Proc. SymCon’03

Symmetries in Rectangular Block-Packing

Hay-Wai Chan! and Igor L. Markov?

! hhchan@umich.edu
imarkov@eecs.umich.edu
Department of Electrical Engineering and Computer Science, University of Michigan

2

Abstract. The block-packing problem has applications in chip design, factory layout,
container shipment optimization, scheduling and other areas. It has been actively
studied in the last 20 years, but symmetry in packings has been neglected. Our work
deals with symmetry in several formulations of block-packing, including optimization
and constraint-satisfaction variants, as well as slicing and non-slicing packings. We
establish the presence of symmetries and show that symmetry-breaking improves the
performance of our optimal block-packer BloBB, that is based on branch-and-bound
and can solve small instances of the problem. Using this optimal solver we compare the
efficiency of symmetry-breaking in different variants of block-packing.

1 Introduction

The rectangular block-packing problem has been extensively studied in the context of VLSI
design. In short, the block-packing problem is to find a packing of a given set of rectangular
blocks such that they do not overlap and the area of the bounding rectangle is minimized.
A constraint satisfaction variant is to pack the blocks so that the dead space is smaller than
a threshold value. An alternative constraint satisfaction version is to pack the blocks into
a predefined box [1,2,4,5,7]. Since the block-packing problem is NP-hard [9], simulated
annealing is typically used in applications. The use of symmetries holds a potential to
simplify the block-packing problem by shrinking the solution space, but local optimization
heuristics are not well-suited to use symmetry in search [11]. In fact, the block-packing
problem turns out to be highly symmetrical as we show in Section 3. While the problem
is highly symmetrical, practical instances often have instance-specific symmetries. In this
paper, we discuss both instance-independent and instance-specific symmetries. We propose
an optimal branch-and-bound block-packer that can pack up to 9 blocks with randomly-
chosen dimensions in a reasonable amount of time, or even more in the presence of instance-
specific symmetry.

General block-packing is often difficult to analyze. In this work we particularly consider
slicing packings whose bounding rectangles can be recursively bisected by horizontal or
vertical cuts into rooms, each of which contains one block. Slicing packings may not capture
the best solutions, but many VLSI designers still rely on them as they lead to faster algorithms
without significant quality losses (as well as for certain engineering reasons). Our work makes
the case for slicing packings even stronger by presenting simple yet effective symmetry-
breaking strategies. They significantly speed up the optimal branch-and-bound slicing packer
so that it can solve up to 12 blocks with random dimensions in a reasonable amount of time.

The block-packing problem is usually formulated and studied as an optimization problem,
as it appears in VLSI design. We present its alternative formulation as a constraint satisfaction
problem, where our symmetry-breaking techniques also apply.

The rest of the paper is as follows. Preliminaries are given in Section 2 and motivation for
our work in Section 3. Sections 4 and 5 describe our optimal non-slicing and optimal slicing

27

Proc. SymCon’03

By

| By

| Bs

-8, ‘
(b)

Fig.1. (a) The tree represented by 7 = 0010001111001101; (b) the packing (7,m,0) where
n = {Bs,B3,Bg,B2,B4, B, B7,B1}.

LB,

Bs

Bl %37

LG,

€L—>B()

NA S

Bs —— B3

By €R

Fig. 2. Horizontal constraint graph of the packing in Fig.1b. The horizontal critical path is indicated by
the double arrows. Transitive edges are omitted for clarity.

block-packers respectively. Section 6 discusses the enumeration of symmetric packings. We
discuss empirical results in Section 7 and conclude in Section 8.

2 Preliminaries

The Rectangle Packing Problem. Let M = {Bj,...,B,} be a set of rigid rectangular blocks. A
packing of M defines, for every block B;, its orientation 8; and planar location (x;,y;). No two
blocks may overlap. One seeks to minimize the area of the bounding box of the floorplan.
This formulation outlines an optimization problem. A constraint satisfaction version of the
problem is to pack the set of blocks such that the dead space is smaller than a threshold value.
Conventions and Background. In the rest of the paper, the term non-slicing means “not
necessarily slicing”. All sets are ordered. A permutation of order n is just an ordered n-
element set, typically of blocks {Bj,...,B,}. This defines a precedence relation < on blocks,
which are often referred to by indices, e.g., 2 may denote block B;. To know the width wg
and height hp of block B, one needs to know its orientation. The location of B is the location
of its bottom-left corner. As is common for constraint graphs, we consider the left edge of
the core region ey and its bottom edge ep as two fixed hypothetical blocks (“poles”). ey, has
width 0 and height oo, while those of ep are oo and 0 respectively.

Constraint Graphs and Critical Paths. Given a packing U of n blocks with specified
orientations, its horizontal constraint graph (HCG) Gy is a graph (V,E, f) such that the
set of vertices V.= {Bj,...,By,eL,eg} where ey, (eg) is the left (right) edge of the bounding
rectangle of U, E = {(v1,v2)]|v; is in the left of v,} and the weight of B;, f(B;) = wg, and
fler) = f(er) =0 (Fig.2).Itis clear Gy is a directed acyclic graph with source ¢/, and sink eg.
Similarly for the vertical constraint graph (VCG) of U with top edge er and bottom edge ep
and the weight of B; is its height. There may be multiple longest paths in the HCG or VCG of
U, we declare the lexicographically smallest one to be the longest path. We refer to the longest

28

Proc. SymCon’03

path in HCG (VCG) of U as the horizonal critical path (vertical critical path), abbreviated
as hep(U) (vep(U)). If hep(U) = (k. .., ky), we define the horizontal critical path set of
U, heps(U), as {ki, ...k, }. Similarly for the vertical critical path set of U, veps(U).

The O-tree Representation. We choose to use the O-Tree representation for non-slicing
floorplans since its solution space is the smallest among all proposed. Moreover, as we will
see in Section 4.2, a partial O-Tree provides useful information for effective pruning. A rooted
ordered tree with n+ 1 nodes can be represented by a bit-vector of length 2n, which records
a DFS traversal of the tree. 0 and 1 record downward and upward traversals respectively
(Fig.1a). An O-Tree for n blocks is a triplet (7, 7,0) where T is a bit-vector of length 2n
specifying the tree structure, 7 is a permutation of order n listing the blocks as they are
visited in DFS, 0 is a bit-vector of length n with block orientations (0 for “not rotated”” and 1
for “rotated by ©/2”).

(T,m,0) represents a packing by sequencing its blocks according to m. The x-coordinate
xp of a newly-added block B is 0 if its parent P is the root of T (er), or else xp + wp, the sum
of the width of P (implied by 0) and its x-coordinate. The y-coordinate yp is the smallest non-
negative value that prevents overlaps between B and blocks appearing before B in 7 (Fig.1b).
ep can be a child of any leaf.

A packing is L-compact (B-compact) iff no block can be moved left (down) while

other blocks are fixed. A packing is LB-compact iff it is both L-compact and B-compact
(equivalently defined as admissible in [6] and maximally compact in [8]). The packing in
Fig.1b is LB-compact. Every LB-compact packing can be represented by an O-Tree, and all
packings specified by an O-Tree are B-compact [6]. The y-coordinate for each block can be
found in amortized O(1) time, facilitating the realization of an O-Tree with n blocks in O(n)
time [6].
Normalized Polish Expressions (NPEs). NPE is a non-redundant representation for slicing
floorplans [12] and as we will see in Section 5, its solution space is very easy to be
enumerated. cc A slicing floorplan is a rectangle area recursively sliced by horizontal and/or
vertical cuts into rectangular rooms [8]. A packing is slicing if its bounding rectangle is a
slicing floorplan and each rectangular room contains exactly one block. Slicing packings
can be represented by slicing trees. Each leaf node of a slicing tree represents a block and
each internal node represents a horizontal or vertical cut (Fig.3). We can also consider each
internal node to be a supermodule, consisting of the two blocks or supermodules represented
by its children and merged in the way specified by itself. A sequence Ol ...0p,—1 over
{1,...,n,%,+} is said to be a Polish expression if there is a slicing tree T such that o, ... 0y, —|
is the sequence of nodes visited in a post-order traversal of 7. It is normalized if it does not
contain consecutive +’s or *’s. For example, the expression in Fig.3c is normalized, but that
in Fig.3b is not. The above correspondence defines a bijection between the set of slicing trees
with n leaves and the set of Polish expressions of length 2n — 1. The set of normalized Polish
expressions of length 2n — 1 is in a 1-1 correspondence with the set of slicing floorplans with
n blocks [12].

Given a slicing tree 7 and the orientations of the blocks, the slicing packing of T is a
packing specified by 7" such that no vertical (horizontal) cuts can be moved to the left (down),
and each block is placed at the bottom-left corner of the room (Fig.3). Operators + and * act
on the set of blocks {1,...,n} and supermodules such that A + B (A x B) is the supermodule
obtained by placing B on top of (to the right of) A. Polish expressions use the postfix notation
for such operators. To evaluate a floorplan, we can simply compute the supermodule that
contains all blocks by recursively merging blocks and supermodules. This procedure can be
implemented in O(n) time and will be explained in Section 5.1.

29

Proc. SymCon’03

=N N
1/ * 4/ \+ / \3 4/ \+
.A ’ SITl 2/ \3 5/ \6 1/ \2 5/ \6

) ©

(@

Fig.3. (a) A slicing floorplan and a slicing packing; (b) a slicing tree representing (a), its
Polish expression is 123 %456+ %+; (c) an equivalent slicing tree whose Polish expression is
1243 %456+ %+.

TreeT: 147 «----- 2 bits each time
Permutationt: 258 ------ 1 block each time
Orientation0: 369 -..... 1 bit each time

Fig. 4. Branching Schedule

3 Motivation

Consider packing U of n blocks {Bj,...,B,} with specified orientations. If U is slicing or
specified by an O-Tree, then the width of U equals to the length of hcp(U) and hence the
sum of widths of blocks in hcps(U). For another slicing or LB-compact packing U’ such that
heps(U') = heps(U), the widths of U’ and U are equal. Since 0 # heps(U) C {By, ..., By},
there are at most (2" — 1) values of its width and similarly its height. Therefore, there are at
most 4" possible width-height combinations for U. Since there are 2" possible combinations
of orientations of {Bj,...,B,}, there are at most 8" possible width-height combinations.
Note that the actual number of width-height combinations is much smaller than 8" since
|heps(U)Nveps(U)| = 1if U is slicing or specified by an O-Tree. However, even 8" is very
small compared with the size of solution space of O-Tree which is O (n'i—’;;) or that of
NPEs [13].

Two packings are symmetric if they have the same shorter edges and longer edges.
Obviously, this relation is an equivalent relation. For example in Fig.6, packings P, P’ and P”
are symmetric but packings P and P are not. To minimize area, we only have to consider
one packing from each equavalent class. Therefore, effective symmetry-breaking may, in
principle, reduce search runtime, but that requires careful tracking of symmetry that would be
lightweight enough not to spoil the speed-ups provided by solution-space reduction. Handling
all symmetries is not necessary, and one is free to choose the types of symmetry that can
be handled efficiently. However, the more types of symmetry yield to such techniques, the
greater speed-ups may be achieved. As we will see in Section 6, enumerating symmetric
packings is useful for optimizing objectives other than area.

4 Optimal Non-slicing Block-Packing

The floorplan representation used by a branch-and-bound floorplanner may critically affect
its performance. We choose the O-Tree representation because no known representation

30

Proc. SymCon’03

Bg
Bg By
B B
B 4 B By Ba
Sl By ’ | B

(@) (b)

Fig. 5. (a) A partial packing (¢,0,8) with7 =0010001111 and 6 = {Bs, B3,Bg,B,,B4}, (b) a compatible
complete packing.

Fig. 6. The packing P satisfies (4.2) but not (4.1). When we apply an a-transformation to get P/, P’ does
not satisfy (4.2) anymore. Thus we apply a B-transformation to get P’ by flipping P’ to P and then
compacting to P

achieves a smaller amount of redundancy. A partial O-Tree defines a partial packing that
can be extended to complete packings, and this property facilitates effective pruning.

4.1 Branching

BRANCHING SCHEDULE. We adopt a branching schedule in Fig.4 such that at each layer of
the search tree, we define 2 bits of 7', 1 block of &, or 1 bit of 0. Our basic framework is a
depth-first search.

A bit-vector identifies a rooted ordered tree iff it has equal numbers of 0’s and 1’s and

every prefix has at least as many O’s as 1’s. Hence, a partial bit-vector ¢ with i 0’s and j
I’s can be extended to one representing a rooted ordered tree with n nodes iff (1) i > j
and (2) i < n. These feasibility conditions can be easily checked in O(1) time upon every
incremental change to the bit-vector. Infeasible bit-vectors are pruned, and we may get a new
feasible bit-vector ¢ at every search node of depth 4i.
INFORMATION IN A PARTIAL SOLUTION. Suppose (7,7, 0) is extended from (¢,,d). Since has
at least i 0’s, the positions of all blocks in 6 in T are set. Furthermore, since & is as long as G,
the orientations of all blocks in G are determined. The position of a block in (7,7, 0) depends
only on itself and its preceding blocks in 7 [6]. We can then determine the locations of all
blocks in & before we explore deeper and (¢,0,8) determines a partial packing. Addition and
deletion of a block take amortized O(1) time [6] (Fig.5). We say (T, T, 0) to be extended from
(t,6,0) if t, 0, and J are prefixes of T, m, and 0 respectively. It is an extended packing of
(t,6,9).

4.2 Symmetry and Dominance-breaking

In subsequent discussions, we consider a partial packing U = (¢,0,8) of i blocks and an
extended packing (7,7, 0) of n blocks. Let n, be the length of the shorter edge (min-edge) of
block k fork=1...n.Let {Cp,...Cp1} be the contour of U. We do not distinguish between
T and the tree presented by T', and similarly for 7. The estimations of dead space lower bound

31

Proc. SymCon’03

are quite involved and omitted for brevity. Their descriptions and justifications are available
upon request.

DOMINANCE-BREAKING. The bounding rectangle of a packing can be in one of eight
orientations. It suffices to analyze only one of those orientations. To facilitate pruning,
observe that an LB-compact packing always contains unique lower-left, lower-right and
upper-left blocks, and at least one upper-right block. We declare the rightmost upper-right
block to be the upper-right block. In Fig.1b, By is the upper-right block. To avoid redundant
packings, we impose dominance-breaking constraints:

(4.1) the lower-left block Bjyer—ief: has orientation 0,
(4.2) Bjower—ieft = R for every corner block R.

We enforce constraint (4.1) because any packing can be flipped across the diagonal,
preserving the lower-left block. Enforcing that constraint by applying a diagonal flip is
referred to as o-transformation (Fig.6a-b).

Similarly, we can transform P = (T,®,0) to an LB-compact packing P’ satisfying
constraint (4.2) by a series of flips and/or rotations, followed by rounds of L- and B-
compaction. The height and width of P’ will not exceed those of P. This transformation of
packings is referred to as B-transformation and illustrated in Fig.6b-d. Note that compaction
is necessary to keep the resultant packing inside the solution space of O-Tree.

To enforce constraints (4.1-2) simultaneously, we may have to apply an o-transformation
followed by a B-transformation, and then repeat. Constraints (4.1-2) will be satisfied in at
most 7 such steps since the index of the lower-left block decreases after a B-transformation
and stays the same after an o-transformation.

Packing U is said to dominate packing U’ if the sides of U are not longer than those of
U’. If we consider symmetric packings to be equal, then the relation of dominance defines a
partial ordering among the packings. Obviously, the resultant packing after applying rounds
of o and B-transformations dominates the original one, which we can safely prune.

Let Mg = maxgg¢s {k} and 1;, be the index of the current lower-right block. The index of
the lower-right block is at most 7 = max (I, Mg). Since lower-left block in the partial packing
must remain the lower-left block in any of its extended packings, we require Byorom—iefr = Bi.
Similarly for upper-left and upper-right blocks. For every packing with more than one block,
the upper-left block and lower-left block must be distinct. Thus, if Bjgyer e has index larger
than both the current upper-left and lower-right blocks, we can require Bjoyer—jefr < S where
the index of § is the second largest among all unused blocks. In special cases when the contour
lines form a single horizontal line, we can require Bporrom—1ef: = R for every corner block R
of the partial packing. Dominance-breaking by constraint (4.1) is instance independant while
that by constraint (4.2) is instance specific.

BLOCKS WITH SAME HEIGHT OR WIDTH. If two adjacent blocks B and B’ have the same height
and y-coordinate, the cluster formed by B and B’ can be flipped. We break this symmetry by
requiring B < B’ if B is to the left of B’. A similar constraint applies to adjacent blocks with
same width and x-coordinate, e.g., B1 and Bg in Fig.1b. If two blocks B; and B; in 7 have the
same width and height (i < j), they are interchangeable. We require B; to appear first in G.

These constraints are compatible with constraints (4.1-2) since the index of lower-left
block does not increase while those of other corner blocks do not decrease after flips
introduced above. It is clear that is type of symmetry is instance-specific.

32

Proc. SymCon’03

expression p: 1357 8 10
orientation 8: 24 6 9

Fig. 7. Branching schedule towards (124 %5+,0111).

expression: 1 2 1 2 4 1 2 4%
bundle: By B, | By By B4 | B] M4,
storage: By B

(@ (b) ©

Fig. 8. (a) The original configuration; (b) adding 4 to (a); (c) adding * to (b); removing * from (c) yields
(b); removing 4 from (b) yields (a).

5 Optimal Slicing Block-Packing

We use the Normalized Polish Expression (NPE) representation since it is a non-redundant,
bottom-up description of slicing packings, with incremental addition/deletion of blocks and
easy enumeration.

5.1 Branching

BRANCHING SCHEDULE. A slicing packing of n blocks can be specified by (P,8) where P is
a Polish expression of length 2n — 1 and 0 is a bit-vector of length n, storing the orientations
of the blocks as described in Section 2. We maintain a growing Polish expression p and
bit-vector d.

We explore symbols of p one by one. If a given symbol is an operand, we explore a bit of
d, otherwise another symbol of p is explored (Fig.7). We use the following characterization
of Polish expression. A sequence z; ...z2,—1 over {1,...,n,+,+*} is a Polish expression iff for
every i =1,...,n, i appears exactly once in the sequence and every prefix has more operands
than operators [12]. As a corollary, a sequence p over {1,...,n,+,*} of length m < 2n— 1
can be extended to a normalized Polish expression iff (1) for every i = 1,...,n, i appears at
most once in p, (2) p has more operands than operators and (3) there are no consecutive +’s
and ’s in p. Such sequences are called partial Polish expressions, and can be tested for in
O(1) time per incremental change.

INFORMATION IN A PARTIAL SOLUTION. We maintain a series of blocks and supermodules
using two stacks: the bundle and the storage.

When we push an operand and its orientation to p and & respectively, we push the
respective block (with width and height specified) into the bundle stack. When we push an
operator o to p, we are guaranteed to have at least two blocks or supermodules in the bundle.
‘We pop the two top-most blocks in the bundle, A and B, and push them in this order into the
storage. We compute the supermodule formed by merging A and B in the way specified by
a and push it into the bundle. When we pop an operand b and its orientation from p and 6
respectively, we pop the top element of the bundle, which is necessarily . When we pop an
operator o from p, we pop the top element of the bundle, and push the two top-most blocks
or supermodules from the storage to the bundle (Fig.8). During incremental changes to p and
d, stack updates take O(1) time. When we reach a leaf of the search tree, the supermodule in
the bundle is the bounding rectangle specified by a complete solution (P, 8).

33

Proc. SymCon’03

5.2 Symmetry-breaking

For two supermodules (or blocks) M and N, we define M < N if By; < By where By and By
are the bottom-left blocks of M and N respectively. For two supermodules (or blocks) A and
B, we define A + B as the supermodule formed by placing B on top of A, and A * B as that
formed by placing B in the right of A. When we consider two partial Polish expressions, we
implicitly assume that they are associated with the same bit-vector & and hence represent two
packings. The estimations of area lower bound are omitted for brevity.

COMMUTATIVITY. A + M is equivalent to M + A, and A « M to M = A. To break this symmetry
when merging supermodules A and M, one can require A < M. We propose a better pruning
mechanism below.

Suppose we are pushing the block B to the bundle, which is not empty, with the top
element A. Then B must be the bottom-left block of the next supermodule M to merge with
A. Hence we require A < B, implying an ascending order of blocks and supermodules in the
bundle. This type of symmetry is instance-independent since we impose no restriction on the
relative positions of the blocks.

ABUTMENT. Consider blocks Ri, Ry and R3, where R < Ry < Rs. If they abut horizontally
or vertically, their order does not matter. For example, (R;+R3)+ Ry is equivalent to
(R1 4+ R2) + R3. However both arrangements pass the commutativity constraint.

For chained operators of the same kind, e.g., (R +R) + R3 or (R % Ry) * R3, we require
both Ry < R3 and R, < R3. By the commutativity constraint Ry < R;. Therefore we only
have to check if R, < R3. Since an abutment of three or more blocks must be of the form
E\E; + E3+...+ Ej+, the abutment constraint breaks all symmetries of this kind. Similar to
the commutivity constraint, this type of symmetry is instance-independent.

GLOBAL BOTTOM-LEFT BLOCK AND ITS ORIENTATION. We require B; to be the bottom-left
block of all packings. This constraint is redundant because the commutativity constraint does
not allow pushing B; to a non-empty bundle. However we can now prune hopeless partial
Polish expressions much sooner. Similar to the non-slicing case, we require the orientation of
Bj tobeO.

IDENTICAL BLocks. If blocks A and B have the same dimensions, then they are
interchangeable. Since the above constraints do not break all symmetries due to identical
blocks, we require in that case that A appear before B in p if A < B. Similar to the non-slicing
case, this type of symmetry is instance-specific.

6 Enumeration of Symmetric Packings

We skip through symmetric packings to speed up our branch-and-bound search, but there are
cases where symmetric packings are helpful. We can first optimize area by finding an optimal
or a sub-optimal packing and then minimize the secondary objective among all symmetric
solutions. For example in VLSI floorplanning, we can minimize wirelength among solutions
of the same area. High-quality solutions can be found if this solution space captures a wide
range of packings.

Permutations of identical blocks are the simplest kinds of symmetry. We can always
interchange identical blocks regardless their positions and orientations, and hence easily
describe the rearrangements as permutations of blocks. Suppose we partition S = {By,...,B,}
into S1,...,S, such that U/_S; = S, $;NS; = 0 for all i # j and all blocks in S; are identical.
The group Gg = Symyg, X ... x Symsg, contains all symmetries by identical blocks, where Symr

34

Proc. SymCon’03

is the symmetric group of 7. When all blocks are distinct, |S;| =1 for all i = 1,...,n and
Gg = {1}. On the other hand, when all blocks are identical, Gg = Symg = Sym,,. The group
Zp = {0,1} describes symmetry by flipping the packing preserving the bottom-left block,
where 1 represents a flip. Hence, for a set of blocks S, its identical block group Gs x Z;
describes all symmetries by identical blocks and flipping, regardless how the blocks are
packed.

6.1 Enumerating Optimal Non-slicing Packings

a-transformations in Section 4.2 are invertible and are represented by the group 7
as mentioned above. However, B-transformations are not invertible since they involve
compaction. Multiple packings may be mapped to the same packing by rounds of o and
B-transformations. Therefore it is non-trivial to recover all packings that give the optimal
one. Moreover, some of these packings may have sub-optimal areas. We only consider the
eight orientations of the packing, possibly with compaction.

‘We only have to consider four orientations of the packing that preserves the orientations of
the blocks, since applying o-transformations can generate the rest. We can construct O-Tree
that compact blocks to other corners of the bounding rectangle in O(n) time [10]. Further
compacting blocks takes at most O(n?) time [6]. Since we are working with an optimal
packing, compaction does not shorten the sides and the resultant packing is symmetric to
the original one. Therefore, we can get the eight orientations for the packing in O(n?) time.
In special cases where i blocks of the same height abut horizontally and share the same y-
coordinate, we can permute them. Similarly when they abut vertically and have the same
width.

As we see in Section 7, this strategy recovers many symmetric packings. Note that some
of the above transformations among symmetric packings are not necessarily invertible, and
hence they do not form a group in general.

6.2 Enumerating Symmetric Slicing Packings

Unlike in the non-slicing case, symmetric floorplans can be recovered very easily. Given a
slicing tree T, we can analyze its symmetric floorplans by its pre-order traversal. A slicing
tree is normalized if its equivalent Polish expression is normalized. It is clear that a slicing
tree is normalized iff no internal nodes share the same sign as its right child. A sequence
X =xy...xpq—1 over {1,...,n,+x} is said to be a prefix expression if there exists a (unique)
slicing tree T whose pre-order traversal gives X. X is said to be normalized if T is normalized.
For example the prefix expression of the slicing tree in Fig.3b is 4 % 1 *23 x4 4+ 56 and of
that in Fig.3c is + % %123 %4 4 56. The latter is normalized but the former is not. The set
of normalized prefix expressions is in 1-1 correspondence with the set of normalized slicing
trees, the set of NPEs and the set of slicing packings.

Consider a slicing packing, its NPE P and its normalized prefix expression X. A horizontal
abutment of i blocks, i > 2, corresponds to the partial Polish expression E|Ej *...E;* in P
where E; is the partial Polish expression representing the abutting block or supermodule.
Therefore, it corresponds to a sequence of (i — 1) consecutive *’s (+*'~!) and partial prefix
expression *' 'E|E,...E; in X. Similarly for +’s. For example in Fig.3c, the abutment of
blocks 1, 2 and 3 corresponds to partial Polish expression 12 * 3 and partial prefix expression
% % 123. Conversely, the sequence ! in a normalized prefix expression correspond to a
horizontal abutment of 7 blocks. Similarly for +’s.

35

Proc. SymCon’03

For a normalized prefix expression X for n blocks, we define its characteristic sequence
k k .
tobe (z}...2102h ... 5%, .. 2h .. 2f), r > 1 where,
1_2_ _X% P 1
1. G =5= =1 c {—|—.,*} forj=1,....r.z;
2.7 appearsrightbeforez’jle inXfori=1,....k;—1,j=1,...,r.

|
-1

k.)
.2 j’ is called a chain.

k; . kj . kj
3. zj’ appears before z} 41 in X, If zj’ appears right before z then z j’ #+ z} 4 for

j=1,...,r—1.
4. ki+...+k,=n—1.
(k1,ka,...,kr) is said to be a signature of X. It is clear that every normalized prefix

expression has a unique characteristic sequence and signature. For example in Fig.3c,
the characteristic sequence is (+,#**,*,+) and signature is (1,2,1,1). The characteristic
sequence and signature indicate which partial prefix expressions in X or equivalently which
subtrees in the slicing tree of X are interchangeable. The i partial prefix expressions Ey, ..., E;
after the chain /! or +7~!, i > 2 can be rearranged in any arbitrary order, preserving the
dimensions of the supermodule that they form. For example in Fig.3c, the partial prefix
expressions 1, 2 and 3 after the chain ** can be exchanged in any order. Similarly we can
swap the subtrees 4 and 456 after the chain x.

Due to the hierarchical structure of slicing floorplans, rearranging subtrees about each
chain in the slicing tree is independent of each other. For example in Fig.3c, rearranging
subtrees 1, 2 and 3 about the chain *x is independent of swapping 4 and 56+ about the
chain *. Therefore, given a normalized prefix expression X with characteristic sequence
(zh...2 ...z} ...2) and signature (ki,...,k,), there are (kj+ 1)! ways to rearrange the
(kj+ 1) partial prefix expressions after the chain +%i+1 or %1 "and equivalently rearrange
the corresponding subtrees in its slicing tree. We recover symmetry by commutativity
constraint when k; = 1 and abutment constraint when k; > 2.

Given a slicing floorplan of n blocks, its NPE P, its normalized prefix expression X with

ky

k
LI LI o) , and normalized slicing tree T, we define its

characteristic sequence (z} 4

structural group as

. : . ki .
Gp= {(01,0r)|0; permutes the partial prefix expressions after the chain z;- ...z inX }

We can also think of 6; as the operation which permutes the k; + 1 subtrees under the

.) . P 12435 —456+5 131 [4-56+ 55
chain of k; nodes in T'. For example in Fig.3c, ([456”%2*3*] ; [%:%}) {56+H4} ; [6ﬂ6D €

G12435456+++- 1t 18 not hard to see that Gp = Symy, 1| X ... X Symy, 1. By counting, |Gp| =
[T)= (kj+ 1)!. If the signature of X is (1,1,...,1), then |Gp| = 2"=1.On the other hand, if the
signature of X is (n— 1), then |Gp| = n!. They are the lower and upper bounds of the size of Gp
respectively. Gp can be computed in O(n) time since only a pre-order traversal is needed. Al
symmetric floorplans can be recovered since only the commutativity and abutment constraints
are imposed. Note that this group acts on the set of partial Polish expressions of P faithfully,
implying that the size of Gp equals to the number of symmetric floorplans generated.

7 Experimental Results

Our algorithms are implemented in C++ and will be open-sourced under the name of BloBB
(Block-packing with Branch-and-Bound). All programs are compiled with g++ 3.2.2
—03 and evaluated on a Linux Anthlon 1.2GHz workstation. Table 1 shows its runtimes on

36

Proc. SymCon’03

randomly-generated test cases and test cases with only 2 or 3 types of blocks. The randomly-
generated test cases are more difficult for our block-packer since there is no symmetry among
the blocks. On the other hand, the 2 and 3-block-type test cases are easier since symmetry-
breaking (SB) by identical blocks is very effective. Observe that the dead space (%) in optimal
packings decreases in larger floorplans, and the dead space in test cases with 2 and 3 block-
types is significantly smaller than the randomly-generated test cases.

BloBB’s performance on the three smallest MCNC benchmarks (available from [14])
is shown in Table 4. We compare its runtimes with full symmetry-breaking and limited
symmetry-breaking. We always impose symmetry-breaking constraints by identical blocks
and orientation of the bottom-left block since BloBB does not terminate in a reasonable
amount of time without them. (We also apply symmetry-breaking by global bottom-left block
for optimal slicing block-packer.) Our non-slicing block-packer runs 2.0 to 3.0 times faster
with symmetry-breaking constraints from Section 4.2. Note that those constraints are more
effective when there are fewer identical blocks. For example, they are more effective on
xerox than apte and hp. It is because symmetry by identical blocks sometimes overlaps with
symmetry by other constraints such as symmetry by blocks with the same edge. We can see
that the speed-up ratio is high when the size of identical block group is small. Similarly for
the slicing case, where the effect of symmetry-breaking is even more significant.

We modified BloBB slightly to handle the constraint satisfaction version of the
block-packing problem. Table 4 shows that the symmetry-breaking techniques for
area minimization version also improve the performance of the modified BloBB.
The improvement is less significant in the non-slicing case since our symmetry-
breaking constraints mainly prune away many lexicographically large solutions and few
lexicographically small solutions. Since we are likely to find a lexicographically small
solution in the constraint satisfaction version of the problem, the effect of symmetry-breaking
is expected to be not as pronounced as in area minimization. However, the improvement s still
significant. In contrast, symmetry-breaking improves the performance of slicing constraint
satisfaction problem much more significantly. It is because the solutions pruned by symmetry
lie relatively evenly throughout the whole solution space where the solution starts with block
1.

Another way to evaluate the symmetry-breaking strategies is by enumeration. Only one
optimal packing of a given width-height combination should be considered in all cases if
the set of symmetry-breaking constraints is complete. We modify our branch-and-bound
algorithm to enumerate all optimal slicing and non-slicing packings that it considers as non-
symmetric. From Table 3, our symmetry-breaking strategies for slicing packings are very
effective in practice. Only one packing is generated in each of the test cases. Fig.9 shows the
optimal packings produced by BloBB. In optimal non-slicing packings of 4p and xerox, our
symmetry-breaking can be further improved by identifying slicing subfloorplans inside non-
slicing packings. For example in Fig.9a, slicing symmetry-breaking strategies can be applied
to the cluster consisting of blocks 2, 9 and 11.

8 Conclusions and Ongoing Work

We formulate the rectangular block-packing problem as an optimization problem and a
constraint satisfaction problem. We implement optimal block-packers for slicing and non-
slicing packings and show how symmetry-breaking improves their performance. Table 5
summarizes our dominance and symmetry-breaking techniques. Given a slicing packing, we
can compute the group that restore all symmetric packings at O(n) time.

37

Proc. SymCon’03

Table 1. BloBB runtimes.

optimal non-slicing optimal slicing
random 3 block-types | 2 block-types random 3 block-types | 2 block-types
of |dead space % /|dead space % /|dead space % /||dead space % /|dead space % /|dead space % /
blocks| runtime (s) runtime () runtime (s) runtime (s) runtime (s) runtime (s)

6 |[4.12] 024 272 0.043 |1.88] 0.014 [|5.51| 0.015 |[3.63| 0.009 |2.48| 0.002
7 1352 225 |(2.16] 0.19 |1.20] 0.030 [|4.85| 0.057 |2.55] 0.014 |1.32| 0.009
8 13.07) 384 |3.02] 135 |1.10] 020 |[449| 0.29 |3.30, 0.068 (1.30| 0.026
9 |248] 664 |1.89] 806 |1.68 1.19 |3.81| 154 |2.05| 0.16 (1.91] O0.15
10 | — — 1.96| 469 |1.74| 420 |(|]3.90] 28.0 |2.20f 0.88 [1.99| 0.45
11 | — — — — 1091} 193 ||3.52] 96.2 [1.68] 649 |1.08] 1.09
12 | — — — — 10.96| 83.7 ||3.16] 545 |2.22| 129 |[1.08] 2.85
13 | — — — — — — — — |2.13] 309 |1.52| 17.9
14 | — — — — — — — — 1.94| 131 (2.39| 464
15 | — — — — — — — 1.87| 617 (0.94] 63.0
16 | — — — — — — — — — — 1.29| 309

Average performance of BloBB on 10 randomly-generated test cases. The dimensions are distributed
uniformly in the range 1..200. All blocks in random test cases are distinct and the number of blocks in
k-block-type test cases are as close to each other as possible.

Table 2. Information of apte, xerox and hp

test | # of |block area|block size distribution size of

case |blocks (mm2) identical block group
apte | 9 46.562 4,41 1152
xerox| 10 19.350 |1,1,1,1,1,1,1,1,1,1 2

hp 11 8.831 1,1,3,2,2,2 96

Table 3. Number of optimal packings and their areas.

test optimal non-slicing optimal slicing
case | area |no SB|limited SB|full SB|| area | no SB |full SB
apte |46.925(25760 630 420 ||46.925(725760| 1
xerox|19.796| 104 52 5 20.017| 1536 1
hp | 8.947 | 5376 56 4 9.032 | 4608 1

Limited SB includes symmetry-breaking constraints mentioned in Table 4.

While symmetry-breaking for slicing packings is very close to being complete in practice,
Table 3 shows that our symmetry-breaking for non-slicing packings is rather naive. As noted
in Section 7, we believe that identifying slicing sub-packings inside non-slicing packings
can eliminate many redundancies. Given a partial solution in the course of our branch-and-
bound algorithm, we statically detect if all of its extended packings are dominated by some
other packings. It is possible that we can improve the performance by adding a dynamical
detection, even though it is unlikely to be computationally cheap. We also work towards
an algebraic structure that describes relationships among a set of symmetric (optimal) non-
slicing packings, compatible with our structural group for slicing packings.

Large instances of the block-packing problem can be solved hierarchically. One can
first pack blocks into clusters and then pack clusters into higher-level clusters. Therefore,
the performance of symmetry-breaking for small instances is relevant in practice. Recently

38

Proc. SymCon’03

Table 4. BloBB performance results on apte, xerox, and hp.

area minimization constraint satisfaction
optimal non-slicing optimal slicing optimal non-slicing optimal slicing
test (limited| full |[speed up|limited| full [speed up||limited| full |speed up|limited| full |speed up
case | SB (s) |SB (s)| ratio |[SB (s)|SB (s)| ratio ||SB(s)|SB (s)| ratio |[SB (s)|SB (s)| ratio
apte| 6.03 | 235 [2.57:1| 2.19 [0.210] 10.4:1 || 0.000 |0.000| — 0.67 |0.080|8.38:1
xerox| 331889812 [3.38:1| 1724 |11.92| 145:1 || 32.7 | 263 |1.24:1| 364 | 5.03 |724:1
hp | 2200 | 887 [2.48:1| 40.4 | 0.68 [59.4:1| 20.5 | 9.53 |2.15:1| 3.04 | 0.18 [169:1

In the non-slicing case, limited SB includes symmetry-breaking by identical blocks and orientation of
the bottom-left block and full SB includes dominance-breaking and symmetry-breaking by blocks with
same height or width. In the slicing case, limited SB includes symmetry-breaking by identical blocks,
orientation of bottom-left block and global bottom-left block and full SB includes symmetry-breaking
by the commutivity constraints and the abutment constraints. In the constraint satisfaction test cases,

BloBB finds the first solution with no more than 4% dead space.

10
8

10

10

xerox: non-slicing

(e) apte: slicing and non-slicing

(b) hp: slicing

2 7

ﬂ 5

(d) xerox: slicing

Fig. 9. Optimal packings produced by BloBB.

39

Proc. SymCon’03

Table 5. Summary of dominance and symmetry-breaking techniques.

non-slicing o-transformation instance-independent
packings -transformation instance-specific
blocks with same height or width instance-specific
identical blocks instance-specific
slicing commutivity constraint instance-independent
packings abutment constraint instance-independent
global bottom-left block and its orientation|instance-independent
identical blocks instance-specific

motivated by engineering considerations, an alternative formulation of the rectangular block-
packing problem in which all blocks need to fit into a predefined bounding box (fixed-
outline) has been studied with increasing attention [1, 2,4, 5, 7]. This constraint-satisfaction
formulation enables hierarchical top-down block-packing which is useful for instances with
thousands of blocks. The predefined bounding box facilitates more flexible notions of
dominance. This is because we do not have to restrict packing U to have both sides not
greater than those of packing U’ when U dominates U’, as long as U fits into the predefined
bounding box.

References

1.

I1.

12.
13.

S.N. Adya, L.L. Markov, “Fixed-outline Floorplanning: Enabling Hierarchical Design,” to appear
in IEEE Trans. on VLSI, 2003.

. S.N. Adya, I.L. Markov, “Fixed-outline Floorplanning Through Better Local Search,” ICCD 2001,

pp. 328-334.

. Y.-C. Chang et al., “B*-trees: A New Representation for Non-Slicing Floorplans,” DAC 2000,

pp. 458-463.

. W. Choi and K. Bazargan “Hierarchical Global Floorplacement Using Simulated Annealing and

Network Flow Area Migration”, DATE 2003.

. Y. Feng, D. P. Mehta, and H. Yang, “Constrained “Modern” Floorplanning”, ISPD 2003, pp. 128-

135.

. P.-N. Guo, C.-K. Cheng, T. Yoshimura, “An O-tree Representation of Non-Slicing Floorplan and

Its Applications,” DAC 1999, pp. 268-273.

. A. B. Kahng, “Classical Floorplanning Harmful?,” ISPD 2000, pp. 207-213.
. M. Lai and D. Wong, “Slicing Tree Is a Complete Floorplan Representation,” DATE 2001, pp. 228—

232.

. H. Murata et al., “VLSI Module Placement Based on Rectangle-Packing by the Sequence-Pair,”

IEEE Trans on CAD, 15(12), pp. 1518-1524, 1996.

. Y. Pang, C.-K Cheng, K.Lampaert and W.Xie, “Rectilinear Block Packing Using O-tree

Representation,” ISPD 2001, pp. 156-161.

S. Prestwitch, “Supersymmetric Modelling for Local Search”, SymCon ‘02, September 2002;
http://user.it.uu.se/ pierref/astra/SymCon02/.

D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,” DAC 1986, pp. 101-107.

B. Yao et al., “Floorplan Representations: Complexity and Connections,” ACM Trans. on Design
Autom. of Electronic Systems, 8(1), pp. 55-80, 2003.

. http://www.cse.ucsc.edu/research/surf/GSRC/MCNCbench.html

40

