Proc. SymCon’03

Detecting and breaking symmetries on
specifications

Marco Cadoli and Toni Mancini

Dipartimento di Informatica e Sistemistica
Universitd di Roma “La Sapienza”
Via Salaria 113, 1-00198 Roma, Italy

cadoli|tmancini@dis.uniromal.it

Abstract. In this paper we address symmetry on combinatorial prob-
lems by following the approach of imposing additional symmetry-break-
ing constraints. Differently from other works in the literature, we attack
the problem at the specification level. In fact, sometimes symmetries on
specifications can be very easily detected, and symmetry-breaking formu-
lae generated. We give formal definitions of symmetries and symmetry-
breaking formulae on specifications written in existential second-order
logic, clarifying the new definitions on some specifications: the graph 3-
coloring, the not-all-equal (3-)Sat and the social golfer problems. Finally,
we show the results of a preliminary experimentation of our techniques
on some of the examples using state-of-the-art linear and constraint pro-
gramming solvers.

1 Introduction

In order to speed up the solving process of combinatorial and constraint satisfac-
tion problems, much work has been done on detecting and breaking symmetries,
with the aim of greatly reducing the size of the search space. In the literature,
three approaches have been followed to deal with symmetries:

1. Imposing additional constraints to the model of the problem, which are sat-
isfied only for one of the symmetrical points in the search space, cf., e.g.,
[15-17];

2. Introducing additional constraints during the search process, to avoid the
traversal of symmetrical points, cf., e.g., [2, 11, 8];

3. Defining a search strategy able to break symmetries as soon as possible
(e.g., by first selecting variables involved in the greatest number of local
symmetries), cf., e.g., [13].

In this paper we follow the first approach, but, differently from other works in
the literature, we aim to attack the problem at the specification level. Here are
our motivations:

— Many systems and languages for the solution of constraint problems (e.g.,
AMPL [9], OPL [18], GAMS [4], DLV [6], SMODELS [14], and NP-SPEC [3]) clearly

13

Proc. SymCon’03

separate the specification of a problem, e.g., graph three-coloring, and its
instance, e.g., a graph, using a two-level architecture for finding solutions:
the specification is instantiated against the instance, and then an appropriate
solver is invoked.

— In some cases, symmetries on specifications can be very easily detected by
humans (cf. Section 3), and convenient symmetry breaking formulae can be
added to the specification itself. Since specifications are logical formulae, in
principle, a theorem prover can be used for detecting and breaking symme-
tries in complex cases.

— Detecting and breaking symmetries at the specification level does not rule
out the possibility to use symmetry-breaking techniques at the instance level.
As an example, since some systems generate a SAT instance, e.g., [3], or
an instance of integer linear programming, e.g., [18], it is possible to do
symmetry breaking on such instances, using existing techniques, cf. e.g., [5].

In this work we show some preliminary results of our research. The outline of
the paper is as follows: in Section 2, after recalling basic definitions of CSPs and
symmetries, we lift to the specification level, defining the concepts of symmetry
on a specification and of symmetry-breaking formula. In Section 3 we clarify the
new definitions by showing some specifications: the graph 3-coloring, the not-
all-equal 3-Sat and Sat, the social golfer, and the BIBD generation problems.
For all the specifications we detect and break symmetries. Finally, in Section 4
we show the results of a preliminary experimentation of our symmetry-breaking
techniques on the first example of Section 3, using state-of-the-art linear and
constraint programming solvers CPLEX and SOLVER, invoked through OPLSTU-
DIO.

2 Basic definitions

In this section we briefly recall the standard definitions of Constraint Satisfac-
tion Problem (CSP) and symmetry. Afterwards, we lift up to the definition of
problem specification, which is independent on a particular instance, and give
the definition of symmetry in the new context.

2.1 CSPs and their symmetries

Definition 1 (Constraint satisfaction problem (CSP)). A CSP is a tuple
(V,D,C), where V. = {Xy,...,X,} is a set of variables, D = {D,,...,Dy}
is a set of finite domains, one for each variable, C = {C1,...,Cn} is a set of
constraints on V and D, i.e., a set of relations Ci(Xi,,..., X} CD;, X -+ X
D;,, for every i € [1..m], containing those configurations of assignments allowed
by the constraint.

Given a CSP 7, we can transform it in a new CSP 7’ by exchanging variables
and/or domains order. A CSP transformation is defined in the following way:

14

Proc. SymCon’03

Definition 2 (CSP transformation). Given o« CSPm =(V,D,C), withV =
{X1,..., X} and D = {Dx,..., Dy}, a transformation of 7 is a set of bijections
00,01,-..,0, Such that:

o9 V2V
for every i € [1,n], 0; : Di = Dingea(oo(X:))s

where index() is a function that returns the index of the argument variable. Is
has to be observed that the transformation is defined on V' and D only (not on

C).

Here are interesting specializations of Definition 2 (which apply also to forth-
coming Definition 3):

Variable transformation: oy, ...,0, are the identity function;

Value transformation: oy is the identity function;

Uniform value transformation: oy is the identity function, Dy = Dy =--- =
D,,and 0y =03 = -+ = 0.

Intuitively, a variable transformation exchanges only the order of variables,
leaving the domains unchanged. On the other hand, a value transformation does
not modify the variable order. In what follows, we focus mainly on uniform
value transformations, in which domain values for each variable are swapped
uniformly.

As widely described in the literature, symmetries of a CSP are transforma-
tions that map solutions into solutions:

Definition 3 (CSP symmetry [12]). Given a CSP « = (V,D,C), a sym-
metry on 7 is a CSP transformation on (V,D) which preserves constraints:
an assignment T = {X1 = v1,...,Xn = vy} to variables in V satisfies ev-
ery constraint in C iff o(1) = {00(X1) = Gindea(oo(x1))(V1),---,00(Xpn) =
aindez(ao(Xl))(Un)} does.

2.2 Specifications and their symmetries

Several languages for specifying problems exist. For the sake of simplicity, in this
paper we focus on the most basic one, the existential fragment of second-order
logic (ESO). ESO is able to specify all problems in the complexity class NP [7],
where the instance is represented as a relational database. An ESO specification
is a formula

1S ¢(S, R), (1)

where R is the relational schema for every input instance, and ¢ is a quantified
first-order formula on the relational vocabulary S U RU {=} (“=" is always
interpreted as identity). Predicates in S are called guessed.

Ezample 1 (Graph 3-Coloring).

Input: A graph, according to the input relational schema R = {edge(-,-)}.

15

Proc. SymCon’03

Question: Is there a way to assign each node of the input graph one out of
three colors such that every edge links nodes with different colors?

An ESO specification for the problem is as follows:

JRGB
VX R(X)VG(X)VB(X) A (2)
VX R(X)—> -G(X) A (3)
VX R(X)— -B(X) A 4)
VX B(X)—-G(X) A (5)
VXY X #Y AR(X)AR(Y) = —edge(X,Y) A (6)
VXY XAY AGX)AG(Y) = —edge(X,Y) A (7)
VXY X #Y AB(X)AB(Y) = —edge(X,Y). (8)

Clauses (2-8) denote the first order part ¢ of the specification. Clause (2) imposes
that every node is assigned at least one color; clauses (3-5) impose that every
node is assigned at most one color; clauses (6-8) impose every edge to link nodes
with different colors. a

It is worthwhile to note that, when a specification is instantiated against an
input database, a CSP, in the sense of Definition 1, is obtained.

In what follows we focus initially on problem specifications which, like the
one of Example 1, have only monadic guessed predicates. In this way we have a
neat conceptual correspondence between the guessed predicates and the values
of a CSP. In Example 6 we show how our definitions can be used for non-
monadic predicates, essentially by unfolding non-unary predicates and exploiting
finiteness of the input database.

In this new context we can give the following definition:

Definition 4 (Uniform value transformation (UVT) of a specification).
Given a problem specification p = 3S ¢(S,R), with S = {S1,...Sn}, Si
monadic for every i, and input schema R, a uniform value transformation
(UVT) for ¢ is a mapping o : S — S, which is total and onto, i.e., defines
a permutation of guessed predicates in S.

The term “uniform value transformation” in Definition 4 is used because
swapping monadic guessed predicates is conceptually the same as uniformly
exchanging domain values in a CSP.

From here on, given ¢ and o as in the above definition, ¢” is defined as
@[S1/0(S1), .-, Sn/0(Sn)], i-e., ¢ is obtained from ¢ by uniformly substituting
every occurrence of each guessed predicate with the one given by the transfor-
mation o. Analogously, ¥ is defined as 3S ¢°(S, R).

We now define when a UVT is a symmetry for a given specification.

16

Proc. SymCon’03

Definition 5 (Uniform value symmetry (UVS) of a specification). Let
=38 ¢(S, R), be a specification, with S = {S1,...Sn}, Si monadic for every
i € [1,n], and input schema R, and let o be a UVT for 1. Transformation o is
a uniform value symmetry (UVS) for ¢ if the following holds:

VS VI $(S,I) < ¢°(S,I). (9)

Intuitively, formula (9) says that o is a UVS for ¢ if every extension for S
which satisfies ¢, satisfies also ¢? and vice versa, for every input instance Z, i.e.,
for every extension of the input schema R. Note that every CSP obtained by
instantiating a specification with o has at least the corresponding uniform value
symmetry. The above definition could in principle be stated with a different
pattern of quantifiers, as an example, we could require equivalence only for some
instances, instead that for each instance. Generalization of the definition is left
for future research.

The following proposition shows that checking whether a UVT is a UVS
reduces to checking equivalence of two first-order formulae. As a consequence
this task can in principle be performed by a first-order theorem prover.

Proposition 1. Let ¢ be a problem specification of the kind (1), with only
monadic guessed predicates, and o a UVT for 1. Transformation o is a UVS

for 4 if and only if ¢ = ¢°.

Proof.

If part. If ¢ = ¢°, then formula (9) holds for o, so o is a UVS for 1.

Only if part. If o is a UVS for 1, then formula (9) holds. This implies that
every model of ¢ must be a model of ¢° and vice versa, therefore ¢ = ¢° must
hold.

The following proposition shows that also the converse reduction can be
proven, thus implying that checking whether a UVT is a UVS is not decidable.

Proposition 2 (Undecidability of the UVS checking problem). Given a
specification ¢ and a UVT o for it, the problem of checking whether o is a UVS
for ¢ is undecidable.

Proof. We prove the statement by reducing it to the problem of checking whether
an arbitrary closed first-order formula is a tautology.

Let ¢ =38 #(S, R) be any fized specification on input schema R, and let o
be any fired UVT which is not a UVS for it, i.e., from Proposition 1:

X (10)

Let now v(R) be a given arbitrary closed first-order formula on the relational
vocabulary R, and consider the following new specification v':

3S 4(S,R) V v(R).

17

Proc. SymCon’03

The UVT o is also a UVT for o', since ¢’ has the same set of guessed
predicates as 1. By Proposition 1, the problem of deciding whether o is a UVS
for 4" reduces to checking whether:

¢(S,R)VY(R) = ¢7(S,R) VY’ (R). (11)

Since (10) and v° = v (v has no occurrences of predicates in S), if (11)
holds then v must be a tautology; on the other hand, if v is a tautology, then (11)
trivially holds. So, an arbitrary given first-order closed formula v is a tautology
if and only if a fited UVT o is a UVS for the specification 3S ¢(S, R) V v(R).
Since the former problem is undecidable [1], the latter is undecidable as well.

Ezxample 2 (Graph 3-Coloring: Example 1, continued). Three UVTs are as fol-
lows:

— of¥ gt. oB9(R) = G, 0% (@) = R, and c'%(B) = B;
- o8B st. o®B(R) = B, 0™2(G) = G, and ¢®B(B) = R;
- 0%B st. 0%B(R) = R, 0%B(G) = B and ¢“B(B) =G.

It is easy to observe that, for each of the above transformations, formulae
¢"R’G, qﬁ"R’B, and ¢"G'B are all equivalent to ¢, because clauses of the former
ones are syntactically equivalent to clauses of ¢ and vice versa. This implies, by
Proposition 1, that they are all UVSs. a

Ezample 3 (Graph 3-Coloring with red self-loops). To play the devil’s advocate,
we consider a modification of the problem of Example 1, and show that only one
of the UVTs in Example 2 is indeed a UVS in the new problem. The problem is
obtained by adding one more constraint.

uestion: Is there a way to assign each node of the input graph one out o

ti Is th i h node of the i h f
three colors such that: (i) every edge links nodes with different colors, and
(#) every self loop insists on a red node?

In ESO, one more clause (which forces the nodes with self loops to be colored
in red) must be added.

3dRGB

VX edge(X,X) - R(X). (12)

— 0%B: it is a UVS, because the argument of previous example applies.

— ¢fC: in this case, qﬁ"R'G is not equivalent to ¢: as an example, for the
input instance edge = {(v,v)}, the color assignment R,G,B such that
R = {v},G = B = { is a model for the original problem, i.e., R,G,B [
#(R,G, B, edge). It is however easy to observe that R, G, B ¢ qS"R'G (R,@G, B,
edge), because qﬁ"R’G is verified only by color assignments for which G(v)
holds. This implies, by Proposition 1, that ¢ is not a UVS.

18

Proc. SymCon’03

— ofB: it is not a UVS, because the same argument of the previous point

applies.]

Once symmetries of a specification have been detected, additional constraints
can be added in order to break them, i.e., to wipe out from the solution space
(some of) the symmetrical points. These kind of constraints are called symmetry-
breaking formulae, and are defined as follows.

Definition 6 (Symmetry-breaking formula). Let ¢v = 3S ¢(S,R), be a
specification, with 8 = {S1,...Sn}, Si monadic for every i € [1,n], and input
schema R, and let o be a UVS for 1. A symmetry-breaking formula for ¢ with
respect to symmetry o is a closed (except for S) formula B(S) such that the
following two conditions hold:

1. Transformation o is no longer a symmetry for ¢ A\ B:

(B AB(S)) £ (6N B(S));

2. Every model of ¢ can be obtained by those of ¢ A 5(S) and their symmetric
with respect to o:

¢ = (BAB(S)) V (9AB(S))".

If B(S) matches the above definition, then we are entitled to solve the problem
S #(S,R) A B(S) instead of the original one IS ¢(S, R). In fact, point 1
in the above definition states that formula 3(S) actually breaks o, since, by
Proposition 1, ¢ is not a symmetry of the rewritten problem. Point 2 guarantees
that all solutions are preserved in the rewritten problem, up to symmetric ones,
which can be readily obtained by applying o.

It is important to observe that breaking a symmetry is sound, i.e., it preserves
at least one solution, as shown by the following proposition:

Proposition 3 (Symmetry-breaking formulae preserve satisfiability).
Lety = 3S ¢(S, R) be a problem specification with S = {S1,...S,}, S; monadic
for every i € [1,n], and input schema R, and let o be a UVS for . Furthermore,
let B(S) be a symmetry-breaking formula for 1 with respect to o. For each input
instance I, i.e., for each extension of the input schema R, if 3S ¢(S,Z) has
solutions, then also 3S ¢(S,Z) A B(S) has solutions.

Proof. First of all, we observe that for each input instance I, if problem 3S ¢(S,T)
has solutions, then, for every UVT o, also 3S (¢(S,T))° has solutions. In fact,
supposing S = {S_l,,S_n} a solution of the former, the extension o (§) =
{0 (S1),...,0(Sn)} is a solution of the latter.

Now, suppose that, for a given input instance T, 3S ¢(S,Z) has solutions;
this implies that ¢(S,Z) is satisfiable. From point 2 of Definition 6 it follows
that also (&(S,Z) AB(S)) V (#(S,Z)AB(S))? is satisfiable, and, since o is a
UVT for the problem 3S ¢(S,T) A B(S), from the observation above, it follows
that both ¢(S,Z)AB(S) and (¢(S,T) A B(S))? are satisfiable. This implies that
the rewritten problem 38 ¢(S,Z) A B(S) has solutions.

19

Proc. SymCon’03

Intuitively, the “quality” of a symmetry-breaking formula is higher when
(¢ AB(S)) and (¢ A B(S))? have few common models, i.e., the less models in
the conjunction (¢ A B(S)) A (é A B(S))?, the better. In next section we see
several examples of UVSs and different breaking formulas for them.

The above definition deals with breaking a single symmetry, and it can be
generalized with breaking multiple symmetries simultaneously. The definition,
omitted for lack of space, deals with a set ¥ = {o4,...,0,} of UVSs. The first
condition must be repeated for all symmetries in X', and the the second one

becomes ¢ = ($AB(S)) V (¢AB(S))™V -+ V($AB(S)" .

3 Examples of symmetry-breaking formulas

In this section we discuss some examples of well-known combinatorial problems
which have many symmetries, show some of them by using Proposition 1, and
present breaking formulae respecting conditions of Definition 6.

Example 4 (Graph 3-Coloring: Example 2, continued).
In the following we present different symmetry-breaking formulae for this
problem, referring to ¢®%, %8 and ¢%-5,

G,B

1. Let us consider ¢“>”: a symmetry-breaking formula is:

s%P(R,G,B) = |G| <|B], (13)

i.e., the number of green nodes is less than or equal to the number of blue
ones (this constraint can be written in ESO using standard techniques).
Formula (13) matches Definition 6. In fact we have that:

— Symmetry 0@* is broken, since:

G'G’B
)

(¢ AB“P(R,G,B)) # (¢ A BP(R,G, B)
— All solutions —up to symmetric ones— are preserved, since:

)UG,B

¢ = (¢AB9P(R,G,B)) V (¢AB“P(R,G,B)
We note that |G| < |B| is not a symmetry-breaking formula, since point 2
of Definition 6 is not satisfied: in fact adding such a constraint is obviously
unsound, since some satisfiable instances may become unsatisfiable.
2. Let us now consider the two symmetries 0% and o®2. A multiple symmetry-
breaking formula for them is the following one:

B"(R,G,B) = |R| < |G| A|R| <|BI, (14)

which uses a partial order among the sets of nodes with the same color, R
being the minimal element. For lack of space, we don’t formally prove here
that S® is a multiple symmetry-breaking formula.

20

Proc. SymCon’03

3. The next formula breaks all three symmetries:
A(R,G,B) = |R| <|G|A|R| <|B|AIG| <|BJ, (15)

which uses a total order among colors, i.e., |R| < |G| < |B|. It is interesting
to note that S(R,G, B) can be obtained by composing the above formulae.
Such a composition can be extended to the k-coloring problem for handling
any number of colors.]

Ezample 5 (The not-all-equal-3-Sat problem [10]).

Input: A propositional formula in 3-CNF, encoded by the following relations:
— clause(-,+,-); tuple (l1,ls,l3) is in clause iff the formula contains clause
l1 \Y l2 V l3;
— lit*(-,-); a tuple (I,v) is in litT iff [is the positive literal relative to the
propositional variable v, i.e., v itself;
lit—(-,-); a tuple {l,v) is in lit~ iff [is the negative literal relative to the
propositional variable v, i.e., —w;
— wvar(-), containing the set of propositional variables occurring in the for-
mula.
Question: Is there a way to assign a truth value to all the variables such that
(i) the input formula is satisfied, and (ii) every clause contains at least one
literal which truth value is false?

A specification for this problem is as follows (T" and F list the set of variables
whose truth value is true and false, respectively):

ITF VX var(X) ¢ T(X)V F(X) A (16)
VX = (T(X)AF(X)) A (17)
VL, Lo, L3 clause(Ly, Ly, L3) —
[(VWi (litt (L1, Vi) = T(W1)) A (Lit~ (L1, Vi) = F(h))) vV
(VVQ (lit+(L2,V2) — T(Vg)) A (liti(Lg, V) — F(VQ))) V (18)
(VW5 (litt (L3, V3) = T(V3)) A (lit~ (L3, V3) = F(V3)))] A
VL, Lo, L3 clause(Ly, Ly, L3) —
[(vWa (tit™ (L1, V1) = F(V1)) A (lit™(Ly, Vi) = T(1))) v
(VVa (litt (L2, Va) = F(Va)) A (lit~ (L2, V2) = T(V2))) V. (19)
(VVg (lit+(L3,V3) — F(V3)) A (L3, V3) — T(Vg)))]
Constraints (16-17) force every variable to be assigned exactly one truth value;

moreover, (18) forces the assignment to be a model of the formula, while (19)
leaves in every clause at least one literal whose truth value is false.

UVT o, such that ¢(T) = F and o(F) = T is a UVS for this problem, since ¢”
is clearly equivalent to ¢.

21

Proc. SymCon’03

A symmetry-breaking formula for o is the following one:
BT, F) = |T|<|F| (20)

which forces the truth assignment to assign true at most the number of variables
assigned to false. The above formula satisfies both conditions of Definition 6.

A generalization of the above problem is not-all-equal-Sat, in which the input
formula in conjunctive form can have arbitrarily long clauses. The input database
of the new problem has the following schema:

— inclause(-,-); tuple (l,¢) is in inclause iff literal [is in clause c;

— lit*(-,-); a tuple {I,v) is in lit* iff [is the positive literal relative to the
propositional variable v, i.e., v itself;

lit=(-,-); a tuple (l,v) is in lit~ iff [is the negative literal relative to the
propositional variable v, i.e., —w;

var(-), containing the set of propositional variables occurring in the formula;
— clause(-), containing the set of clauses of the formula;

and a specification is as follows:

ITF VX var(X) & T(X)V F(X) A (21)
VX = (T(X)AF(X)) A (22)

VC clause(C) —
[3L inclause(L,C) A (23)

vV (lit" (L, V) = T(V)) A (lit (L, V) = F(V))] A
VC clause(C) —
[3L inclause(L,C) A (24)
vV (litt (L, V) = F(V)) A (lit— (L, V) - T(V))].

Similarly to the not-all-equal-3-Sat problem, UVT o, such that ¢(T) = F and
o(F) =T is a UVS for this problem, and (20) is a symmetry-breaking formula
for it. m|

Ezample 6 (The social golfer problem (Problem 10 at www. csplib. org)).

Input: Positive integers ng, nw and ngr, denoting respectively the number of
golfers, weeks, and groups.

Question: Is there a way to arrange, for w weeks, ng golfers in ngr groups of
the same size, such that any two golfers play in the same group at most
once?

A specification for this problem (supposing the ratio ng/ngr, i.e., the group
size, integral) is the following one (ASSIGN (G, W,GR) states that golfer G
plays in group GR on week W):

22

Proc. SymCon’03

JASSIGN
VG, W IGR ASSIGN(G,W,GR) A (25)
VG, W,GR,GR' ASSIGN(G,W,GR) A ASSIGN(G,W,GR') — (26)

GR=GR A
VG,G'W,W' (G#G AW £W') =
{VGR,GR' (GR # GR' A ASSIGN(G,W,GR) A (27)
ASSIGN(G',W,GR)) —
-[ASSIGN (G, W',GR') A ASSIGN(G",W',GR")] } A
VGR,GR',W,W' |{G: ASSIGN(G,W,GR)}| = (28)
{G: ASSIGN(G,W',GR')}|.

Constraints (25-26) force ASSIGN to be a total function assigning a group to
each golfer on each week; moreover, (27) is the meet only once constraint, while
(28) forces groups to be of the same size.

In order to highlight UVSs according to Definition 5, we need to substitute the
ternary guessed predicate ASSIGN by means of nw x ngr monadic predicates
ASSIGNw,gr (each one listing golfers playing in group GR on week W). The
above specification must be unfolded accordingly. In this way, UVTs UI?VR’GRI,
swapping ASSIGNw,gr and ASSIGNw,gr, i-e., given a week W, and two
groups GR and GR/, assign to group GR' on week W all golfers assigned to group
GR on week W, and vice versa, are symmetries for the social golfer problem.
Intuitively, UVTs U%R’GRI are UVSs for the unfolded specification because group
renamings have no effect.

After fixing arbitrarily linear orders ‘<’ on golfers and groups, each symmetry
UI?VR’GR’ (with GR # GR') can be broken by, e.g., the following formula:

BOR (ASSIGNw,cr,ASSIGNw,GR) =
VG least(G, ASSIGNw,ar U ASSIGNwr) = (29)

ASSIGNW,GR(G) if GR< GR'
ASSIGNw,gr (G) otherwise,

which forces the least golfer in ASSIGNw,gr U ASSIGNw,gr to play in the
least group between GR and GR'.

Similarly to Example 4, we can simultaneously break several of the above
symmetries, by adding the following constraints, one for each week W and each
pair GR, GR' of groups such that GR' is the successor of GR in the given linear
order ‘<’:

VG least(G, ASSIGNw,cr) < least(G, ASSIGNw.ar)- (30)

23

Proc. SymCon’03

The formulae say that, for each week, the least golfer in group GR precedes the
least golfer in group GR'. An implication of the above formulae is that the first
golfer always plays in the first group.

As another example, the following family of transformations (which we call
O’W’W,) are also symmetries for the original social golfer specification: given two
weeks W and W', swap uniformly all groups in week W with the ones in week
W', and vice versa.

Each symmetry o can be broken: in the following, we give only an in-
tuitive description of a possible symmetry-breaking formula %W’ once total
orders ‘<’ on weeks and on weekly assignments, i.e., on sets { ASSIGNw,gR,, - - -
ASSIGNw,gR,,,} have been fixed: given two assignments of golfers to groups
{ASSIGNW,GR“ ey ASSIGNW’GRngT} and {ASSIGNWl,GRl, oy
ASSIGNw: gR,,.}, on weeks W and W', they are swapped iff the first is greater
than the second one.

By breaking several of the aforementioned symmetries, we can add the follow-
ing constraints, one for each pair W, W' of weeks such that W’ is the successor
of W in the given linear order ‘<’:

{ASSIGNW,GRI, e ASSIGNW’GR"QT} <
{ASSIGNWI,GRI, .. .ASSIGNW/7GR"W},

saying that weekly assignments are in increasing order wrt weeks.

It is worth noting that, by combining the symmetry-breaking formulae for
the two families of symmetries described above, we are able to get some of the
symmetry-breaking constraints described in [17], like the one which arbitrarily
fixes the assignment in the first week. Moreover, we can further fix one golfer
(the one having the least order number) to be assigned always to the same group
(the one having the least order number). O

w,w’

1)

Example 7 (The Balanced Incomplete Block Design (BIBD) generation problem
(Problem 28 at www. csplid. org)).

Input: Positive integers v, b, r, k, A.

Question: Is there a way to arrange v distinct objects into b blocks such that
each block contains exactly k distinct objects, each object occurs in exactly
r different blocks, and every two distinct objects occur together in exactly
A blocks?

A specification for this problem is quite similar to the one of Example 6,
and also its symmetries are similar. We don’t give here more details about this
problem. Just as an example, it is always possible to swap the order of two
blocks. Symmetry-breaking formulae can be built using the same techniques of
Example 6. a

4 Experiments

In this section we present a preliminary experimentation of the previously de-
scribed techniques for the graph coloring problem shown in Section 3. Actually,

24

Proc. SymCon’03

Table 1. Solving times (seconds) for k-coloring

CPLEX SOLVER
Instance |Colors|Solvable?|W/o s.b.|W s.b.|% saving|W/o s.b.|W s.b.|% saving
anna 11 3.2 1.3 59.4 0.8 - —00

DSJC125.9| 21 1388.7 |1206.2| 13.1 -

DSJR500.1| 12 22.5 32.1 -42.7 0.7 0.6 14.3
fpsol2.i.2 21 139.8 |102.2 26.9 - - -
le450_15a | 13 8.6 4.2 51.2 - - -
le450_25a | 21 85.4 23.3 72.7 - - -
queen99 | 10 - - - 122.9 |205.6 | -67.3

queenl2_12| 15 453.6 | 357.1 21.3 8.7 9.4 -8.0

(‘~” means that the solver did not terminate in one hour)

KK ZZ22z2<2<

rather than 3-coloring, we focused on the k-coloring problem. We used state-of-
the-art linear and constraint programming solvers, and wrote both a linear and
a non linear specification, solved by using Ilog’s CPLEX and SOLVER, respectively,
cf. www.ilog.com.

The symmetry breaking formulae we added are the generalization of (14)
to the case of k colors. In fact, using the generalization of (15) resulted in
poorer performances: intuitively, solutions of coloring problems are rarely “color
unbalanced”, therefore adding too many constraints may not be effective. As
shown in Table 1 for some of the graphs in the DIMACS benchmark repository
(ftp://dimacs.rutgers.edu/pub/challenge), adding our symmetry-breaking
formulae seems to be effective especially when CPLEX is used on negative in-
stances. SOLVER seems to be negatively affected, although in some cases is out-
performed by CPLEX. Both SOLVER and CPLEX have built-in features for sym-
metry cuts; all experiments have been done both enabling and disabling such a
feature (Table 1 shows times with no symmetry cuts). In general, effectiveness
of our technique is independent on using that feature; the built-in feature results
anyway in further speed-up when used along with our formulas (thus confirming
the intuition of Section 1).

Acknowledgements This research has been supported by MIUR (Italian Min-
istry for Instruction, University, and Research) under the FIRB project ASTRO
(Automazione dell’Ingegneria del Software basata su Conoscenza).

The authors are grateful to Igor Markov for interesting discussions on sym-
metries and for pointing out references, and to the anonymous Referees, whose
comments and suggestions led to substantial improvements in the quality of this

paper.

References

1. E. Borger, E. Gréaedel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer, 1997.

25

10.

11.

12.

13.

14.

15.

16.

17.

18.

Proc. SymCon’03

C. A. Brown, L. Finkelstein, and P. W. Purdom. Backtrack searching in the
presence of symmetry. In T. Mora, editor, Proc. of 6th Intl. Conf. on Applied
Algebra, Algebraic Algorithms and Error Correcting codes, pages 99—-110. Springer,
1988.

M. Cadoli and A. Schaerf. Compiling problem specifications into SAT. In Proceed-
ings of the European Symposium On Programming (ESOP 2001), volume 2028 of
LNCS, pages 387-401. Springer, 2001.

E. Castillo, A. J. Conejo, P. Pedregal, and N. Alguacil Ricardo Garca. Building
and Solving Mathematical Programming Models in Engineering and Science. Wiley,
2001.

J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking
predicates for search problems. In Proc. of KR’96, pages 148-159, 1996.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR system dlv:
Progress report, Comparisons and Benchmarks. In Proc. of KR’98, pages 406-417,
1998.

R. Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable
Sets. In R. M. Karp, editor, Complezity of Computation, pages 43-74. AMS, 1974.
F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proc. of CP 2001, volume 2239 of LNCS, page 77 ff. Springer, 2001.

R. Fourer, D. M. Gay, and B. W. Kernigham. AMPL: A Modeling Language for
Mathematical Programming. International Thomson Publishing, 1993.

M. R. Garey and D. S. Johnson. Computers and Intractability—A guide to NP-
completeness. W.H. Freeman and Company, San Francisco, 1979.

I. P. Gent and B. Smith. Symmetry breaking during search in constraint program-
ming. In Proc. of ECAI 2000, pages 599-603, 2000.

P. Meseguer and C. Torras. Solving strategies for highly symmetric CSPs. In Proc.
of IJCAI’99, pages 400-405, 1999.

P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction
search. Journal of Artificial Intelligence, 129:133-163, 2001.

I. Niemela. Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. of Mathematics and Artificial Intelligence, 25(3,4):241-273,
1999.

E. Rothberg. Using cuts to remove symmetry. In Proc. of ISMP’00, 2000.

H. D. Sherali and J. Cole Smith. Improving Discrete Model Representations Via
Symmetry Considerations. Management Science, 47:1396-1407, 2001.

B. Smith. Reducing symmetry in a combinatorial design problem. In Proc. of
CPAIOR’01, pages 351-360, 2001.

P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

26

