

Symmetry breaking revisited

Jean-François Puget

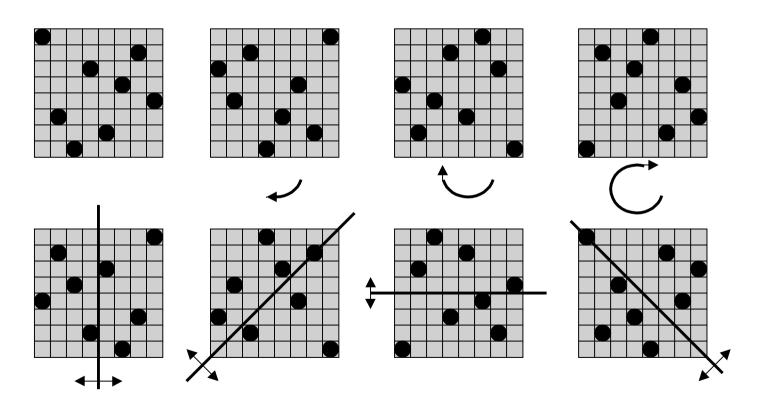
ILOG

Outline

- **□** Symmetries in CSP
- □ Past nodes as nogoods
- □ Isomorph rejection
- □ Results
- ☐ Future work

Examples

□ N queen : 8 symmetries of the square

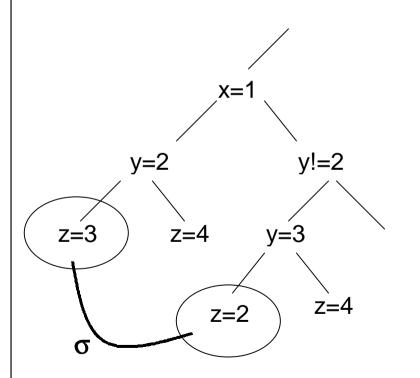


Symmetries

- □ Isomorphisms
 - □ 1-1 Mappings (bijections) that preserve problem structure.
- Uniquely defined by how unary decisions are mapped
 - \Box σ : $x_i=a_i \rightarrow x_i'=a_i'$
 - Variables can be permuted
 - Values can be permuted
 - □ Both
- □ Map solutions to solutions
 - Potentially large number of isomorph variants
- □ Map trees search to tree search
 - □ The same failure will be repeated many times

Example

- \Box Alldiff(x,y,z), x,y,z in {1, 2, 3, 4}
- □ Variables can be permuted



$$x=1,y=3,z=2$$

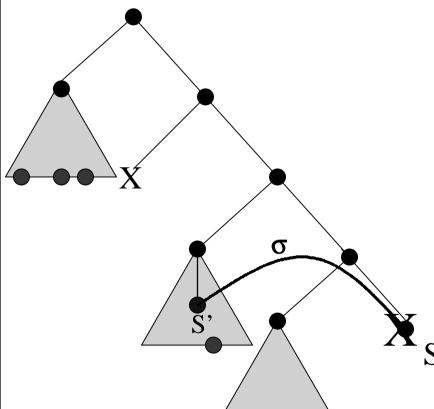
is isomorph to

$$x=1,y=2,z=3$$

$$σ$$
: \forall a $x=a \rightarrow x=a$
 \forall a $y=a \rightarrow z=a$
 \forall a $z=a \rightarrow y=a$

Past states as nogoods

Focacci&Milano, Fahle&al [CP'01]



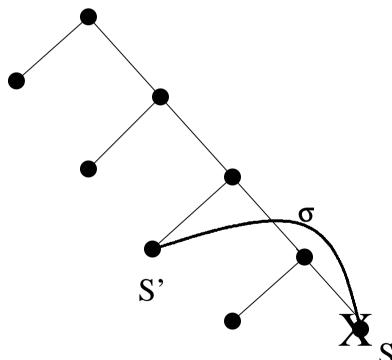
Avoid generating states isomorph to past states

If $\exists \sigma$ s.t. $S = \sigma(S')$, S' past state then S can be pruned

- State
- Solution,

X Fail

Only look at the roots of left subtrees



If $\exists \sigma$ s.t. $S \Rightarrow \sigma(S')$, S' left child then S can be pruned

- State
- Solution,

X Fail

Nogood entailment

- □ Previous work rely on state inclusion
 - \Box For each node S, check if there exists σ and nogood S' s.t

 \forall x, (domain of x in S) \subseteq σ (domain of x in S')

□ We check if symmetric decisions are entailed :

$$\exists \sigma, S \Rightarrow \sigma(\Lambda_i c_i)$$

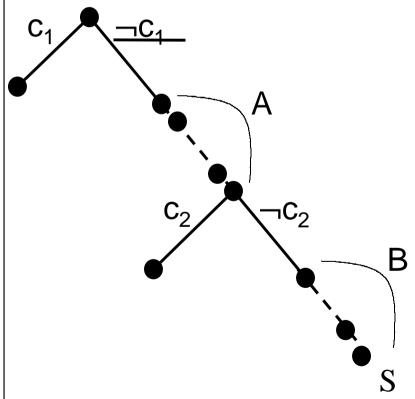
Where c_i are the decisions leading to the nogood S'

Nogood entailment must be checked at each node, for each nogood.

Decision set as nogoods

Assume 2 nogoods only:

$$c_1$$
 $\neg c_1 \land A \land c_2$



S is pruned iff

$$\exists \sigma_1 \ \ S \Rightarrow \sigma_1 \ (\mathbf{c}_1)$$

$$\exists \sigma_2 \ \ S \Longrightarrow \sigma_2 \ (\neg c_1 \land A \land c_2)$$

Can get rid of negative decisions: S is pruned iff

$$\exists \sigma_1 \quad S \Longrightarrow \sigma_1 \ (c_1)$$

$$\vee$$

$$\exists \sigma_2 \quad S \Longrightarrow \sigma(A \land c_2)$$

$$a \vee (\neg a \wedge b) \equiv a \vee b$$

Theoretical results

- □ Symmetry breaking search is complete.
 - □ For each solution of the original problem, it finds a solution isomorph to it.
- □ Symmetry breaking search is correct.
 - □ It never finds two isomorph solutions.
- ☐ The proofs do not depend on the search strategy nor on the constraint propagation algorithm
 - Can be used in conjunction with symmetry breaking constraints
 - Non DFS, parallel search

Isomorph rejection

- □ Assume unary decisions
 - \Box $x_i=a_i$
- Entailed decisions

$$\Delta(S) = \{x_i = a_i \mid domain(x_i) = \{a_i\} \text{ in } S \}$$

□ Isomorphism test is simpler:

is equivalent to

$$\exists \sigma \{\sigma(c_1) \land ... \land \sigma(c_k)\} \subseteq \Delta(S)$$

- **□** Complexity
 - □ Storage of one nogood is O(1)
 - □ Number of nogoods is O(nm)

- For each node, for each nogood for that node, create an auxiliary
 CSP for computing σ
 - Variables correspond to decisions of the nogood
 - Values to decisions entailed by the state
 - \Box Constraints restrict σ to be a symmetry of the original CSP
- □ Writing symmetries checking as constraint satisfaction is not trivial for the moment.
 - Subgraph ismorphism on our examples
- Symmetries are not listed in advance, they are dynamically discovered

Social Golfer

- □ Real world problem: 8-4-10 still open
 - Smaller instances hard enough
- □ Evaluation of symmetry breaking search:
 - Search for all non isomorph solutions
- □ Model
 - □ Set variables representing groups of each week.
 - □ Generation week per week
- □ Best or equal results for

6-5-6, 6-5-7, 7-3-9, 8-3-10, 9-3-11, 10-3-13, 9-4-8,

10-4-9, 8-5-5 9-8-3, 10-8-9, 10-9-3, 10-10-3

□ Full symmetry breaking (Pentium III 833MHz laptop)

	5-3-7	5-3-4	5-4-5	5-4-6
solutions	7	13,933	10	0
time (sec)	25.5	3,603	20.4	4.1

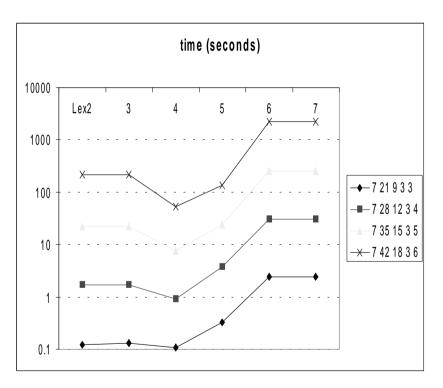
- □ Partial symmetry breaking
 - □ Only used for the first 3 weeks

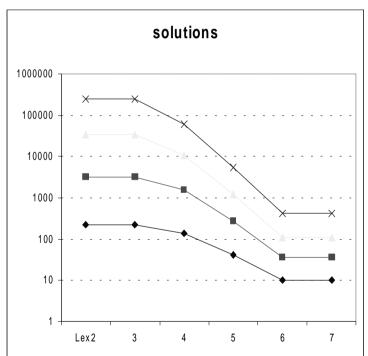
	5-3-7	5-3-4	5-4-5	5-4-6
solutions	102	353,812	147	0
time (sec)	7.8	105	7.5	3.6

□ Order(s) of magnitude faster than previous work

- □ Simple model
 - O v x b matrix of 0-1 variables
 - O Sum of each row = r
 - O Sum of each column = k
 - O Inner product of any two row = λ
 - O Row by row generation
 - Rows can be permuted
 - Columns can be permuted
- □ Finding one solution is often easy
 - □ Solves each instance of [Messeguer&Torras 99] within a 2 seconds
- □ Finding all (non isomorph) solutions is harder
 - □ Lex² is quite effective [Flener & al, CP'02]
 - Finds all solutions of small instances within a second

□ Lex² + symmetry breaking search on first n rows





bibd(15, 35, 7, 3, 1) ($> 10^{52}$ symmetries)

□ Lex²

Solutions	Nodes	Time (sec)
32,127,296	117,782,182	75,999

> 21 hours

□ Lex² + symmetry breaking search

80	76,911	13,721

< 4 hours

□ Lex² + symmetry breaking on first 10 rows

157,312 412,312 438	157,312	412,312	438
-------------------------	---------	---------	-----

< 8 minutes

Conclusion

- □ Simple and powerful formalization
 - Left children as nogoods
 - Correctness and completeness results
- Applies to any search strategy and propagation algorithm
 - □ Non depth first search, parallel search
 - O(nm) space per open node, O(nm) space for DFS
 - Can be used with symmetry breaking constraints
- □ Improves over SBDD and Cut Generation [CP'01]
- ☐ Improves over Lex² on BIBD
- Domain filtering instead of generate and test
 - Can be implemented with an auxiliary CSP
 - On the golfer, reduces number of nodes, but is 2 times slower

Future work

- □ Isomorphism test is too costly
 - Done at each node, it dominates running time
 - □ Efficient domain specific tests are possible [Barnier & Brisset CP'02]
- □ Symmetry definitions
 - Isomorphism test could use known symmetries
 - □ Use group generators? [Gent & al CP'02]
- □ Combination with SBDS
 - Domain filtering
- □ Other real world problems
 - Time tabling, rostering

