

PartialSymmetry Breaking

Iain McDonald

Barbara Smith

iain@dcs.st-and.ac.uk

MotivationsforPSB

- * Curiosity
 - What happens when we don't break all the symmetry that exists in a CSP?
 - Is it ever quicker to break less symmetry and perform some redundant search?
- * Highly symmetric problems

AlienTilesProblem

Initial State

Solution

0	0	0	0

0 | 0 | 1 | 1

 $\begin{array}{c|c|c|c} 0 & 1 & 0 & 1 \end{array}$

 $2 \parallel 1 \parallel 1 \parallel 2$

Goal State

27 2654 29157, Gi52

 $0 \parallel 0 \parallel 0 \parallel 0$

 $0 \| 0 \| 1 \| 1$

 $0 \| 1 \| 0 \| 1$

 $2 \parallel 1 \parallel 1 \parallel 2$

0 1 0 1

0 | 0 | 1 | 1

 $\begin{array}{c|c|c|c} 0 & 0 & 0 & 0 \end{array}$

 $0 \mid 0 \mid 0 \mid 0$

 $1 \| 0 \| 0 \| 1$

 $0 \| 1 \| 0 \| 1$

 $1 \parallel 1 \parallel 2 \parallel 2$

 $0 \| 0 \| 0 \| 2$

 $0 \| 0 \| 1 \| 1$

 $0 \parallel 1 \parallel 0 \parallel 1$

 $0 \parallel 1 \parallel 1 \parallel 2$

PSBExperiment

- * Solve Alien Tiles problem
 - Record cpu-time
- * Solve again with SBDS
 - Pick a symmetry at random
- * Repeat with a random subset of symmetries one larger than last time until the problem is solved with all 1,151 symmetries

InitialResults

Partial Symmetry Breaking in the Alien Tiles problem

NewMotivations

- * Why is one subset of symmetries better than another?
- * Can we break all symmetry with just a subset of symmetries?
- * Is there a way to find the trough of the curve?

Findingthegoodsubsets

$$f(V_1 = 1) = (V_3 = 2)$$

$$g(V_1=1) = (V_1=3)$$

 $PSB_Algorithm(f, g, h) = \{g, h, f\}$

Moreresults: AlienTiles

Random Vs Algorithm

Golfer'sProblem

Random Vs Algorithm

Breaking A Symmetry

- Cats and Dogs
- Interchangeable cats (3! = 6),
 interchangeable dogs (5! = 120) and
 symmetries of a square (8)
 - $-6 \times 120 \times 8 = 5,760$
- * Break all symmetry with 41 functions

GeneralityofPSB

- * Group theory / Dominance check
- * SBDD
- * Dynamic PSB

MotivationsRevisited

- * Why is one subset of symmetries ****better than another?
- * Can we break all symmetry with just a subset of symmetries?
- * Is there a way to find the trough of the curve?

Futurework

- * First solution
- * Find optimum number of symmetries
- * Combining PSB with other research
 - Nu-SBDS

Conclusion

- * Thanks to APES research group, CP2002 program committee, reviewers, supervisor, co-author and St Andrews research group...
- * Nu-SBDS (and my CV) can be found at http://www.dcs.st-and.ac.uk/~iain/ :。)

AlienTiles

 Each board state belongs to an equivalence class. For any given goal state, it may be possible to find a full assignment that maps the initial state, to a state in the same equivalence class as the goal state, that takes less clicks than the previous solution. If so, the full assignment becomes the new solution.

Golfer's Problem

- * p players must split up into g groups, to play golf with each other. The golfers must do this for w weeks. Any two golfers can play with each other at most once.
- * The example used in this presentation was 12 golfers, 4 groups (of 3) played for 2 weeks.

CatsandDogs

* 3 cats and 5 dogs must be placed on a 5×5 chess board such that no dog can attack a cat in a queen's move.

StaticHeuristics

- Heuristics not essential for optimization problems or finding all solutions
- * Dynamic PSB will be able to find next variable
- For highly symmetric problems, benefit of PSB will far outweigh benefit of dynamic heuristics