Breaking All the Symmetries in Matrix Models:
Results, Conjectures, and Directions

Pierre Flener and Justin Pearson

Department of Information Technology, Uppsala University
Box 337, 751 05 Uppsala, Sweden

PierreF@csd.uu.se, justin@docs.uu.se

1 Introduction: Matrix Models and Symmetry

A matriz model is a constraint program that contains one or more matrices of
decision variables. For example, a natural model of the round robin tournament
scheduling problem (prob026 in CSPlib [4]) has a 2-dimensional (2-d) matrix of
variables, each of which is assigned a value corresponding to the match played in
a given week and period [15]. In this case, the matrix is obvious in the modelling
of the problem: we need a table of fixtures. However, many other problems that
are less obviously defined in terms of matrices of variables can be effectively
represented and efficiently solved using matrix models [7]. In this paper, we
focus on matrix models with just one matrix of decision variables.

Symmetry is an important aspect of matrix models. A symmetry is a bi-
jection on decision variables that preserves solutions and non-solutions. Two
variables are indistinguishable if some symmetry interchanges their réles in all
solutions and non-solutions. Symmetry often occurs because groups of objects
within a matrix are indistinguishable. For example, in the round robin tour-
nament scheduling problem, weeks and periods are indistinguishable. We can
therefore permute any two weeks or any two periods in the schedule. That is, we
can permute any two rows or any two columns of the associated matrix, whose
index sets are the weeks and periods.

A row (column) symmetry of a 2-d matrix is a bijection between the vari-
ables of two of its rows (columns) that preserves solutions and non-solutions.
Two rows (columns) are indistinguishable if their variables are pairwise indis-
tinguishable due to a row (column) symmetry. The rotational symmetries of a
matrix are neither row nor column symmetries. A matrix model has total row
(column) symmetry iff all the rows (columns) of its matrix are indistinguishable.
These definitions can be extended to matrices with any number of dimensions.
A symmetry class is an equivalence class of assignments, where two assignments
are equivalent if there is some symmetry mapping one assignment into the other.
In group theory, such equivalence classes are referred to as orbits.

2 Breaking Symmetry

There are a number of ways of dealing with symmetry in constraint program-
ming. We here only consider techniques that remove symmetries with symmetry-

breaking constraints by adding them to the model before search starts, e.g., [14,
3]. Other techniques break symmetries by adding constraints during search, e.g.,
[1], the symmetry-breaking during search framework (SBDS) [11], and the global
cut framework (GCF) [8].

A common method to break symmetry is to impose a constraint that orders
the symmetric objects. To break all the row (column) symmetries, one can order
the rows (columns) lexicographically. The rows (columns) in a 2-d matrix are lex-
icographically ordered if each row (column) is lexicographically smaller (denoted
<iez) than the next, if any. Each orbit has a matrix where the rows and columns
are lexicographically ordered [6]. However, lexicographically ordering the rows
and columns does not break all the compositions of the row and column symme-
tries. Consider a 3 x 3 matrix of 0/1 variables, x;;, such that Vi z;; +zis+ x5 > 1
and), ; Zij = 4. This model has total row and column symmetry. The following
solutions have lexicographically ordered rows and columns:

001 001
010 010
101 110

These solutions are symmetric, as one can move from one to the other by swap-
ping the first two rows and the last two columns. Swapping any rows or columns
individually breaks the lexicographic ordering.

3 Breaking All the Symmetries

It is always possible to break all the symmetries. We now illustrate a method by
an example and discuss its application.

3.1 A Method

A group, G = (X, 0), is a set of elements, X, where o is an associative binary
operation such that there exists exactly one element id € X having the property
that for all elements z € X, we have that idox = xzoid = z, and further for every
element z € X, there exists a unique element ! such that zox~! = z7loz = id.
Given a set of elements, {2, we will be interested in groups whose elements are
bijective functions on (2, that is permutations. The operation o, in such groups,
will be function composition. If such a set of permutations is closed under taking
inverse functions, then the set is a group. We will write permutations on finite
sets as products of cycles. A cycle (z, f(z), f(z),..., f*(z)) gives the action of
the permutation f on z; the last item in the cycle f(z) asserts that f**!(z) = z.
Modulo the order of the cycles and the starting point in each cycle, a permutation
on a finite set has a unique cyclic decomposition. When writing permutations,
unit cycles are often omitted. For example, a function f on the integers 1...6
such that f(1) =2, f(2) =3, f(3) =1, f(4) =5, f(5) =4, and f(6) = 6 would
be denoted (1,2,3)(4,5). Given an element, z, of a group, the order of z is the

smallest integer n such that z"
6. The group Sym(q) is the set of all permutations on the set {1,...
In [3], a method of breaking symmetry by adding constraints is introduced.
Essentially, for each symmetry of the problem a lexicographic ordering constraint
is added, forcing only one of the symmetric solutions to be picked.
We now illustrate all this on a running example that has a maybe small

matrix but is sufficiently illustrative.

Example 1. The group of all the row and column symmetries of a 3 x 2 matrix

can be generated by the following 3 permutations, permuting the first two
columns, the last two columns, and the two rows, respectively:

T1 T2 T3
T4 T Te

= 4d. For example, the order of (1,2,3)(4,5) is

,q}-

(1,2)(4,5) (2,3)(5,6) (1,4)(2,5)(3,6)
This group contains the following 12 permutations:
Permutation Name Order
O id 1
(1,2)(4,5) P, 2
(2,3)(5,6) Py 2
(1,4)(2,5)(3,6) P, 2
(17672747375) P6 6
(17573747276) P(T 6
(1,4)(2,6)(3,5) P,, 2
(1,5)(2,4)(3,6) P,, 2
(1,6)(2,5)(3,4) Py, 2
(1,3)(4,6) Peis 2
(]‘7273) (47576) PCIZS 3
(1,3,2)(4,6,5) P, 3

Omitting the identity permutation (), these symmetries can be broken by the

following 11 constraints:
L1,22,T3, T4, T5,T

3 L2, X3,T4,T5,T

L1,22,T3,T4,T5,T

L1,22,T3,T4,T5,T

T1,225,T3,T4,T5,T

[
[21
[
[
[
[1, 2,23, %4, T5,Z
[21, T2, T3, T4, T5,T
[1, %2, 23, %4, T5,2
[1, T2, T3, 24, T5, T
[1, 2,23, %4, T5,T
[

L1,22,T3,T4,T5,T

6] <iex [T2,T1,T3,T5, T4, T
6] <tex [T1,T3,T2, T4, T6, Ts]

]

6]

z6) <iex [T4,Ts5,T6, 21, T2, T3]
z6) <iex [T6,T4,Ts5, 23,21, T2]
%6) <iex [T5,T6, T4, T2, T3, T1]
%6) <iex [T4,T6,T5, 21,23, T2]
z6) <iex [T5,T4,T6, T2, 21, T3]
z6] <iex (6, Ts5, 24, T3, T2, T1]
T6] <iex [¥3,%2,%1,T6, Ts, T4]
T6] <iez [T2, 73,21, Ts5, T, T4]
6] <iex [T3,%1,%2,T6, Ty, Ts]

Due to the meaning of the lexicographic ordering where:

(1,22, 23, - ..] <tex [Y1,Y2,¥3,--.]

is defined to be:
@1 <y)A (B1=y1 222 <Y)AN @1 =y1 A2 =y2 > 23 <ys)A ... (1)

and due to the right-hand vector here always being a permutation of the left-
hand one, the elements at the positions corresponding to the last indices in each
cycle (including the unit cycles) can be deleted in both vectors. By this token,
the constraints above can be internally simplified to the following:

(71, 24) <iew [T2,25) (c12)

(72, 25] <iew [73,26] (ca3)

[#1, 22, %3] <iex [4, 5, 26) (r12)

[1, 22,23, %4, T5] <iez [T6, %4, T5, 23, 21] (9)
[x1, 22,73, 24, 5] <iex [25,T6, T4, T2, T3] (o)
[#1, 22, 23] <iex [4,T6, 25) (1)

[#1, 72, 23] <iex [T5, T4, T6) (a2)

[z1, 22, 3] <iex [26,T5, 24] (a3)

(%1, 24] <ieo [73,26] (c13)

[#1, %2, T4, 5] <iex [T2,T3,Ts5, Te] (c123)
(%1, %2, %4, 5] <iex [T3,%1,T6,T4] (c132)

The first two constraints now indeed reflect the indistinguishability of the first
two columns and the last two columns, respectively, whereas the third constraint
reflects the indistinguishability of the two rows. The last three constraints are
actually (logically) implied and can be eliminated. Indeed, the constraint c;3
arises from the indistinguishability of the first and third columns, and is a logical
consequence of the constraints ¢;5 and co3, due to the transitivity of <j.,. Also,
the constraints c¢io3 and ci32 are logical consequences of the same constraints
for the same reason, as the corresponding permutations of all the three columns
can also be ruled out by requiring the entire columns to be (lexicographically)
ordered from left to right. Furthermore, Frisch and Harvey [9] have manually
established that the constraints § and ¢ can be further simplified in the context
of the others. All this leaves us now with the following 8 constraints:

(1, 24] <iex [22,T5] (c12)
[2, 5] <tex [%3,T6] (c23)
[1, T2, 23] <ieg [a,T5,T6) (r12)
(%1, 22, 23] <iex [26, T4, Ts5] (%)

[z1, T2, T3, T4] <iew [T5,T6, T4, T2] (o)
(21,22, 3] <iex [%4,T6, T5] (o1)
(€1, 2, 23] <iea [T5,24, Te] (a2)
[1, T2, 3] <iex [T6,Ts5, T4] (as)

The last 6 constraints now (at least) require the first row to be lexicographically
smaller than any permutation of the second row. We do not know whether this
is a coincidence. The constraint o cannot be further simplified [9].

In general, an m X n matrix has m!-n! — 1 compositions of row and column
symmetries except identity, generating thus a super-exponential number of <.,
constraints. Hence this approach seems not always practical, even after elimi-
nating the m! — m + n! — n constraints that are implied due to the transitivity
of <jez. Despite encouraging experimental results [6] with just the constraints
induced by the generator symmetries and in the presence of actual problem con-
straints, we are looking for special cases where all or most compositions of the
row and column symmetries can be broken by a polynomial (and even linear)
number of <., constraints (see [6] for other results).

3.2 Implied Constraints

There may be further implied <, constraints than we can predict so far based
on the transitivity of <je;, but we do not know whether the minimum set of
non-implied <j¢, constraints is of polynomial size.

A support set of an implied constraint C is a set of constraints {c1,--- ,¢cn}
not containing C' such that ¢; A ... A ¢, = C. We here look for support sets for
<lez constraints among the other <;., constraints. Detecting a support set of an
implied constraint is not easy. Various methods can be adapted, such as circuit
minimisation or integer linear programming (ILP). Indeed, <j., constraints can
be encoded as linear inequalities. For instance, the constraint ¢ is equivalent to:

125- 21 +25- 20 +5- 23+ 24 <125-25 +25-26 +5- 24 + 2o (2)

when the domain size is 5. However, the standard syntactic detection criteria
from ILP listed in [12] fail. We have yet to try the new syntactic criteria in
[12]. Eliminating implied constraints is also difficult, as there are usually many
support sets. Furthermore, support sets may overlap.

3.3 Domain-Dependent Implied Constraints

An interesting observation is that the number of implied <j., constraints grows
as the domain size of the decision variables shrinks. For instance, in Example 1,
the five constraints §, o, a;, as, and az are implied when the domain size is 2,
and up to four of them can be collectively eliminated, say all except § or ay. If
the domain size is 3, then ¢ is no longer implied, and up to three of the other
four can be collectively eliminated, say all except 8. If the domain size is 4, then
none of these constraints is implied.
Experimentally, up to 6 x 6 matrices, we tested the following conjecture:

Conjecture 1. For a domain of size 2, it suffices to add the <;., constraints
induced by the order 2 permutations.

For domain size 3, this conjecture is not true since, as just seen, the constraint
o is necessary, but is of order 6.

Unfortunately, we already determined even the number of order 2 permuta-
tions to be super-polynomial. Indeed, for an m x n matrix, it is f(m) - f(n) — 1,
where f is the sequence:

1,1,2,4,10,26, 76, ...

This is sequence A000085 in the On-Line Encyclopedia of Integer Sequences [13]
and has the following recurrence relation:

[0 =r1)=1
fm)=fn—-1)+mn-1)-f(n—-2) forn>1

and the following closed form:

n/2

1
f("):Z(n_Q.]Z)!-Z’“-k!

k=0

The value f(q) is the number of order 2 permutations in the group Sym(q). Since
the group of row and column symmetries on an m X n matrix is isomorphic to
the product of Sym(m) and Sym(n), this justifies the formula f(n) - f(m) — 1,
as identity is counted twice.

Even if the conjecture is true, there still remain implied <., constraints
induced by the order 2 permutations. For example, ¢;3 is induced by an order 2
permutation but is implied, as seen above. It is not known whether eliminating
implied <;., constraints induced by the order 2 permutations leaves a polynomial
number of <j., constraints.

It would be interesting to characterise which <, constraints are necessary
for which domain sizes.

3.4 Other Directions

As Frisch and Harvey [9] have shown, there are conteztual simplifications to the
<jez constraints that we cannot mechanise yet.

Another (by us yet unexplored) direction is to experimentally determine a
polynomial number of <;., constraints that break “most” of the symmetries,
possibly taking into account the effect of the problem constraints. Indeed, our
experiments (with small matrices, up to 4 x 4) show that on the pure problem
(enumerating all matrices modulo total row and column symmetry, though in
the absence of any actual problem constraints), many of the super-polynomial
number of <, constraints just eliminate a handful of solutions, whereas a few
of them eliminate hundreds or thousands of solutions. A characterisation of the
more effective <., constraints will be a useful achievement.

without 15 implied constraints

with all the|before internal| after internal

35 constraints|simplifications| simplifications

domain size = 4 |Boolean <, 11.0” 5.8” 2.1?
(8,240 matrices) linear <jey 8.3” 4.5” 1.6”
domain size = 5 |Boolean <j., 61.0” 31.8” 12.4”
(57,675 matrices) | linear <jeq 49.6” 26.77 10.0”
domain size = 6 |Boolean <, 269.0” 139.0” 56.1”
(289,716 matrices)| linear <ieq 227.0” 122.6” 46.5”

Table 1. The effects of constraint eliminations and internal simplifications

3.5 Experiments

We experimented, under GNU Prolog on a Sun SPARC Ultra station 10, with
two different implementations of <je,, namely a Boolean one based on (1) and
an ILP one using linear inequalities as in (2). The objective was to enumerate all
3 x 3 matrices modulo total row and column symmetry, though in the absence of
any actual problem constraints. Transitivity of <;e, gives 6 implied constraints
among 35 (irrespective of the domain size), and we experimentally detected
another 9 implied constraints (for domain sizes from 4 up to at least 6), which can
even be eliminated together as they have non-overlapping support sets within the
remaining constraints.! Table 1 summarises the experiments, giving run times in
seconds. Whichever the implementation of <;.,, both the constraint eliminations
and then the internal simplifications pay off, together giving a five-fold time
reduction for solving, irrespective of the domain size.

4 Conclusions

We have investigated some special cases where symmetry breaking constraints
are implied or can be internally simplified. The constraints that can be removed
due to implication depend on the domain size of the matrix problem. In some
cases, these implied constraints actually slow down the constraint solver.

All approaches would benefit from an efficient means of automatic sym-
metry detection. However, symmetry detection has been shown to be graph-
isomorphism complete in the general case [2]. Therefore, it is often assumed that
the symmetries are declared by the user. However, symmetries are often intro-
duced while formulating CSPs in today’s rather low-level constraint program-
ming languages. Indeed, the latter usually lack high-level data structures, such
as sets and relations, where element order is irrelevant, but whose lower-level

! Surprisingly, even the constraint ordering the first two rows is implied for domain
sizes up to at least 6, but we did not eliminate it in our experiments, as 8 of the
other 9 implied constraints may well be implied irrespective of the domain size and
even look as if more general results could eliminate them.

implementations in terms of lists or matrices make the element order seemingly
relevant, so that symmetry-breaking constraints become necessary to compen-
sate for this. The compiler of a relational constraint modelling language, such as
the proposal in [5], should thus be aware of the symmetries it introduces.

Also, there is a need for efficient methods for establishing generalised arc
consistency on sets of <;., constraints operating on the same matrix.

Acknowledgements. This work is partially supported by grant 221-99-369
of VR (the Swedish Research Council) and by institutional grant 1G2001-67
of STINT (the Swedish Foundation for International Cooperation in Research
and Higher Education). We also thank Alan M. Frisch, Warwick Harvey, the
referees, as well as the members of the APES and ASTRA research groups, for
their helpful discussions.

References

1. R. Backofen and S. Will. Excluding symmetries in constraint-based search. In
Proc. of CP’99, J. Jaffar (ed), LNCS 1713, pp. 73-87. Springer-Verlag, 1999.

2. J. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic.
In Proc. of AAAI’92 workshop on tractable reasoning, 1992.

3. J. Crawford, G. Luks, M. Ginsberg, and A. Roy. Symmetry breaking predicates
for search problems. In Proc. of KR’96, pp. 148-159, 1996.

4. CSPIlib, a Problem Library for Constraints, at www.csplib.org.

5. P. Flener. Towards relational modelling of combinatorial optimisation problems.
In: Ch. Bessiere (ed), Proc. of the IJCAI’01 Workshop on Modelling and Solving
Problems with Constraints, at www.lirmm.fr/~bessiere/nbc_workshop.htm, 2001.

6. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Symmetry in matrix models. In Proc. of SymCon’01, at www.csd.uu.se/
~pierref/astra/SymCon01/, 2001. Extended paper in P. Van Hentenryck (ed),
Proc. of CP’02, LNCS 2470, Springer-Verlag, 2002.

7. P. Flener, A.M. Frisch, B. Hnich, Z. Kualtan, I. Miguel, and T. Walsh. Matrix
modelling. In Proc. of Formul’01, at www.dcs.gla.ac.uk/~pat/cp2001/, 2001.

8. F. Focacci and M. Milano. Global cut framework for removing symmetries. In
Proc. of CP’01, T. Walsh (ed), LNCS 2239, pp. 77-92. Springer-Verlag, 2001.

9. AM. Frisch. Slides for the SymCon’01 presentation of [6], at
www.cs.york.ac.uk/aig/projects/implied/docs/SymMxCPO01.ppt, 2001.

10. The GAP Group — Groups, Algorithms, and Programming, at www.gap-system.org.

11. IP. Gent and B.M. Smith. Symmetry breaking in constraint programming. In
Proc. of ECAI’00, W. Horn (ed), pp. 599-603. I0S Press, 2000.

12. J.-L. Imbert and P. Van Hentenryck. Redundancy elimination with a lexicographic
solved form. In Annals of Mathematics and AL 17(1-2):85-106, 1996.

13. On-Line Encyclopedia of Integer Sequences, at www.research.att.com/~mnjas/ se-
quences/.

14. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems.
In Proc. of ISMI1S’93, LNAI 689, pp. 350-361. Springer-Verlag, 1993.

15. P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint programming
in OPL. In Proc. of PPDP’99, LNCS 1703, pp. 97-116. Springer-Verlag, 1999.

