not respect what would otherwise be
the symmetries of the problem. There seem to be several ways of handling this.
One that works just fine when the number of solutions is small, as is the case
here, and particularly when the optimisation criteria are a bit fuzzy or there are
trade-offs to be made, is just to find all the solutions ignoring the optimisation
criteria and then examine their properties to choose the one that looks best,
possibly rearranging it to suit.

If there are too many solutions to examine by hand in this way, but the
optimisation criteria are well-defined, one could add a second phase to solving the
problem, which looks at each solution returned, and searches for the symmetric
variant(s) of that solution that optimise the desired property or properties. This
allows one to fully exploit the symmetry of the problem, but does not allow the
objective function to prune the search.

Another alternative is to include the objective function in the model, and
perform the search with a reduced number of symmetries. This allows the ob-
jective function to prune the search, but may result in redundant exploration of
parts of the search space that would otherwise be considered symmetric.

Finally, one could try to get the best of both worlds by keeping all the sym-
metries but modifying the objective function so that it yields not the objective
value of the current state but rather the objective value of the best possible of
all the symmetric versions of the current state, with any final solutions found
similarly transformed into their best possible symmetric version before being
returned. This is somewhat related to the work presented in [3]. The main draw-
back with this approach is that it seems likely to be complicated to implement,
and may be too slow and/or prune too weakly to be useful.

An exploration of these alternatives would be interesting, but is beyond the
scope of this paper. (Note that the same issue comes up when there are, say,
just a few constraints which break some or all of the symmetries of the problem;
this can be handled using more or less the same techniques.)

80

Proc. SymCon’03

Time Dominance checks
Heuristic |Solution| GAP ECL'PS® Total |[Choices|Success Fail Delete
player first| first 5.09 1.11 6.20 33 0 4 2

round first| first | 9484.39 534.38 10018.77| 23714| 5482 20880 8016

player first| all 529.27 264.64 793.90| 7468 1263 5676 4907

round first| all |24034.66 729.45 24764.12| 31802| 8441 25791 13302
Table 2. Comparison of search heuristics

4 Computational results

The implementation of the constraint program to solve the problem was done
using ECL!PS®. All experiments were run on a 933MHz Intel Pentium III ma-
chine with 512MB of RAM, running Red Hat Linux, using ECL?PS® 5.6#36 and
GAP 4r3fix5. In each case the times presented are the average of several runs,
but the exact times given should of course be taken with a grain of salt.

4.1 Search heuristics

As mentioned in Section 2.3, we consider two search heuristics, what we will
call “player first” and “round first”. The result of comparing these, for the case
where all the redundant constraints from Section 2.1 are included but none of
the possible initial arbitrary assignments of players to groups are done, is shown
in Table 2, for finding the first solution and for finding all solutions. In each
case, we list the time spent in GAP (doing dominance checks), the time spent in
ECL!PS® (solving the CSP and providing GAP with the information needed for
the dominance checks) and the total time, all in seconds. We also list the number
of times a choice! was made during search, the number of dominance checks that
were successful, the number of dominance checks that failed without providing
any useful information, and the number of dominance checks that failed but
indicated that certain elements could be removed from particular domains (since
they would lead to a dominated state).

Clearly, the player-first heuristic is superior on all counts. Interestingly, not
only does the round-first heuristic have a substantially larger search tree for all
solutions than player-first, but the average dominance check is also more than an
order of magnitude slower, resulting in a huge blow-out in the total time taken.

It would appear from this and results from other problems we have looked
at that the dominance checker from [4] takes substantially longer than expected
on problems with this kind of wreath product symmetry when labelled in round
order. This is worth investigating, in order to see whether it can be overcome

! We define a choice to be any decision that might be backtracked to later so that the
alternative option can be tried. Note that this is not quite the same as the number
of backtracks unless the entire search space is explored, since any intermediate point
in the search will typically have a number of outstanding choices that have yet to
have their alternatives tried.

81

Proc. SymCon’03

Time Dominance checks

Constraints|Solution| GAP ECL*PS® Total |Choices|Success Fail Delete
none first 3642.92 929.52 4572.44| 32035 1253 34119 14011
1 first 2402.88 1011.62 3414.50| 22538 1340 18883 12203
2 first 3642.65 900.06 4542.71| 32035 1253 34119 14011
1,2 first 2401.40 981.58 3382.98| 22538 1340 18883 12203
3 first 6.33 1.16 7.49 44 1 12 2
1,3 first 5.07 1.19 6.26 33 0 4 2
2,3 first 6.33 1.12 7.45 44 1 12 2
1,2,3 first 5.09 1.11 6.20 33 0 4 2
none all 19592.66 5134.14 24726.81| 189020 11259 201852 78219
1 all 12988.55 5552.33 18540.88| 135116 12818 111328 68810
2 all 19598.22 4949.24 24547.46| 189020 11259 201852 78219
1,2 all |12956.25 5362.08 18318.34| 135116 12818 111328 68810
3 all 928.16 285.94 1214.10(11517 993 12906 6159
1,3 all 528.24 279.09 807.33| 7468| 1263 5676 4907
2,3 all 927.20 275.10 1202.39| 11517 993 12906 6159
1,2,3 all 529.27 264.64 793.90 7468 1263 5676 4907

Table 3. Effect of redundant constraints for player-first labelling

by modifying the dominance check algorithm, possibly exploiting the structure
of the symmetry group.

We also tried finding all solutions without employing any symmetry breaking.
It had consumed about 9 weeks’ worth of CPU time without finishing when the
machine it was running on had a disk fail, effectively ending the experiment.

4.2 Redundant constraints

As noted in Section 2.1, several of the constraints added are redundant (namely,
(1), (2) and (3)). Table 3 shows the effect of including or leaving out various
combinations of the redundant constraints, for the player-first search heuristic
with no initial arbitrary assignments of players to groups.

It is clear that (3) is crucial: it makes more than an order of magnitude
difference across the board. This is because without this constraint, the solver
often fails to detect when a player is already involved in too many repeated
pairings, such that it is not possible for them to play with all the remaining
players in the rest of the schedule, and this results in a lot of useless search.

(1) provides modest improvements, but (2) does not help at all.

The results for using the round-first search heuristic were similar, though of
course much slower, and we didn’t run to completion any experiment without
(3) because it would have taken too long. Perhaps the only thing worth noting
is that for this search heuristic, (2) did actually provide a very small reduction
in the size of the search tree.

82

Proc. SymCon’03

Initial Time Dominance checks
labelling|Solution| GAP ECL'PS® Total |Choices|Success Fail Delete
none first 5.09 1.11 6.20 33 0 4 2
p! first 5.07 1.15 6.22 28 0 4 2
pr first 5.11 115 6.26 33 0 4 1
pr! first 5.09 1.15 6.23 21 0 4 1
r first 5.03 117 6.20 33 0 4 1
rp! first 5.09 113 6.21 21 0 4 1
none all 529.27 264.64 793.90| 7468 1263 5676 4907
p! all 528.58 264.38 792.97| 7461 1261 5676 4903
pr all |4319.50 217.78 4537.28| 5510 724 3547 3209
pr! all |4318.55 216.54 4535.09| 5496 721 3547 3199
r all |4325.06 216.97 4542.03| 5515 730 3547 3209
rp! all |4316.52 216.16 4532.68| 5496 721 3547 3199
Table 4. Effect of initial labelling for player-first labelling

4.3 Initial labelling

In Section 2.1, we argued that if making some initial assignments because they
are guaranteed not to exclude any unique solutions had any significant effect,
then it would be due to the perturbation of the search heuristic rather than any
saving achieved from not having to look at the alternatives to the choices. In
this section we back that argument with some computational results.

Table 4 shows the effect of labelling the first round (r) and/or player (p),
before continuing with the player-first search heuristic, with this labelling done
either as normal choices (to be backtracked later) or committed choices (never to
be backtracked, indicated by a !). So “p!” commits to labelling the first player,
which means that the search tree is exactly the same as no initial labelling, other
than that these first choices are never reconsidered. “pr” labels the first player
and then the first round, while “rp” labels the first round and then the first
player (since we are labelling the rest in player order, “r” is the same as “rp” if
no commit occurs).

(All redundant constraints were included.)

For the first solution, there is little to distinguish between the alternatives; the
variance in the number of choices just reflects those choices that were committed
to. For finding all solutions, the picture is much clearer. Committing to the initial
choices has only a relatively minor effect, while changing the shape of the search
tree by labelling the first round (either before or after the first player) has two
significant effects: a marked reduction in the size of the search space, and an
order of magnitude increase in the average time to perform a dominance check
(presumably the result of having some round-wise labelling).

Table 5 shows the same thing for the round-first search heuristic: committing
to the initial choices has only a minor impact, and the only significant change is
when the first player is part of the initial labelling phase.

83

Proc. SymCon’03

Initial Time Dominance checks
labelling|Solution| GAP ECL'PS® Total |Choices|Success Fail Delete
none first | 9484.39 534.38 10018.77| 23714 5482 20880 8016

r! first 9483.72 533.37 10017.09] 23706 5482 20880 8016
Ip first 6598.50 408.12 7006.62| 14311 1942 10056 5255
rp! first 6605.06 407.42 7012.48| 14299 1942 10056 5255
p first 6601.84 408.07 7009.92| 14311 1942 10056 5255

pr! first 6595.17 407.60 7002.77| 14299| 1942 10056 5255
none all |24034.66 729.45 24764.12| 31802| 8441 25791 13302

r! all (24041.10 727.72 24768.81| 31787 8432 25791 13296
Ip all (17990.96 831.07 18822.02| 28525| 4544 19849 10665
rp! all (18009.87 828.84 18838.72| 28506 4535 19849 10655
p all |17993.90 830.32 18824.22| 28520 4538 19849 10665
pr! all |17978.35 828.87 18807.22| 28506| 4535 19849 10655

Table 5. Effect of initial labelling for round-first labelling

5 Conclusions

We have presented an interesting variant of the Social Golfer Problem based
on players being required to meet at least once instead of at most once. In
particular, we have presented all the unique solutions of the 3-4-5 instance,
which was of interest for a social golf tour. We have also examined a number
of aspects of the modelling and solution of the problem, including the effect of
redundant constraints, initial labelling (in particular its interaction with SBDD-
based symmetry breaking) and search heuristics (particularly with regard to the
effect of certain labelling strategies on the time taken to perform dominance
checks using the method presented in [4]).

Acknowledgements

The author would like to thank his colleagues at the Universities of St Andrews
and Huddersfield, and Meinolf Sellmann, for all their interesting discussions on
symmetry and the Social Golfer Problem, and other support. The author would
also like to thank the reviewers for their helpful comments.

This work was supported by EPSRC grant GR/S30658/01.

References

1. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,
editor, CP’01: Proceedings of the 7th International Conference on Principles and
Practice of Constraint Programming, pages 93-107, 2001.

2. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
T. Walsh, editor, CP’01: Proceedings of the Tth International Conference on Prin-
ciples and Practice of Constraint Programming, pages 77-92, 2001.

84

Proc. SymCon’03

. F. Focacci and P. Shaw. Pruning sub-optimal search branches using local search.
In CPAIOR’02: Proceedings of the Fourth International Workshop on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pages 181-189, 2002.

. I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using computa-
tional group theory. In CP’03: Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming, 2003. To appear.

. I. P. Gent, T. Walsh, and B. Selman. CSPLib: a problem library for constraints.
http://csplib.org/.

. W. Harvey, T. Kelsey, and K. Petrie. Symmetry group expression for CSPs. In B. M.
Smith and I. P. Gent, editors, Proceedings of SymCon’08: The Third International
Workshop on Symmetry in Constraint Satisfaction Problems, 2003. To appear.

. S. Novello. An ECL{PS® program for the social golfer problem.
http://www.icparc.ic.ac.uk/eclipse/examples/golf.ecl.txt.

85

