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Abstract. The effect of symmetry-breaking constraints is often evalu-
ated empirically. In order to understand which symmetric configurations
are removed by a set of constraints, we have to understand the underlying
structure of the symmetry group in concern. A class of symmetry that
frequently occurs in constraint programming is the row and column sym-
metries of a matrix model. In this paper, we study these symmetries from
a structural viewpoint, and show how the graph of the associated group
can be built. The graph can help us to understand the effect of certain
symmetry-breaking constraints posted on a matrix model, though some
questions remain open. This paper is a preliminary study on the relations
between group properties and the corresponding graph and symmetry-
breaking constraints.

1 Introduction

Symmetries are ubiquitous in many Constraint Satisfaction Problems (CSPs).
Symmetry in a CSP can involve the variables, the values, or both, and map each
search state (e.g., a partial assignment, a solution and a failure) to an equivalent
one. An exhaustive search method spends time in visiting equivalent states if
symmetries are not eliminated [5].
Symmetries of a CSP form a group. Thus, we can exploit results coming

from the group theory to understand the structure of each particular symmetry.
In addition, each group has a corresponding graph which again can help for this
purpose.
A class of symmetries that frequently occur in constraint programming is the

row and column symmetries of a matrix model [2]. A matrix model is a constraint
program that contains one or more matrices of decision variables. Many CSPs
can be easily represented by matrix models [3] in which the matrices may have
symmetry between their rows and/or columns. Such symmetries are referred
to as row and column symmetries. Two matrices are symmetric if one can be
obtained from the other by row and/or column permutations.
In this paper, we analyse the group describing the row and column sym-

metries, in order to understand their underlying structure. The elements of the



group are all the symmetric matrices of a given matrix. To obtain all permuta-
tions, only two generators for rows, and two for columns should be considered:
the flip of the first two rows (resp. columns), and a shift that leads the first
row (resp. column) to the last position. We have observed that the resulting
group-graph has a very interesting structure.
Our ultimate aim is to provide some considerations for studying, from a struc-

tural point of view, which configurations are removed when we add different sets
of symmetry-breaking constraints to a matrix model so as to remove row and
column symmetries. Thus, this work can be seen as a starting point for a deeper
insight on this topic. In general, approaches proposing symmetry-removal algo-
rithms or constraints experimentally evaluate the effectiveness of the method.
Here, we propose a more formal perspective which could possibly be used to
compare different approaches from a structural point of view, and could help to
devise new algorithms and symmetry-breaking constraints.
This paper is a preliminary step towards this more general and ambitious

aim, and we think it deserves more investigation. We here restrict our focus on
small square matrices (3 × 3), but our observations could be generalized for
bigger matrices.

2 Groups and their graphs

Recently, group theory has been used to describe the symmetries of a CSP, and
to reduce the effort to remove them (e.g., [4]). A group is a tuple G = (S,Op)
where S is a set and Op is a closed binary operation over S. A group has the
following properties:

– the operation Op is associative, i.e., for any x, y, z ∈ S, (x Op y) Op z =
x Op (y Op z).

– there is a neutral element I, i.e., for any x ∈ S, x Op I = I Op x = x.
– each element x in S has an inverse x−1, i.e., for any x ∈ S, x Op x−1 =

x−1 Op x = I.

As an example, we consider the permutation of n elements. We have a group
G = (S,Op) (called permutation group), where S contains n! elements, each
corresponding to a permutation of n elements, i.e., a bijective mapping from S
to itself. The operation Op is the function composition, if we consider functions
as the elements of S. It can easily be shown that the function composition
is closed and associative, the neutral element is the identity permutation, and
every permutation has an inverse. In a permutation group, we can consider a
minimal set of permutations whose compositions gives all possible permutations.
Permutations belonging to this minimal set are called generators. Each generator
has a period, i.e., the number of applications of the generator to a permutation
so as to obtain itself.
For the permutation group, we have two generators. The first is identified as

f and corresponds to the flip of the elements in positions 1 and 2. The second is



Fig. 1. a. Group-graph of row symmetries. b. Group-graph of row symmetries plus a
column movement.

identified as s and corresponds to a shift, carrying the first element to the last
position.
Every group has a corresponding graph, where a vertex corresponds to a con-

figuration (i.e., an element of the group), and an arc represents the application
of a generator to a configuration. Two configurations A and B are characterised
by a distance: the number of generator applications transforming A to B.
As a further example, the size of the permutation group of 3 elements is 6

(=3!), and thus the graph associated with this group has 6 vertices. Each vertex
has 2 outgoing and 2 incoming arcs. Each arc corresponds to a generator. Each
generator has a period, i.e., the number of applications of the generator to a
permutation so as to obtain itself. The period of f is 2, and the period of s is 3.

3 The group describing row and column symmetries

In this section, we use group theory to understand the structure of the row and
column symmetries of a matrix model. This is a preliminary study: in fact, we
restrict ourselves to small matrices (3 × 3) but we believe this study can be
extended for larger matrices.
In a 3× 3 matrix, we have 9 variables I = [X1, . . . , X9] ordered from the top

left corner to the bottom right one. Let us now consider only the row symmetry.
We have 3 rows [X1, X2, X3], [X4, X5, X6], and [X7, X8, X9], subject to permu-
tation. The set of all possible row permutations forms a group GR = (Sr, ◦).
This group has the same structure (permutation) of the one described in Section
2: Sr is the set of configurations symmetric to the identity matrix I, and the
operation ◦ is the function composition.
The row symmetry group has two generators: the flip of the first two rows Rf ,

and the row shift Rs that leads the first row to the last position. The period of
Rf is 2, while the period of Rs is 3. Each configuration in Sr can be identified by
various composition of the 2 generators applied to the identity matrix I. Figure
1.a reports the corresponding graph which has 6 (=3!) vertices. Each vertex
has 2 outgoing and 2 incoming arcs. Each arc has a direction. Note that in the
figure, a bi-directional arc (corresponding to Rf and its inverse) is replaced by



Fig. 2. Group-graph of the row and column symmetries of a 3× 3 matrix.

an undirected arc. The configurations are labelled1 in the figure as I, Rs, Rs ◦Rs

(hereinafter referred to as R2
s), Rf , Rs ◦Rf , Rf ◦Rs. Note that the configuration

Rs ◦Rf can also be obtained by Rf ◦R2
s.

We now consider the column symmetry. We have 3 columns [X1, X4, X7],
[X2, X5, X8], and [X3, X6, X9], subject to permutation. Similar to the row sym-
metry case, the set of all possible column permutations forms a group with two
generators: the column flip Cf and the column shift Cs. The size of the group is
6 (=3!) and its elements are I, Cs, C

2
s , Cf , Cs◦Cf , Cf ◦Cs. Clearly, each of these

permutations can be applied to each vertex of the group-graph in Figure 1.a. For
instance, if we apply the permutation Cs to each vertex of the graph in Figure
1.a, then we obtain another graph, depicted in Figure 1.b. In this graph, whilst
the leftmost triangle represents all the row permutations of the identity matrix
I, the rightmost triangle represents all the row permutations of the matrix Cs

obtained by applying a shift on the columns of the matrix I.
Since we have in total 6 column permutations, we obtain the group-graph of

the row and column symmetries of a 3× 3 matrix by applying all the 6 column
permutations to each vertex of the graph in Figure 1.a. The resulting graph
has 6 vertices (called meta-vertices), each of which is a graph with 6 vertices
representing all the row permutations of a column permutation of the identity

1 Vertices are labelled by the sequence of the generators applied to the identity matrix
I.



matrix I, as depicted in Figure 2. The leftmost vertex of every meta-vertex is
obtained from I by permuting its columns. In the rest of this paper, we will
refer to every column permutation of the identity matrix I as the identity of the
corresponding meta-vertex.
Each vertex in the graph has a distance with respect to the starting point,

i.e., the minimum number of generators applied to reach the vertex from the
identity matrix I. In Figure 2, each meta-vertex is labelled with the generator
sequence to reach the vertex from the initial meta-vertex R, and each vertex is
labelled with its distance.

4 Equivalence classes

In an equivalence class of matrices, any two matrices are symmetric, i.e., any
matrix can be obtained from the other via row and/or column permutations.
In Figure 2 we see that every 3 × 3 matrix has 36 symmetric configurations.
Does this mean that the size of every equivalence class is 36? This is the case if
the values in the matrix are all different. However, this is not always the case if
there are repeating values in the matrix, because in a such case two symmetric

matrices are not necessarily distinct. For instance, given I =





0 0 0

0 0 0

1 1 1



, the matrix

Rf is identical to I.
Although not every equivalence class has necessarily the same size, it is pos-

sible to know how big the equivalence classes can be. For instance, the columns

of the matrix I =





0 0 0

0 0 0

1 1 1



 are all the same. Hence, any column permutation

leaves the matrix unchanged. That is, in the group-graph associated with row
and column symmetries, all the meta-vertices fall into the (leftmost) meta-vertex
R that represents the row permutations of I. Moreover, two rows of I are the
same, which means that a matrix within a meta-vertex falls into the one ob-
tained by swapping those rows. This can be visualised in Figure 3. The size of
the equivalence class containing the matrix I is thus 36/(2!3!), which is 3.
If a 3 × 3 matrix I has only the values 0 and 1 then there are 9 possible

scenarios of the group-graph, giving rise to 9 possible size for the equivalence
class CI containing the matrix I:

1. Rows are all the same, and columns are all the same: in this case, all the
meta-vertices fall into the meta-vertex R representing the row permutations
of I. Also, all matrices within a meta-vertex fall into the identity matrix of
the meta-vertex. Hence, |CI | = 36/(3!3!) = 1.

2. Only 2 rows are the same, and columns are all the same: in this case, all the
meta-vertices fall into R. Also, a matrix within a meta-vertex falls into the
one obtained by swapping those rows. Hence, |CI | = 36/(2!3!) = 3.

3. Rows are all the same, and only 2 columns are the same: this case is analogues
to the previous case.

4. Only 2 rows are the same, and only 2 columns are the same: in this case, a
meta-vertex falls into the one obtained by swapping those columns. Also, a



Fig. 3. Symmetric configurations of the matrix I =





0 0 0

0 0 0

1 1 1



.

matrix within a meta-vertex falls into the one obtained by swapping those
rows. Hence, |CI | = 36/(2!2!) = 9.

5. Only 2 rows are the same: in this case, a matrix within a meta-vertex falls
into the one obtained by swapping those rows. Hence, |CI | = 36/2! = 18.

6. Only 2 columns are the same: in this case, a meta-vertex falls into the one
obtained by swapping those columns. Hence, |CI | = 36/2! = 18.

7. Every row permutation gives the same effect as a column permutation: in
this case, all the meta-vertices fall into R. Hence, |CI | = 36/3! = 6.

8. Swapping two columns gives the same effect as swapping two rows: in this
case, a meta-vertex representing the swap of the columns falls into the one
representing the corresponding row swaps. Hence, |CI | is 36/2, which is 18.

9. None of the above: in this case, clearly |CI | = 36.

5 Symmetry-breaking constraints

A way to break all row and column symmetries is to add to the model a complete
set of symmetry-breaking constraints, i.e., one constraint for each symmetry
[1]. Consider a 3 × 3 matrix I, which we represent as [X1, . . . , X9]. Now, we
suppose to have an ordering relation ≤ among matrices. The complete set of
symmetry-breaking constraints is composed by imposing I ≤ A, where A is any
matrix obtained by permuting the rows and/or columns of I. Since the number of



symmetries is 36 (=3!3!), we need the same number of constraints. This complete
set of constraints removes all symmetries but the identity.
As the matrix size enlarges, it becomes impractical to impose the complete

set of symmetry-breaking constraints. In such a case, only a subset of these
constraints could be used and thus not all symmetries are removed. In general,
the effect of such symmetry-breaking constraints are evaluated experimentally,
by for instance counting the number of symmetric solutions left unbroken. Here
we provide some observations which could be generalized and used to evaluate
the symmetry-breaking constraint methods.
One way of reducing much of row and column symmetries of a matrix model

is to impose that the rows and the columns of the matrix are lexicographically
ordered [2]. These constraints are a subset of the complete set of symmetry-
breaking constraints, and prevent the row (resp. column) permutations. Hence,
in an equivalence class, the symmetric configurations that are surely removed by
these constraints reside on the leftmost meta-vertex R, as well as on the identity
matrix of every other meta-vertex of the group-graph in Figure 2.
With the lexicographic ordering constraints, we observed that many other

symmetric configurations in any equivalence class are also removed. One reason
is that some matrices on the group-graph collapse into some others when there
are repeating values in the matrix. If these matrices happen to fall into R and/or
on the identity matrix of every other meta-vertex then lexicographic ordering
constraints will remove these symmetric matrices. For instance, if a matrix is
formed by only 0 and 1 then we know that there 9 possible scenarios of the
group-graph as discussed in Section 4. In the 1st, 2nd, 3rd, and the 7th cases, all
matrices fall into the ones that are removed by lexicographic ordering constraints.
Hence, all symmetries are surely broken for such kind of equivalence classes. In all
the other cases, matrices reside on the parts of the graph that are not reachable
by the lexicographic ordering constraints. This hints that if there is any unbroken
symmetric matrix, it must belong to one of the equivalence classes described by
these cases.

As an example, consider the matrix I =





0 0 1

0 0 1

1 1 0



, where two rows as well as

two columns are identical. The equivalence class of this matrix is described by

case 4. The configuration C2
s R2

s =





0 1 1

1 0 0

1 0 0



 is obtained by applying two shifts on

the columns and two shifts on the rows of I. This matrix resides on the topmost
vertex of the graph and is not broken by the lexicographic ordering constraints.
In fact, for 0/1 values, 9 symmetric matrices remain to be unbroken, and

they belong to the equivalence classes described by the 4th, 5th, 6th, and the
9th cases. It appears that all configurations at distance 1 and 2 from the identity
are removed. Those 9 configurations left are all of distance 3 and 4.
Although we understand why some certain configurations are removed by

this set of constraints, it is still an open question why all symmetries are bro-
ken for certain equivalence classes. For instance, for a 0/1 valued matrix I, all
its symmetric configurations are removed if I belongs to an equivalence class
described by case 8.



Note that if a matrix has few values then many symmetric configurations fall
into the ones that are surely removed by the lexicographic ordering constraints.
The more values a matrix can have the more it becomes difficult to remove
the symmetric configurations using these symmetry-breaking constraints (i.e.,
lexicographically ordering the rows and columns).

6 Conclusions and Future Work

In this paper, we studied the structure of the group describing row and column
symmetries of a matrix model, and showed how the associated graph can be
constructed. We focused on a particular set of symmetry-breaking constraints
that are posted on a matrix model so as to remove much of such symmetries.
By studying the graph of the group describing these symmetries, we can see
which symmetric configurations are removed by the constraints we considered.
However, we still fully do not know how some symmetric configurations can be
removed for some kind of equivalence classes.
Although this paper is a preliminary study on the relation between a group

and its graph and symmetry-breaking constraints, we believe that it is the start-
ing point of understanding the effect of certain symmetry-breaking constrains or
algorithms from a formal perspective. We here considered only 3 × 3 matrices
but our study could be generalised.
In the future, we will study this group further. An important question is

whether there exist a characterisation that uniquely identifies a matrix in its
equivalence class. The group-graph can help us to answer this question. If such
a characterisation exists then all symmetric configurations of a matrix can be
removed without having to consider each of them one by one. Also, such a graph
can help to devise new symmetry-removal algorithms or constraints for matrix
models. Least but not last, we plan to repeat this study for other symmetry-
breaking constraints for matrix models. This will allow us to compare the relative
strengths of the methods.
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