Symmetry Breaking via
Dominance Detection for
Lookahead Constraint Solvers

Igor Razgon and Amnon Meisels

Department of Computer Science
Ben-Gurion University of the Negev
Beer-Sheva, 84-105, Israel
{irazgon,am}@cs.bgu.ac.il

Extended Abstract

1 Introduction

A general method for detecting symmetric choice points during search
was recently proposed in [3]. The method achieves symmetry break-
ing by detecting the dominance of search subspaces and eliminating
the need to explore them.

Let us sketch the principle of this method applied to a search
algorithm returning the first solution found. Assume that a search
algorithm currently explores some node P of the search tree. Let S
be the remaining search space induced by P !. Let P’ be some node
of the search tree that has already been rejected by the algorithm
and S’ be the search space induced by P'. If S C S’ than P can be
rejected without further search in S. We say that P’ dominates P.

The essence of dominance checking methods is that before start-
ing search over the search space S induced by the current node P,
the algorithm checks whether P is dominated by some previously
considered node and if so, P is rejected without further search.

A search algorithm that explores different value choices on vari-
ables can potentially eliminate values that are dominated by values

! when we say ”induced”, we mean that S is obtained as the result of application of

some procedure maintaining consistency with the current node of the search tree

of the same variable that were already rejected. The present pa-
per proposes a complete search algorithm for constraint satisfaction
problems (CSPs) that utilizes lookahead techniques for dominance
detection. Lookahead techniques like forward checking (FC) check
constraints with all unassigned variables and produce domains of
values that change dynamically during search [9]. Our proposed al-
gorithm utilizes the dynamic nature of domains of values of future
variables to detect dominance and thereby eliminate values that are
dominated by former (rejected) values.

Consider a backtrack based constraint solver, that utilizes some
lookahead procedure Proc. This means that the solver runs Proc
after every assignment of a value to a variable to achieve some
level of consistency for the remaining constraint network of unas-
signed variables. In the case of forward checking Proc achieves node-
consistency, in the case of MAC it achieves arc-consistency [9].

Let P be the current partial solution at some moment of the
execution of the solver. Denote by Fp the set of domain values of all
unassigned variables for the partial solution P, after application of
Proc. Let us call Fp the set of future values of P.

Let V be the current variable, val; and valy be values from the
current domain of V', and denote by (V, val) the assignment of val to
V. The dominance detection property can be formulated as follows:
if P U{(V,val;)} has been rejected and
Fpugvway € Fpugvean)y then the assignment (V,vals) can be
rejected without further search. In other words, if the assignment
(V,valy) dominates the assignment (V,valy) given the current par-
tial solution P and (V,wal;) is inconsistent, then (V,wvaly) is also
inconsistent.

Section 2 presents the proposed method of dominance checking.
For constraint networks of n variables and maximal domain size of
m, the proposed method has an O(nm?) running time and needs
memory bounded by O(n?m?).

For dominance detection on a CSP search algorithm the order
in which values are checked is important. When values are ordered
in decreasing order of future compatible domain sizes, the checking
of dominance becomes easier. A new dominance relation that or-
ders values is presented in Section 2. The minimal dominating set

construction heuristic requires O(tm + mlogm) time where ¢ is the
complexity of the lookahead procedure of the solver.

Section 3 presents preliminary experimental results of FC with
minimal dominating set construction for random CSP’s. The results
demonstrate that the proposed approach is promising. Further de-
velopments of the proposed algorithm are discussed.

2 Dominance Detection for Domain Shrinking

2.1 A Dominance Checking for CSP’s

Definition 1. Let P be the current partial solution. Let val be a
value from the domain of some unassigned variable. If val € Fp, we
say that val 1s consistent with P.

Given this definition, we can reformulate the dominance defini-
tion as follows.

Definition 2. Let P,V be the current partial solution and the cur-
rent variable to be assigned. An assignment (V,valy) is dominated
by assignment (V,valy) given P if every domain value of an unas-

signed variable consistent with PU{{(V,valy)} is also consistent with
PU{{(V,vals)}.

The last definition provides a simple method for dominance check-
ing on constraint networks. Let {valy,...,valx} be the already re-
jected subset of the current domain of the current variable. To per-
form the dominance checking for valy,; we simply check whether
valg4y is dominated by either (V,valy), (V,vals), ..., (V,valg) given
P.

The number of values consistent with PU{(V, valy1)} is O(nm).
The number of previously rejected values is O(m). Assuming that the
complexity of a consistency check is O(x) we obtain the complexity of
the method as O(nm?z). To decrease the complexity of the proposed
method we have to decrease the complexity of the consistency check.

In order to implement an O(1) consistency check method one
needs to maintain a data structure for the current partial solution.
One possibility is to use a consistency array Cp. Let val and val’ be
a value of the current variable and a value of some other unassigned

variable respectively. Then, Cplval]jval’] = 1 if P U {(V,val)} is
consistent with val’, otherwise Cplval][val’] = 0. To check whether
(V,val) is dominated by some previous assignment of V', it has to
be compared with Cp entries for previous assignments. All entries
are computed during the execution of the lookahead procedure at
no additional cost. Given this data structure a consistency check is
simply reading an entry from the array and takes time O(1).

Note that Cp is deleted only when Cp becomes irrelevant (some
of its assignments are deleted or changed). This condition implies
that a number of consistency arrays are maintained in the memory
simultaneously.

Assume {(Vi,valy), (Va, vals), ..., (Vk,valg)} is the partial solu-
tion. Then the following consistency arrays corresponding to the
growing subsets of the partial solution are maintained simultane-
ously in memory: Cywvi vaiy)}> Clvi,vair) (Vaswaia)}s CLivi waly),e.., (Vi wale)} -
That is, there are O(n) consistency arrays in the general case. Every
one of these arrays takes O(nm?) memory. So all arrays together
take O(n*m?) memory.

The proposed dominance checking method needs O(nm?) time
and O(n?m?) memory.

2.2 The Minimal Dominating Set

The order of assignment of domain values may greatly affect the
effectiveness of the dominance detection methods. Let

{valy,valy, ... ,val,} be the order of assignments of values to the
current variable V' enumerated in the order of their consideration.

Assume that (V,val;) is dominated by (V,val;; ;) for all 4, 1 <
7 < m. This means that in spite of the fact that the domain contains
a large number of symmetries they will not be discovered by domi-
nance checking methods. In this subsection we demonstrate how it
is possible to overcome this drawback.

Let us define the notion of a dominating subset of a domain.
Every value in a domain either belongs to the dominating subset or
is dominated by one of its members. A minimal dominating subset
is a dominating subset of a domain of the minimal size.

Lemma 1. Let P be the current partial solution. Let V' be the cur-
rent variable, and {valy,valy, ..., valy,} be the set of values of the
current domain of V. enumerated in the order of their instantiation.
If |Fpugvvai)y) 2 | Frogvpai,yy| foralli =1,...,m—1, then any
dominance checking method (say, the one presented in the previous
subsection) will explore a minimal dominating subset of V

Roughly speaking, to consider a dominating subset of minimal
size we have to instantiate values in a decreasing order of their sizes
of future subspaces. Note that given such an order, no value can
dominate a value considered before it unless the sizes of their sets of
future values are equal.

Proof.

Assume that the lemma does not hold. Let DS be the dominat-
ing subset explored by the proposed method. Let also DS,,;, be a
minimal dominating subset of the domain of the current variable and

Order the values of DS and DS,,;, in the order proposed in
the lemma and consider their maximal common prefix. Let val”?
and valPS=in be the values following this prefix in DS and DS,
respectively.

Consider three possible cases:

L. |FPU{(V,valDS)}| < |FPU{(V,valDSmin)}‘
2. [Fpugvwarsyy| > [Fpugvvat?Smin |
3. [Frogvparsyy| = [Fpug(vvarpsminyl

In the first case, val?%m» has been considered already by the
proposed method and has not been included in the dominating sub-
set DS. We deduce that val?5mi is dominated by a value from the
common prefix of DS and DS,,;,. That is, DS,,;, is not minimal
which contradicts our initial assumption.

In the second case valP”® is not included in DS,,;,. But va
is not dominated by any value from the common prefix of the con-
sidered sets, because otherwise it would not have been included in
DS. In addition, valP® is not dominated by any other value in
DS,,in, because all other values have sizes of sets of future values
less than valPS (by our ordering condition). So val”S does not be-
long to DS,,;, and is not dominated by any value from it. Therefore,

lDS

DS,in is not a dominating subset of the considered domain which
contradicts our assumption.
In the third case two subcases are possible:

— Fpogwwarsyy = FpuvpaiPSmin)}
= Frugvars)y 7 FeugvpaPSmin))

In the first subcase we can replace val?>=i» by val?® in DSpn
contradicting our assumption about the maximality of the common
prefix. In the second subcase D.S,,;, should contain some value val’
such that Fpyyvearsyy = Fpufvuar)}- We can change the order of
val' and valP5mi» without violating our ordering condition. In this
way we reduce the second subcase to the first one considered above.
O

To order values of the considered domain by the presented lemma,
we have to compute |F] Pu{<V,val)}‘ for every value of the current do-
main of the current variable V. Therefore, we apply the lookahead
procedure Proc, O(m) times. If the complexity of Procis O(y), the
complexity of this method is O(ym + mlogm).

Note, that the ordering of domain values of the current variables
in the proposed order is a good search heuristic even without con-
sideration of symmetry breaking [2].

3 Realization and Testing

To check the effectiveness of the proposed method, we implemented
two versions of FC. The first version has the value ordering proposed
in Lemma 1. The second version performs dominance checking in
addition to value ordering. Both algorithms use the fail-first variable
ordering heuristic [5]. We compared these two algorithms on a set
of randomly generated problems characterized by their constraints
density p; and tightness p, [6].

Our preliminary results show that instances of randomly gener-
ated problems with a large number of symmetries are mainly concen-
trated in regions with either low density or low tightness. More for-
mally, these regions are characterized by either p; < 0.3 or (py < 0.3
and 0.3 < p; < 0.8). For difficult problems in these regions, the FC
version with dominance detection outperforms the version without
it. For easy problems (without backtracks), the dominance detection

method is not applied at all, that is the computation effort is the
same for both these algorithms. The other set of constraint problem
is characterized by a small number of symmetries or by their total
absence. Dominance detection increases running time of the solver
when applied to these problems. But this additional time is not great,
because the proposed dominance checking method frequently returns
a negative answer in an early stage of its work

Selected results of our experiments are demonstrated in Table 1
and illustrate our observations. All problems have 20 variables and 12
values in all domains. The first 2 columns of Table 1 give the density
and tightness of problem instances. The 3rd column presents the
number of constrain checks (CCs) for the proposed method and the
4th column presents the CCs performed by FC with just ordering of
values. The results in the table are the averages of 10 runs for the
same problem parameters.

p1 |pP2 [Symm-cclunsymm-cc
0.2|0.1|28595 |28595
0.2|0.2|23056 |23056
0.2|0.3|/17980 |17980
0.2|0.4|14081 14081
0.2|0.5|10713 |10528
0.2|0.6/29817 |33661
0.2(0.7(38402 |54512
0.2|10.8|11782 |13788
0.2]0.9(5694 4970
Table 1. Comparison of FC’s with and without Domiance Checking

These results in Table 1 can be divided into the following three
groups

1. Both versions do not execute backtracks. Therefore, the domi-
nance checking mechanism is not applied at all (first four rows of
the table).

2. The version with dominance checking outperforms the version
without it, by discovering dominances. This group of results oc-
curs for instances with p, varying from 0.6 to 0.8.

3. The dominance detection does not succeed to reduce the compu-
tational effort (p, = 0.5,0.9). Note, that in this case the addi-

tional cost of dominance checking is small relatively to the benefit
we gain for the instances of the second group

Based on our experiments, we conclude that domain shrinking
methods based on construction of minimal dominating subsets are
promising for a subregion of (p;, ps) and need further investigation.
These methods may be useful for CSP’s of large size with low density,
which are frequently difficult to solve by complete algorithms [8].

The most important step of the further investigation is to find a
successful variable ordering heuristic. Ideally, such a heuristic should
be successful for search as well as for construction of small dominat-
ing subsets. Heuristics based on constrainedness evaluation [1,4,7]
seem to be a good choice for this purpose. According to our prelim-
inary experiments, symmetries are concentrated in regions with low
constrainedness.

Yet another direction in the development of the proposed method
is to find a more effective algorithm for ordering of values in the
proposed form of Lemma 1. A naive method applying the lookahead
procedure m times can be replaced by a more sophisticated approach.

References

1. C. Bessiere, A. Chmeiss, L. Sais Neightborhood-Based Variable Ordering Heuris-
tics for the Constraint Satisfaction Problem, Proceedings of CP2001, pp.565-570,
Paphos, 2001.

2. D. Frost, R. Dechter, Look-ahead value ordering for constraint satisfaction problems,
Proceedings of IJCAI-95, pp. 572-578, Montreal, Canada, August 1995.

3. T.Fahle, S.Schamberger, M. Sellmann Symmetry Breaking, Proceedings of CP2001,
pp- 93-107, Paphos, 2001.

4. 1. P. Gent, E. Maclntyre, P. Prosser, T. Walsh The Constrainedness of Search,
AAAI/TAAI96, Vol. 1, pp. = 246-252, 1996.

5. R.M. Haralick, G.L.Eliott Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence, 14:263-313, 1980.

6. P. Prosser Binary constraint satisfaction problems: some are harder than others ,
Proc. ECAI-94, pp.95-99, 1994.

7. 1. P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, T. Walsh An Empirical Study
of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Problem
Proccedings of CP96, pp. 179-193, 1996.

8. B. Smith, S. Grant, Where the Ezceptionally Hard Problems Are, CP95 Workshop
on Really Hard Problems Cassis, September 1995.

9. E.Tsang Foundations of Constraint Satisfaction, Academic Press Limited, 1993,

