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Abstract. Constraint programs containing a matrix of two (or more) di-
mensions of decision variables often have row and column symmetries: in
any assignment to the variables, the values assigned to any two rows can
be swapped and the values assigned to any two columns can be swapped
without affecting whether or not the assignment is a solution. This in-
troduces an enormous amount of redundancy when searching a space of
partial assignments. It has been shown previously that one can remove
some, but not all, of these symmetries by extending such a program with
constraints that require the rows and columns to be lexicographically
ordered. This paper identifies a fully-simplified set of constraints that
breaks all row and column symmetry in a matrix with three columns
and two rows.

1 Introduction

A common pattern arising in finite domain constraint programs is the matrix of
decision variables with two or more dimensions [3]. In two-dimensional matrices
it is often the case that some or all of the rows are interchangeable and some or
all of the columns are interchangeable. That is, an assignment to the variables
in the matrix is a solution if and only if it is still a solution after swapping
the values assigned to two of the interchangeable rows or swapping the values
assigned to two of the interchangeable columns. This is called row and column
symmetry.

Symmetry in constraint programs can cause problems for an algorithm that
searches a space of partial assignments due to redundancy in the search space.
One of the most popular methods for reducing symmetry is to add extra con-
straints to the model, so-called symmetry breaking constraints.

Flener et al [2] studied index symmetry and showed that one can consistently
add the symmetry-breaking constraint, called lex?, that both the rows and the
columns are lexicographically ordered.? This means that for every assignment
to the variables that does not satisfy the symmetry-breaking constraint, there is

3 Though working in a different context, Shlyakhter [9] independently showed the
consistency.
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a symmetric assignment that does. They also showed that for certain problems
imposing lex? can make the difference between solving and failing to solve the
problem. Frisch et al [6] introduced an efficient algorithm for maintaining gen-
eralised arc-consistency on the constraint that one vector (a row or column of a
matrix) is lexicographically less than another.

Independently, Flener et al [2] and Shlyakhter [9] also showed that lex? does
not break all row and column symmetries. That is, lex? is incomplete in that
it can be satisfied by two symmetrical assignments. Consider the following two
matrices. Both satisfy lex?, but the second can be obtained from the first by
swapping the rows and rotating the columns to the right.

223 123
(2 3 1> (3 2 2)

In this paper we present, including derivation, a set of lexicographic con-
straints that is guaranteed to break all row and column symmetries for a 3 x 2
matrix, and that we believe to be minimal (in that no simpler set of lexicographic
constraints exists that is complete for domains of arbitrary size).

Whether or not completeness is required depends on the problem to be solved;
one example is when one wishes to find all solutions without any symmetric
duplicates. In such a case, one either needs to use a complete symmetry breaking
approach, or add a separate pass over the solutions to filter out duplicates (e.g.
by encoding the solutions as graphs and using a graph isomorphism package

such as nauty [8] to produce canonical labellings). It is beyond the scope of this
paper to compare the two approaches.

2 Terminology

We are concerned with finite domain constraint satisfaction problems so every
variable is associated with a finite domain of values. An assignment maps every
variable to a member of its domain.

A set of constraints S logically implies another set of constraints S’ if every
assignment that satisfies every member of S also satisfies every member of S’. If
S and S’ logically imply each other, then they are said to be logically equivalent.

An nxm matrix has n columns and m rows. We number the columns 1,...,n
from left to right and the rows 1,...,m from top to bottom.

A row of a matrix can be treated as a vector by reading it left to right and
a column of a matrix can be treated as a vector by reading it top to bottom.
This paper only deals with ordering non-empty vectors of equal size, so we shall
simplify the presentation by assuming this throughout the paper. One vector,
x, is defined to be lexicographically less than or equal to another, y, (written
T <jex y) if € =y or z; < y;, where 7 is the smallest index such that z; # y;.

3 Complete Symmetry Breaking

One way to break all the symmetries in a matrix is to impose the row-wise
lex-leader constraints, which are a specific case of the more general lex-leader
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constraints introduced by Crawford et al. [1]. The row-wise lex-leader constraint
is derived by considering a matrix of distinct variables and all matrices symmetric
to it. Each matrix is converted to a string of variables by scanning the matrix
row-wise, left-to-right, top-to-bottom. For example, the 3x2 matrix of variables

ABC
(D E F>
yields the string ABCDFEF. From these strings we produce a set of constraints
asserting that the string from the original matrix—called the lex leader—is lex-
icographically less than or equal to each of the other strings from the symmet-
rically equivalent matrices. Thus, continuing our example, there are 11 other
matrices that can be produced by permuting the rows and columns of the above
matrix. Each of these yields a string of variables that is asserted to be lexico-

graphically greater than or equal to ABCDEF; thus 11 constraints, called the
row-wise lex leader constraints, are generated:

(1) ABCDEF <., ACBDFE
(2) ABCDEF <., BCAEFD
(3) ABCDEF <., BACEDF
(4) ABCDEF <., CABFDE
(5) ABCDEF <., CBAFED
(6) ABCDEF <., DFEACB
(7) ABCDEF <., EFDBCA
(8) ABCDEF <., EDFBAC
(9) ABCDEF <., FDECAB
10) ABCDEF <., FEDCBA
11) ABCDEF <., DEFABC

(
(

Since the row-wise lex-leader constraints are generated by the method pro-
posed by Crawford et al. [1], we know that they are consistent and complete. It
should be noted that this does not generally provide an effective way to break row
and column symmetries since for an nxm matrix it yields n!-m!— 1 constraints.

4 Simplifying the Constraints

We now turn our attention to the task of simplifying the 11 symmetry-breaking
constraints. The goal is to produce the simplest possible set of lexicographic
ordering constraints that are logically equivalent to the original set.

We present and use two simplification rules. In presenting these rules we use
the following meta-symbols. X and Y denote arbitrary finite domain variables.
Strings of zero or more domain variables are denoted by «, (3, v and 4. If any of
these Greek letters have superscripts, then the superscript indicates the length
of the string.

First consider a general rule for simplifying a single lexicographic ordering
constraint.
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Rule 1 If we have a constraint C of the form a"X[B <iee ¥"Y§ and a = 7y
logically implies X =Y, then we may replace C with aff <jep 6.

Essentially, this rule states that if, at the time X and Y become significant for
this constraint (i.e. « =), we know that they must be equal, then we can leave
them out of the constraint because they will have no effect. Note the special case
where X and Y are the same variable:

Rule 1’ If we have a constraint of the form a"X B <jex ¥*X08 then we may
replace it with af <jes V9.

Proposition 1. If an application of Rule 1 allows the replacement of one con-
straint with another, then the two constraints are logically equivalent.

Using this rule, each of the 11 lex-leader constraints can be simplified to a
logically equivalent constraint:

1) ABCDEF <., ACBDFE — BE <iex CF

2) ABCDEF <i.; BOAEFD — ABDE <., BCEF
3) ABCDEF <;., BACEDF — AD <iex BE

4) ABCDEF <i.y CABFDE —s ABDE <., CAFD
5) ABCDEF <i, CBAFED — AD <iex CF

) ABCDEF <i., DFEACB — ABC  <;.u DFE

) ABCDEF <;., EFDBCA — ABCDE <., EFDBC
) ABCDEF <;., EDFBAC — ABC <., EDF

) ABCDEF <., FDECAB — ABCDE <., FDECA
) ABCDEF <;., FEDCBA — ABC  <j.; FED

) ABCDEF <i.;, DEFABC — ABC  <;.; DEF

(
(

We conjecture that none of these individual constraints can be simplified
further. That is, none of the constraints on their own is logically equivalent
to a shorter lexicographic ordering constraint. constraint. So we now turn our
attention to simplifying conjunctions of constraints.

Further simplifications can be performed using the following rule:

(
(
(
(
(
(
(
(
(
1
1

6
7
8
9
0
1

Rule 2 If we have a set of constraints C of the form C'U{a" 3 <jex ¥"0}, where
C' is a set of constraints, and C' U {a = v} logically implies B <iex d, then we
may replace C with C' U {a <jex 7}

Note that if n = 0 in Rule 2, the lexicographic constraint reduces to a tau-
tology and may be discarded:

Rule 2/ If we have a set of constraints C of the form C' U{8 <jey 0}, where C’
is a set of constraints, and C' logically implies 3 <iee 0, then we may replace C
with C'.

Proposition 2. If an application of Rule 2 allows the replacement of one set of
constraints with another, then the two sets of constraints are logically equivalent.
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Using this rule we obtain the following simplifications, which we will explain.

(7) ABCDE <i., EFDBC — ABCD <., EFDB
(2) ABDE <. BCEF — true

(4) ABDE  <jex CAFD — true

(9) ABCDE <y FDECA — ABC <j.p FDE
(5) AD <lexw CF — true

The simplification of (7) uses a single application of Rule 2. Suppose that
ABCD = EFDB. In particular, A = F and B = D = C. (3) logically implies
A <jerx B, which in this context is equivalent to E <j., C. Hence by Rule 2,
ABCDE <ie; EFDBC simplifies to ABCD <., EFDB.

The simplification of (2) uses four applications of Rule 2. For the first ap-
plication, suppose that ABD = BCE. Then B = C, so (1) logically implies
FE <jex F. Hence by Rule 2, ABDE <., BCEF simplifies to ABD <., BCE.
For the second application, suppose that AB = BC'. Then A = B, so (3) logically
implies D <o, E. Hence ABD <j., BCFE simplifies to AB <;., BC. For the
third application, no supposition is needed. (1) entails B <., C, so AB <., BC
simplifies to A <, B. Finally, (3) entails A <;.,, B, so an application of Rule 2’
results in the constraint being reduced to a tautology.

The simplification of (4) also uses four applications of Rule 2. For the first
application, suppose ABD = CAF. Then A = B = C and D = F. (1) and
B = C logically implies E <je, F', which implies £ <;., D since D = F'. Hence
ABDE <., CAFD simplifies to ABD <., CAF. For the second application,
suppose AB = C'A. Thus A = B = C, which together with (5) logically implies
D <jex F. Hence ABD <., CAF simplifies to AB <;., CA. For the third
application, suppose A = C. (1) entails B <j.,, C, which together with A = C
entails B <j.; A. Hence AB <., C A simplifies to A <;.,, C. Finally, (5) entails
A <iez C, so an application of Rule 2’ results in the constraint being reduced to
a tautology.

The simplification of (9) uses one application of Rule 2. Suppose ABC =
FDE; then B= D and F = A. These two equations together with (1) logically
imply DFE <;e CA. Hence, by Rule 2, ABCDFE <., FDECA simplifies to
ABC <. FDE.

Finally, the simplification of (5) requires only one rule application. Since the
lexicographic ordering is transitive, (3) and (1) imply (5), which thus reduces to
a tautology by Rule 2'.

The resulting set of constraints (with the tautologies removed) is:

(1) BE <4z CF

(3) AD <. BE

(6) ABC <ix DFE
(7) ABCD <., EFDB
(8) ABC <lex EDF
(9) ABC <ix FDE
(10) ABC <o, FED
(11) ABC <., DEF
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Because these constraints were derived from the row-wise lex-leader constraints
by equivalence-preserving transformations, we know that these constraints are
correct and complete.

Theorem 3. The above constraints are a correct and complete set of symmetry-
breaking constraints for the row and column symmetries in a three-by-two matriz.

Based on the discussion that follows we make a conjecture:

Conjecture 1. There is no set of lexicographic ordering constraints that is log-
ically equivalent to and simpler (having fewer or shorter constraints) than the
above constraints.

Suppose we were to replace (7) by a slightly weaker constraint:
(7') ABC < EFD
The resulting constraints are quite regular in structure:

— Constraints (1) and (3) constrain the three columns to be in lexicographic
order.

— Constraint (11) constrains the two rows to be in lexicographic order.

— The six constraints  (3), (6), (7'), (8), (9) and (10) constrain the first row
to be lexicographically less than or equal to each of the six permutations of
the second row.

Unfortunately they are no longer sufficient to break all symmetry: the following
two matrices can be obtained from each other by permuting rows and columns,*
yet both satisfy constraints (1), (3), (6), (77), (8), (9), (10) and (11).

123 123
312 231

Only the one on the right satisfies the full-strength (7).

5 Past and Future Directions

The results presented here open the door to many future directions. As these
results were made public two years ago (though not in writing), some of the
future directions are in the past.

In September 2001 we recognised that the lex-leader method of Crawford
et al [1] could be used to generate a complete and consistent set of symmetry
breaking constraints for row and column symmetries. Realizing that for an nxm
matrix this method generates a set of n!-m!—1 constraints, we wondered whether
this set could be simplified to a reasonable size. We completed our simplification

4 The second matrix is obtained from first by swapping rows and rotating the columns
to the left.
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of the constraints for a 3 x 2 matrix in November 2001 and, in presenting a paper
at the SymCon’01 Workshop, the first author displayed the simplification [5].

We know of no one in the constraint programming community who previ-
ously considered using the lex-leader method for row and column symmetries;
indeed, the first proof published in the constraint programming literature of the
consistency of the lea? constraints does not appeal to the the lex-leader method
[2].

However, independently, in June 2001 Shlyakhter published a paper [9] that
considered row and column symmetries in the n-dimensional Boolean matrices
that represent n-ary relations. He showed that for these matrices lex™ is a con-
sistent symmetry breaking constraint by observing that it is embedded in the
row-wise lex-leader constraints.

In 2002, Flener and Pearson [4] reviewed our results on the 3 x 2 matrix
and related some of our simplifications to the symmetry group formed by row
and column permutations. They also pointed out that further simplifications are
possible when the variables in the matrix have a limited domain size.

Our work shows that the row-wise lex-leader constraints for the 3 x 2 matrix
entail six lexicographic ordering constraints stipulating that the first row is lex-
icographically less than or equal to each of the six permutations of the second
row. This observation leads one to speculate whether this is a manifestation of a
general pattern. Frisch, Miguel and Jefferson [7] investigated this and determined
that the row-wise lex-leader constraints for any n x m matrix entail (m — 1) - n!
lexicographic constraints stipulating that the first row is lexicographically less
than or equal to all permutations of every other row. For a matrix M, they call
the conjunction of these constraints allperm(M). Furthermore, they presented
an algorithm that enforces generalised arc consistency on allperm(M) in time
O(m-(n+d)), where d is the domain size of the variables in M. For use in cases
where d is large, they provide an alternative implementation whose run time is
O(m - n-logn).

These results of Frisch, Miguel and Jefferson answer the open question of
whether the row-wise lex-leader constraints can be simplified to a set of lexi-
cographic constraints whose size is polynomial in the size of the matrix. Since
allperm(M) is a conjunction of (m — 1) - n! constraints, the answer is no—not
even close. However, their results point out that the existence of a polynomial-
sized set of lexicographic constraints may not be necessary for efficient symmetry
breaking: in at least this one case it is possible to efficiently enforce a factorial
number of lexicographic constraints.

Whether all row and column symmetries can be broken efficiently remains an
open question. A more pragmatic open question is whether there are efficiently-
enforceable symmetry-breaking constraints that are non-trivially stronger than
the combination of lex? and allperm. Our study of the 3 x 2 matrix provided
the vital clue that led to the identification of the allperm constraint. Beyond
this, it is hard to see what clues are provided by the 3 x 2 case. Would a study
of symmetry-breaking in the 3 x 3 matrix provide a useful clue?
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Another interesting and potentially valuable line of research is the develop-
ment of an automated method for simplifying a set of lexicographic constraints.
The simplification presented in this paper provides examples of the kinds of
steps that would need to be automated. Chris Jefferson and Warwick Harvey
have both made initial attempts at formulating a simplification algorithm.

We can suggest several possible uses of an automated simplification system.
(1) For a given matrix, the system could provide some constraints that could be
added usefully to the combination of lex? and allperm. (2) As suggested above,
simplification of constraints for matrices larger than 3 x 2 may prove useful in
further research. But beyond the 3 x 2 case the manual simplification quickly
becomes unmanageable. (3) The study of the row-wise lex-leader constraints
has proved fruitful. Perhaps studying the lex-leader constraints produced by
orderings other than row-wise would also prove fruitful. Automated simplifica-
tion would facilitate this. (4) Not only might these other lex-leader constraints
be useful for research into symmetry, they might also be effective as symmetry
breaking constraints themselves. The amount of search-space pruning obtained
by the row-wise lex-leader constraints varies greatly with the variable ordering
used by the search. For certain variable orderings it might be much better to
use other lex-leader constraints. For this application it would be useful, perhaps
necessary, to generate and simplify these constraints automatically.
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