Proc. SymCon’03

Symmetry and Propagation: Refining an AC
algorithm

Tan P. Gent & Iain McDonald

School of Computer Science, University of St Andrews,
Fife, Scotland,
{iain,ipg}@dcs.st-and.ac.uk

Abstract. Research into symmetries in CSPs has shown how we can
avoid redundant search to reduce the run-times of CSP solving. However,
symmetries affect more than just search. For any information gathered
about a CSP, the same is true of its symmetric equivalent. We should
be able to use this fact to avoid more than just redundant search but
redundant work. This paper proposes ways in which we can use symme-
tries to improve propagation techniques resulting in a modified version
of the AC-2001 algorithm with empirical results.

1 Introduction

Symmetries occur in many problems where identical or indistinguishable objects
take place. Whereas they may improve the structure of the problem making
them easier to deal with in some sense, they manifest in CSPs increasing the
amount of effort needed to solve. This is especially true when trying to find all
solutions or an optimised solution.

Much of the previous work into symmetry in CSPs generally tries to lead the
search routine away from redundant search (and duplicate solutions) by adding
constraints to the problem at some point.

Some of these techniques include enforcing a lexicographic ordering [1] i.e.
posting lex constraints, adding constraints dynamically during search [2, 3] e.g.
symmetry breaking during search - SBDS, or backtracking from the current node
when it can be shown to be equivalent to a previous nogood [4, 5] e.g. symmetry
breaking via dominance detection - SBDD.

The above techniques (and most of the other symmetry breaking techniques
not mentioned here) affect the traversal of the search tree by adding constraints
that will force certain subtrees to be avoided. This was the thinking behind their
creation: altering the search routine to avoid redundant search.

Constraint solving however is a balance between search and inference. There
are various levels of consistency that can be maintained while searching for a
solution e.g. bounds consistency, forward checking, arc consistency, path consis-
tency. There are many algorithms for enforcing these levels of consistency, most
notable are the arc consistency (AC) algorithms (e.g. AC-3 [6], AC-6 [7], AC-7
[8], AC-2000, AC-2001 [9]) that enforce AC on binary CSPs. There are also al-
gorithms for generalised arc consistency (GAC) for non binary constraints e.g.

66

Proc. SymCon’03

GAC-Schema [10]. Popular global constraints (such as all different [11], or lex
constraints [12]) have specialised algorithms to enforce GAC efficiently.

While the area of inference is an important one to constraint programming,
this is the first research to look at using symmetry to improve propagation algo-
rithms. Although we cannot present changes to all the propagation algorithms
that exist, at the heart of the thinking behind this research is the simple fact
that any time we learn something about a CSP, the same is true of its symmet-
ric equivalents. Thus we can try to re-use information gathered by an inference
algorithm.

Since achieving arc consistency is the strongest level of consistency possi-
ble for binary CSPs, we suggest ways in which symmetry in CSPs can be used
specifically to improve AC algorithms. We then present pseudo-code for a modi-
fied version of the AC-2001 algorithm developed by Bessiere and Régin and give
empirical results for maintaining AC on symmetric problems. Finally we discuss
some of the possible directions for this exciting new research area.

2 TImproving Arc consistency

There are two possible paths for improving arc consistency algorithms - exploit-
ing symmetry to reduce run-time, or exploiting symmetry to reduce run-time
and discard duplicate solutions i.e. enforce a higher level of consistency. If the
constraint solver is using some symmetry breaking search routine, then the latter
method may not be significantly effective when combined with such a symmetry
breaking search routine that already discards non-unique solutions. However it
may be a cheaper (more tractable) alternative to the symmetry breaking search
method. We will initially look at enforcing AC and use symmetries just to reduce
run-times.

Definition 1. CSP - A CSP is a set of constraints C acting on a finite set
of variables X : X1..X,, each of which has a finite domain of possible values
D(X;). A solution to a CSP L, is an instantiation of all the variables in X
where Vi 35 X; = j,j € D(X;) such that all the constraints in C are satisfied.

Definition 2. Symmetry - Given a CSP L, with a set of constraints C, a
symmetry of L is a bijective function f : A — A where A is some representation
of a state in search e.g. a list of assigned variables, a set of current domains
etc., such that the following holds:

1. Given A, a partial or full assignment of L, if A satisfies the constraints C,
then so does f(A).
2. Similarly, if A is a nogood, then so too is f(A).

Definition 3. Orbit - If we have an assignment A, and a group® G repre-
senting the symmetries of a CSP, we define the orbit O of A to be a set of all
the distinct assignments that can be derived by applying the elements of G to A

! See [13] for a detailed explanation of group theory concepts.

67

Proc. SymCon’03

i.e. VA, € O, 3g € G s.t. g(A) = A,. The definition of an orbit also extends to
tuples of assignments.

Definition 4. Stabilizer - If we have a group G, we can create H, a subgroup
of G by calculating the stabilizer of an assignment A. The subgroup H is the
stabilizing subgroup of A w.r.t. to G if H C G and Vh € H, h(A) = A. The
definition of a stabilizing subgroup also extends to tuples of assignments.

We assume that the constraint programmer produces a group representing
the symmetries of the problem prior to search. This group can then be used by
the modified AC algorithm. In order to maintain AC during search, we need
to note that the symmetries of the problem change as assighments are made.
Anytime a search decision is made e.g. variable X; = j, or variable X, # z,
we must take the stabilizer of these decisions. In this paper we are taking the
pointwise stabilizer rather than the setwise stabilizer of decisions. This will result
in the group tending toward the identity element sooner but allows for cheaper
group theory computations.

There are two main facts that we learn while performing arc consistency:

1. Inconsistent domain elements
2. Support for domain elements

Once we find an inconsistent domain value, we can remove it since it is
guaranteed to violate some constraint if instantiated. The same is true of its
symmetric equivalents, therefore we can remove all the elements (assignments)
of the orbit of this domain value. This should reduce the number of constraint
checks needed.

When searching for support for a domain value v € D(X;), we are looking for
a potential assignment that does not violate a specific constraint when instan-
tiated alongside X; = v. In order to find support, we perform many constraint
checks. AC-2001 searches the domain of a variable for support lexicographically
and bookmarks the first value it finds that provides support. If this value is
deleted, search for a new support continues from the point in the domain after
the previous support.

If the symmetries of a CSP act on the variables and not the assignments, the
lexicographic ordering of the domains are respected by the symmetries. Thus if
we find support s, for a particular assignment a, then if f is a symmetry acting
on variables, f(s) is support for f(a). In addition, any domain element less than
f(s) cannot be support for f(a). Thus we can avoid further constraint checks
by re-using support.

2.1 Refining AC-2001

Algorithm 2.1, 2.2 and 2.3 contain pseudo-code based on the AC-2001 algo-
rithm developed by Bessiere and Régin. The time and space complexity for this
algorithm is optimal: O(ed?) and O(ed) respectively.

68

Proc. SymCon’03

Algorithm 2.1: MAIN(X)

Q< 0;
for each X; € X
for each X; such that C;; € C
R < SYMMETRICREVISE2001(X;, X;)

do for each X;, € R
do if D(Xy) =0
do

then return (false);

Q + QU{Xk};

return (SYMMETRICPROPAGATION2001(Q));

Algorithm 2.2: SYMMETRICPROPAGATION2001(Q)

while Q # 0
(pick X; from Q;
for each X; such that C;; € C
R < SYMMETRICREVISE2001(X;, X;)
do for each X, € R
do if D(Xy,) =10
do {

then return (false);

Q < QU{Xx};

return (true);

Algorithm 2.3: SYMMETRICREVISE2001(X;, X;)

CHANGE + 0;
G ¢ group acting on CSP;
for each v; € D(X;)
(if LAST(XZ', Vi, X]) € D(XJ)
(if 31}j S D(Xj)/’l}j >d LAST(X,', Vs, X]) /\ Cij(’l}i, Uj)
LAST(Xi,Ui,Xj) < V3
if G acts on variables
then S + ORBIT(G, [(X;,v:), (Xj,v5)]);
then {for each [(X,,vy),(X;,v.)] €S
then { do LasT(Xy,vy, X;) + v;
O « ORBIT(G, (X;,v;))
for each (Xj,v;) € O
else
do {remove vy, from D(Xy);
CHANGE < CHANGE U{X4};

return (CHANGE);

69

Proc. SymCon’03

The main changes involve taking the orbit of inconsistent domain elements
and support domain elements and re-using them. As a consequence, the Algo-
rithm 2.3 doesn’t return a boolean indicating whether or not the domain has
been reduced, but rather a set of variables whose domain have been reduced.
Notice how in Algorithm 2.3, whether we find support or not, information is
re-used. For those readers not familiar with the original AC-2001 algorithm, the
value Last(X;,v;, X;) is the last recorded support domain element v; € X;, for
the assignment X; = v;.

3 Experimental Results

For the experiments, a simple backtracking binary constraint solver was imple-
mented? in Java. This solver takes instances from the model B, random binary
CSP generator [14].

To give an idea of how it measures against the original implementation of the
AC-2001 algorithm, the experiments from [9] were re-created (see Table 1, which
records the number of constraint checks taken, the runtime and the number of
deletions by the AC algorithm). As in [9], 50 instances were generated and the
mean values were calculated. All experiments in this paper were run on an Athlon
XP 2200 1.8GHz processor with 512Mb of RAM.

Original AC-2001 Java AC-2001
f#ccks time| Fccks AC del. time
<150, 50, 500, 1250>| 100,010 0.05 99,968 0 1.38
<150, 50, 500, 2350>| 487,029 0.16| 478,062 3,224 7.78
<150, 50, 500, 2296>| 688,606 0.34| 677,886 3,038 11.32
<50, 50, 1225, 2188>(1,147,084 0.61|1,114,781 1,255 18.05

Table 1. Results of comparing the original implementation by Bessiére and Régin with
the new Java implementation.

The main problem for the applicability of using propagation in AC algorithms
is that the most symmetric problems that interest the symmetry in constraint
programming community contain n-ary constraints. Such constraints cannot be
dealt with by a binary AC algorithm such as is presented here.

The ideal problem for these experiments is a highly symmetric problem with
a direct binary CSP model where the symmetries act on variables as this would
allow us to re-use support. Finding latin squaresis such a problem. A latin square
is an n x n grid of numbers from 1 to n such that each number can only appear
once in each row and column. In this problem, we can freely permute the rows
and columns as well as inverting around a diagonal thus giving a total of 2n!2
symmetries.

2 Thanks to Christian Bessiére for helping to verify its correctness.

70

Proc. SymCon’03

AC-2001 Modified AC
n |#con. checks runtime|size of group #con. checks runtime
15 100,800 0.29] 3.4 x 10** 16 0.33
16 130,560 0.35| 8.8 x 10%¢ 17 045
17 166,464 0.44| 2.5 x 10%° 18 0.56
18 209,304 0.64] 8.2 x10* 19 0.66
19 259,920 0.79] 2.6 x 10** 20 083
20 319,200 0.94| 1.2 x 10%7 21 1.02
21 388,080 1.13| 5.2 x 10%° 22 1.27
22 467,544 1.59| 2.5 x 10*? 23 1.52
23 558,624 1.87| 1.3 x 10%° 24 1.89
24 662,400 2.10| 7.7 x 10%7 25 2.29
25 780,000 2.78| 4.8 x 10°° 26 2.82
26 912,600 3.22| 3.3 x 10% 27 3.60

Table 2. AC on uninstantiated latin squares. The predicted number of constraint
checks is produced experimentally.

AC-2001 Modified AC
n| fails #ccks AC del. time| fails #ccks AC del. time
3 0 623 5 0.02 0 324 5 0.07
4 0 3,371 9 0.06 0 1,550 9 013
5 4 13,432 24 0.07 5 5,743 23 0.17
6 8 41,003 40 013 8 14,696 40 0.29
7 55 140,454 110 0.38 55 54,141 110 0.86
8 0 198,073 63 0.62 0 54,128 63 1.28
9 95 601,669 309 275 101 203,451 303 4.65
10| 408 2,097,243 734 12.11 409 720,123 733 16.93
11| 1,277 6,785,424 3,602 48.45| 1,290 2,723,297 3,607 64.49
12| 5,208 49,502,231 8,654 255.21| 5,208 10,412,996 8,654 348.03
13|38,209 416,371,008 72,967 2465.15|38,232 100,507,570 72,942 3315.85

Table 3. Maintaining AC while searching for a solution. Though the number of fails
is sometimes slightly different, the solutions found were identical.

71

Proc. SymCon’03

The results for enforcing AC on an uninstantiated instance of a latin square
problem are presented in Table 2. Since the problem is uninstantiated (unlike
when we are searching for a solution), it is trivial to calculate the size of the orbit
before computing the orbit itself. This allows us to implement the orbit finding
algorithm very efficiently. The latin squares problem is underconstrained and
as such no domain removals are made. Ensuring the problem is arc consistent
means just finding support for each assignment. For each variable (of which there
are n?), there are 2(n — 1) arcs i.e. variables they are constrained with. For each
arc, n+ 1 checks are required to find support for all domain elements. Thus you
can see how for an n x n latin square, enforcing arc consistency takes 2n?(n? —1)
constraint checks. However, for the modified algorithm, once it has been shown
that one arc is arc consistent, we can infer via the symmetry of the problem that
all arcs are consistent. So for an n x n latin square, enforcing arc consistency
takes n + 1 constraint checks. The results for maintaining arc consistency while
searching for a solution (MAC) are shown in Table 3.

Disappointingly, the runtimes have not improved by re-using information.
This is because the runtime of the algorithm for finding the orbit of a tuples of
points of size two, outweighs the benefit of a reduced number of constraint checks.
The “big-oh” complexity of an efficient orbit finding algorithm is O(|orbit| x g)
where ¢ is the number of generators of the group. In retrospect, it is hard to
improve an algorithm that has a low quadratic complexity.

Though the runtimes are not promising, a more detailed look at the com-
plexity of this algorithm would be interesting to show whether or not it could
be worth using other cases. It is hoped that more constrained problems or prob-
lems with more expensive constraint checks would be improved with inference
algorithms that take symmetry into account.

4 Conclusions and Future Work

In this paper we proposed ways in which symmetries in CSPs can be used to
make the most of gathered information. We presented a modified version of
the AC-2001 algorithm which was shown to drastically reduce the number of
constraint checks needed to enforce AC on a highly symmetric problem.

This is a first step into a research area with huge potential. Though the run-
times were disappointing, the large reduction in the number of constraint checks
demands further research (especially into symmetric problems with expensive
constraint checks). There are many paths this research could take from here,
most notably:

— Information re-use in specialised constraint propagation algorithms e.g. sum,
all different.

— Higher levels of consistency that can remove duplicate solutions.

— Concise representations for constraints produced by enforcing k-consistency.
This could reduce the expensive time and space complexity of such algo-
rithms.

72

Proc. SymCon’03

— Modifying support re-use for symmetries on variables and values.

Whatever the outcome of this paper, we hope we have convinced the reader

that the effect of symmetries in combinatorial search problems stretches further
than just search and we can use this fact to avoid redundant work wherever it
occurs.

Acknowledgements

We would like to thank all the members of the APES research group, notably
Patrick Prosser and Ian Miguel for showing enthusiasm in this research and
also to Christian Bessiere, Steven Prestwich and the reviewers. This work is
partly supported by EPSRC grant GR/R29666, by a Royal Society of Edinburgh
SEELLD Support Fellowship and by an EPSRC PhD studentship.

References

10.

Pierre Flener, Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix models.
In P. van Hentenryck, editor, Principles and Practice of Constraint Programming,
pages 462-476. Springer-Verlag, 2002.

. Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based

search. In Alex Brodsky, editor, Principles and Practice of Constraint Program-
ming, pages 73-87. Springer-Verlag, 1999.

Jan Gent and Barbara Smith. Symmetry breaking in constraint programming. In
W. Horn, editor, Proceedings of ECAI-2000, pages 599-603. IOS Press, 2000.
Torsten Fahle, Stefan Schamberger, and Meinolf Sellman. Symmetry breaking. In
Toby Walsh, editor, Principles and Practice of Constraint Programming - CP2001,
pages 93-107. Springer-Verlag, 2001.

Filippo Focacci and Michaela Milano. Global cut framework for removing symme-
tries. In Toby Walsh, editor, Principles and Practice of Constraint Programming
- CP2001, pages 77-92. Springer-Verlag, 2001.

Alan K. Macworth. Consistency in networks of relations. In Artificial Intelligence,
8, pages 99-118. 1977.

Christian Bessiére and Marie-Odile Cordier. Arc-consistency and arc-consistency
again. In AAAI-93: Eleventh National conference on Artificial Intelligence, pages
108-113, Washington, DC, 1993.

Christian Bessiere, Eugene Freuder, and Jean-Charles Régin. Using inference to
reduce arc-consistency computation. In Fourteenth International Joint Conference
of Artificial Intelligence, pages 592598, Montreal, Canada, 1995.

Christian Bessiére and Jean-Charles Régin. Refining the basic constraint propaga-
tion algorithm. In International Joint Conference of Artificial Intelligence, pages
309-315, Seattle, WA, 2001.

Christian Bessiére and Jean-Charles Régin. Arc consistency for general constraint
networks: preliminary results. In International Joint Conference of Artificial In-
telligence, pages 398-404, Nagoya, Japan, 1997.

73

11.

12.

13.

14.

Proc. SymCon’03

Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs.
In AAAI-9: Twelfth National conference on Artificial Intelligence, pages 362-367,
Seattle, WA, 1994.

Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Global
constraints for lexicographic orderings. In P. van Hentenryck, editor, Principles
and Practice of Constraint Programming, pages 93-108. Springer-Verlag, 2002.
Gregory Butler. Fundamental Algorithms for Permutation Groups. Springer-
Verlag, 1991.

Daniel Frost, Christian Bessiere, Rina Dechter, and Jean-Charles
Régin. Random Uniform CSP Generator, 1996. Available from
http://www.lirmm.fr/“bessiere/generator.html.

74

