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Abstract. Constraint Satisfaction Problems are known to be NP-Complete.
So, many works have been carried out in order to improve the efficiency

of backtracking search algorithms. Some used techniques aim to reduce
the search space by removing redundant values from domains. One of
these techniques is based on the notion of interchangeability and substi-
tutabiliy defined by Freuder[4]. In this work, we propose an extension of
the Neighborhood Substitutability. We show that Generalized Neighbor-
hood Substitutability recover the different forms of substitutability.

1 Introduction

Constraint Satisfaction Problems (CSPs) involve the assignment of values to
variables which are subject to a set of constraints. CSP is known to be NP-
Complete problem. So, many works have been proposed in order to improve
classical backtrack algorithms such as constraint propagation, symmetries or
intelligent backtracking. The main objective in all cases is to reduce the search
space and consequently to deal with harder CSPs.

One of the used techniques is based on the interchangeability and Substi-
tutability introduced by Freuder[4]. Interchangeability can be considered as a
way to take into account constraints semantic. Many works have been proposed
aiming to exploit such semantical information in solving Constraint Satisfaction
Problems. Benson and Freuder [2] showed that interchangeability preprocessing
can improve forward checking algorithm on some random CSPs. Also, these tech-
niques have been used to improve filtering algorithms such as Arc-Consistency
[5]. Bellicha et al[1] studied the notion of Neighborhood substitutability (NS) and
defined a partial ordering on domains induced by NS. This ordering is used to
remove some values and consequently reduce search space.

In this paper, we propose a weaker form of Neighborhood Substitutability
which generalizes the notions of Neighborhood interchangeability and Neighbor-
hood Substitutability. We call this Generalized Neighborhood Substitutability
(GNS). Our intuition is that situations verifying GNS might occur more fre-
quently than other contsrained notions of Substitutability. The paper is organ-
ised as follow. Section 2 recalls somme neccessary defintions. In section 3, we
present the theoretical framework of the GNS. Further work and investigation
can be found in section 4.
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2 Definitions

Definition 1. A finite binary Constraint Satisfaction Problem (CSP) P is de-
fined by the 3-tuple (X,D,C)

— X ={z1,%2,...,2,} a set of n variables,

— D = {Dy,D>,...,D,} a set of finite domains. Vx; € X,D; is the set of
possible values for the variable x;.

— C = {Cij1,Cisjs>+-->Cinjm } @ set of m binary constraints. C;j € C,i < j
defines the constraint between variables x; and x;.

Note that constraints C' define the set of m relations of compatibility R =
{Ri1j1aRi2jza . 7Rimjm}' VR” € R,i<7j, R,‘j C D; x Dj. In the sequel, we will
use indifferently Cj; or R;; for a constraints between variables z; and z;. Also,
variable z; is sometimes denoted by its index i. A constraint R;; is a subset of
the cartesian product (D; x D;) and it specifies the pairs of compatible values.
In the sequel, we denote a value a € D; by (i,a) (or i = a). Two values (i,a) and
(4,b) are compatible if (a,b) € R;;. I; = {j|R;; € R} denotes the neighborhood
of the variable i.

Definition 2. We define N(i,j,a) = {b € Dj|(a,b) € Ri;} as the set of values
which support (i,a) in Dy, i.e. the set of compatible values with (i,a) in Dj.

Definition 3. [1] We define N(i,a) = Ujer; N (i,,a) as the set of values which
support (i,a).

We recall below some definitions about interchangeability and Substitutabil-
ity introduced by Freuder in [4].

Definition 4 (Substitutability (S)). /4]

Given two values (i,a) and (i,b) from the domain D; of a CSP P. The value
(i,a) is substitutable for (i,b) iff substituting (i,a) in any solution involving (i,b)
yields another solution.

Definition 5 (Neighborhood Substitutability (NS)). /1]
For two values (i,a) and (i,b) from the domain D; of a CSP P, (i,a) is Neigh-
borhood Substitutable for (i,b) iff N(i,b) C N(i,a)

Definition 6 (Neighborhood Interchangeability (NI)). [1/
Two values (i,a) and (i,b), from the domain D; of a CSP P, are Neighborhood
Interchangeable iff N(i,a) = N(i,b).

Proposition 1. Given a CSP P = (X,D,R), (i,a) is NS for (i,b), then P is
satisfiable iff P|p,—_(sy (P for which we delete the value b from D;) is satisfiable.

42



Proc. SymCon’03

3 Generalized Neighborhood Substitutability

In this section, we propose a generalization of Neighborhood Substitutability
and Neighborhood Interchangeability.

Definition 7 (Generalized Neighborhood Substitutability (GNS)).
(i,a) is GNS for (i,b) iff Vj € I3, N(i,j,a) N N(i,j,b) # 0

Remark 1. Note that the GNS we propose is a weaker than NS. GNS generalizes
both NI and NS. We can easily establish the relationship NI < NS < GNS.
In other words, if a value (i,a) is NI for a value (i,b) then (i,a) is also NS for
(i,b). If (i,a) is NS for (i,b) then (i,a) is GNS for (i,b) as well. The reverse is
false.

Definition 8. An assignment Iy of the variables of Y = {i1,i2,...,ix}, Y C X
is an element of the cartesian product D;; X Dy, ... x D;, . It can be represented
by pairs of variable-value {(i1, Iy (i1)), (i2, Iy (i2)), - - -, (i, Iy (i) }

Definition 9. An assignment Iy (Y C X ) satisfies the constraint R;; iff i,j €
Y et (i, Iy (9)), (4, Iy (j)) € Ryj-

Definition 10. Let P = (X,D,C) be a CSP, Iy an assignment of Y C X, we
define Pr, = (X,D',C) as :

- VieY, D, ={Iy(i)}
- VJ¢Y7 D;:DJ

Proposition 2. Let P = (X,D,C) be a CSP, Y = {i} UI;. Iy and I}, two
assignments of Y such that :

— Iy(i) = a and I}, (i) = b, and
- Vi€, Iv(j) = I, (j) = vj s.t-v; € N(i,5,a) N N (i, 4,b),

if (i,a) is GNS for (i,b) then Pr, is satisfiable iff Py, is satisfiable

Obviously, the proposition 2 shows that two GNS values induce search re-
dundancy. In the following, we show how to avoid such redundancies by adding
additional constraints to the original CSP. These additional constraints can be
represented in clausal form (Clausal Constraint Satisfaction Probems)[3]. The
obtained CSP is equivalent for satisfiablity to the original one. We call them
Constraints Avoiding Redundancy(CAR).

Definition 11. Let P = (X,D,C) be a CSP. We define total ordering O on
domains as : ¥i € X, and Vi1,iz € {1,...,|D;|}, if i1 < iz then v;, < v;,. Note
that v;, and v;, correspond to the values in D; with ranks i1 and iy respectively.

Definition 12. Let P = (X,D,C) be a CSP, O a total ordering on its domains.
We define Constraint Avoiding Redundancy as : CAR = /\VieX,Vle{l...lD,-l}((i #*

VA ATFE 0) = Vyger, 0 € N, k,01)). A (resp. /) is the conjunctive (resp.
disjunctive) logical operator. The — symbol designs the implication operator.
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Remark 2. Constraints Avoiding Redundancy defined above can be represented
in clausal form as follow :
CAR = /\VlEX,VZE{llDzl}(Vk (S FZ(Z = V...V Z = Vv Vg ¢ N(Z,k, Ul))

CAR indicate that if no solution exists for a value v; € D;,l € {1...|D;|}
then for a value v, € D; with v, # v; it is useless to explore tuples of values in
subdomains N (i, k,v;), for all k € T;.

Proposition 3. Let P = (X,D,C) be a CSP, CAR the set of Constraints
Avoiding Redundancy in P. Then P is consistent iff P A CAR is consistent.

Proposition 3 shows that, by adding some constraints to the original CSP,
we can avoid redundant search for a solution.

Remark 3. We can easily remark that added redundant constraints to P allow
us to avoid redundancy related to several forms of Substitutability and Inter-
changeability (i.e. GNS, NS and NI).

Adding these constraints can be performed in polynomial time using poly-
nomial space complexity. The size of CAR can be bound by O(n x d) where n
is the number of variable and d is the maximum domain size.

In practice, we can avoid adding additional constraints. In fact, when the
neighborhood of a variable X; is completely assigned, it is sufficient to verify if
there exists a value v; € D; (already checked) compatible with the values of the
current assignment in the neighborhood of X; and backtrack in such a case.

4 Conclusion and further work

In this paper, we have proposed a generalization of neighborhood interchange-
ability and substitutability. We have shown how redundancy can be avoided
thanks to additional constraints which allow us to recover these different forms
of substitutability. We have discussed only the theoretical framework. We en-
visage to investigate several aspects related to the Generalized Neighborhood
Substitutability. We give below some future directions to be explored :

— Experimental validtion of the GNS as a preprocessing step or during search
(without additional constraints). Also, we plan to investigate its usefulness
on different kinds of problems such as structured CSPs and random ones.

— Development of specific heuristics to help exploiting GNS. We plan to de-
fine heuristics which lead search to assign the neighborhood of the current
variable before choosing new one using well known heuristics.

— Handling efficiently the Constraints Avoiding Redundancy.

— Defining new filtering techniques for clausal CSPs.
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