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1. Matrix Models

Example: Sport schedule inPeriods × Weeks → Teams × Teams
for:

• Teams = n

• Weeks = n − 1

• Periods = n / 2

such that:

• every team plays every other team once;

• every team plays exactly once per week;

• every team plays at most twice per period.

A solution for n = 8:

 Week 1  Week 2  Week 3  Week 4  Week 5  Week 6  Week 7
Period 1  0 vs 1  0 vs 2  1 vs 5  2 vs 4  3 vs 6  3 vs 7  4 vs 7
Period 2  2 vs 3  1 vs 7  0 vs 6  5 vs 6  5 vs 7  1 vs 4  0 vs 3
Period 3  4 vs 5  3 vs 5  2 vs 7  0 vs 7  0 vs 4  2 vs 6  1 vs 6
Period 4  6 vs 7  4 vs 6  3 vs 4  1 vs 3  1 vs 2  0 vs 5  2 vs 5
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2. Symmetries (in Matrix Models)

The periods, weeks, and teams areindistinguishable, because:

(1) the periods (rows) can be permuted(variable symmetry);

(2) the weeks (columns) can be permuted(variable symmetry);

(3) the teams of any game can be permuted(variable symmetry);

(4) the teams can be permuted(value symmetry);

without affecting the solution status of any assignment.

Definition: A symmetry class (or orbit, in group theory) is an equivalence class of assignments
underall the symmetries (including their compositions).

 Week 1  Week 2  Week 3  Week 4  Week 5  Week 6  Week 7
Period 1  0 vs 1  0 vs 2  1 vs 5  2 vs 4  3 vs 6  3 vs 7  4 vs 7
Period 2  2 vs 3  1 vs 7  0 vs 6  5 vs 6  5 vs 7  1 vs 4  0 vs 3
Period 3  4 vs 5  3 vs 5  2 vs 7  0 vs 7  0 vs 4  2 vs 6  1 vs 6
Period 4  6 vs 7  4 vs 6  3 vs 4  1 vs 3  1 vs 2  0 vs 5  2 vs 5
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3. Symmetry-Breaking Before Search

Add (lexicographic) ordering constraints so that (ideally) each orbit has exactly one element:

(1) every row is lexicographically smaller than or equal to (denoted≤lex) the next, if any;

(2) every column is lexicographically smaller than or equal to the next, if any;

(3) the first team of every game has a smaller number than the second team of the game.

When lexicographically ordering along every dimension with indistinguishable indices:

• No orbit is of size 0.

• However, in general,not all orbits are of size 1, except if all the matrix values are distinct, etc.

Counterexample: symmetric matrices with lexicographically ordered rowsand columns:

0 0 1

0 1 1

1 0 0

swap rows 2 & 3

swap columns 1 & 2

0 0 1

0 1 0

1 0 1

→
swap rows 1 & 2

swap columns 2 & 3

0 0 1

0 1 0

1 1 0

→← ←
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4. The Crawford et al. Method for Breaking All the Symmetries

Consider a matrix with total row and column symmetry:

Group Sym of 12 symmetries (permutations):

Cycle notation:(1,2,3)(4,5)denotes the function{x1→x2, x2→x3, x3→x1, x4→x5, x5→x4, x6→x6}.

Permutation  Name  Order
(1,2)(4,5) Pc12  2
(2,3)(5,6) Pc23  2

(1,4)(2,5)(3,6) Pr12  2
( ) id  1

(1,6,2,4,3,5) Pδ  6
(1,5,3,4,2,6) Pσ  6

(1,4)(2,6)(3,5) Pα1  2
(1,5)(2,4)(3,6) Pα2  2
(1,6)(2,5)(3,4) Pα3  2

(1,3)(4,6) Pc13  2
(1,2,3)(4,5,6) Pc123  3
(1,3,2)(4,6,5) Pc132  3

x1 x2 x3

x4 x5 x6
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Illustration

x1 x2 x3

x4 x5 x6

x3 x1 x2

x6 x4 x5

x6 x4 x5

x3 x1 x2

x4 x6 x5

x1 x3 x2

Pc132

Pα1

Pδ

id
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Induced Symmetry-Breaking Constraints (SBCs)

(1) Pick a variable orderingm of the matrix.

(2) Add the constraintm ≤ lex σ (m) for each σ ∈Sym \ { id}.

Example: Takem =

(1,2)(4,5) x1 x2 x3 x4 x5 x6 ≤ lex x2 x1 x3 x5 x4 x6 (c12)
(2,3)(5,6) x1 x2 x3 x4 x5 x6 ≤ lex x1 x3 x2 x4 x6 x5 (c23)
(1,4)(2,5)(3,6) x1 x2 x3 x4 x5 x6 ≤ lex x4 x5 x6 x1 x2 x3 (r12)
(1,6,2,4,3,5) x1 x2 x3 x4 x5 x6 ≤ lex x6 x4 x5 x3 x1 x2  (δ)
(1,5,3,4,2,6) x1 x2 x3 x4 x5 x6 ≤ lex x5 x6 x4 x2 x3 x1  (σ)
(1,4)(2,6)(3,5) x1 x2 x3 x4 x5 x6 ≤ lex x4 x6 x5 x1 x3 x2  (α1)
(1,5)(2,4)(3,6) x1 x2 x3 x4 x5 x6 ≤ lex x5 x4 x6 x2 x1 x3  (α2)
(1,6)(2,5)(3,4) x1 x2 x3 x4 x5 x6 ≤ lex x6 x5 x4 x3 x2 x1  (α3)
(1,3)(4,6) x1 x2 x3 x4 x5 x6 ≤ lex x3 x2 x1 x6 x5 x4 (c13)
(1,2,3)(4,5,6) x1 x2 x3 x4 x5 x6 ≤ lex x2 x3 x1 x5 x6 x4 (c123)
(1,3,2)(4,6,5) x1 x2 x3 x4 x5 x6 ≤ lex x3 x1 x2 x6 x4 x5 (c132)

x1 x2 x3

x4 x5 x6
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5. Impr ovements, Conjectures, and Directions

Inter nal Simplifications

Example: (1,3)(4,6) = (1,3)(2)(4,6)(5) induces [x1, x2, x3, x4, x5, x6] ≤ lex [x3, x2, x1, x6, x5, x4]
≡ (x1≤x3) ∧ (x1=x3 → x2≤x2) ∧ (x1=x3 ∧ x2=x2 → x3≤x1) ∧ (x1=x3 ∧ x2=x2 ∧ x3=x1 → x4≤x6) ∧ …
≡ (x1≤x3) ∧ (x1=x3 → x4 ≤ x6) ∧ …
≡ [x1, x4] ≤ lex [x3, x6]

The elements at the positions corresponding to the last indices in each cycle can be deleted!

(1,2)(4,5) x1 x4 ≤ lex x2 x5 (c12)
(2,3)(5,6) x2 x5 ≤ lex x3 x6 (c23)
(1,4)(2,5)(3,6) x1 x2 x3 ≤ lex x4 x5 x6 (r12)
(1,6,2,4,3,5) x1 x2 x3 x4 x5 ≤ lex x6 x4 x5 x3 x1  (δ)
(1,5,3,4,2,6) x1 x2 x3 x4 x5 ≤ lex x5 x6 x4 x2 x3  (σ)
(1,4)(2,6)(3,5) x1 x2 x3 ≤ lex x4 x6 x5  (α1)
(1,5)(2,4)(3,6) x1 x2 x3 ≤ lex x5 x4 x6  (α2)
(1,6)(2,5)(3,4) x1 x2 x3 ≤ lex x6 x5 x4  (α3)
(1,3)(4,6) x1 x4 ≤ lex x3 x6 (c13)
(1,2,3)(4,5,6) x1 x2 x4 x5 ≤ lex x2 x3 x5 x6 (c123)
(1,3,2)(4,6,5) x1 x2 x4 x5 ≤ lex x3 x1 x6 x4 (c132)
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Elimination of Logically Implied SBCs

The first two SBCs

logically imply the last three SBCs

which can thus be eliminated:

• The last threeSBCs rule out some permutations of the three columns.

• But c12 ∧ c23 imposes a particular permutation and also rules out those other permutations.

In general:

• An m × n matrix with total row and column symmetry hasm! ⋅ n! symmetries.

• There are (at least) m! − m + n! − n logically implied SBCs, due to the transitivity of ≤ lex !

• Direction: Try the redundancy detection criteria of ILP, especially [Imbert & Van Hentenryck].

(1,2)(4,5) x1 x4 ≤ lex x2 x5 (c12)
(2,3)(5,6) x2 x5 ≤ lex x3 x6 (c23)

(1,3)(4,6) x1 x4 ≤ lex x3 x6 (c13)
(1,2,3)(4,5,6) x1 x2 x4 x5 ≤ lex x2 x3 x5 x6 (c123)
(1,3,2)(4,6,5) x1 x2 x4 x5 ≤ lex x3 x1 x6 x4 (c132)
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Contextual Simplifications in δ and σ (due to Frisch and Harvey)

Dir ection: How to mechanise these contextual internal simplifications?

Experimental Results

• Encouraging results even when only usingc12 , c23 , andr12 as SBCs,
due to the action of the actual problem constraints.

• Nevertheless: When does apolynomial number of SBCs suffice to break all / most symmetries?!

(1,2)(4,5) x1 x4 ≤ lex x2 x5 (c12)
(2,3)(5,6) x2 x5 ≤ lex x3 x6 (c23)
(1,4)(2,5)(3,6) x1 x2 x3 ≤ lex x4 x5 x6 (r12)
(1,6,2,4,3,5) x1 x2 x3 ≤ lex x6 x4 x5  (δ)
(1,5,3,4,2,6) x1 x2 x3 x4 ≤ lex x5 x6 x4 x2  (σ)
(1,4)(2,6)(3,5) x1 x2 x3 ≤ lex x4 x6 x5  (α1)
(1,5)(2,4)(3,6) x1 x2 x3 ≤ lex x5 x4 x6  (α2)
(1,6)(2,5)(3,4) x1 x2 x3 ≤ lex x6 x5 x4  (α3)
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Elimination of Domain-Dependent Implied SBCs

The number of implied SBCs grows as the domain size of the decision variables shrinks!

Conjecture: For a domain of size 2, it suffices to add the SBCs induced by the order 2 permutations.

Experimentally validated up to 6× 6 matrices.

Not true for domains of size 3: the constraintσ is necessary, but its permutation is of order 6.

Unfortunately, even the number of order 2 permutations is super-polynomial…

Direction: Will elimination of the implied order 2 SBCs leave a polynomial number of SBCs?

Direction: How to characterise the SBCs necessary for each domain size?

Direction: How to characterise the SBCs that break most of the symmetries?

Domain size c12 c23 r12 δ σ α1 α2 α3
2 Implied SBCs ✓ ✓ ✓ ✓ ✓

Minimum set ✗ ✗ ✗ ✗

Minimum set ✗ ✗ ✗ ✗

3 Implied SBCs ✓ ✓ ✓ ✓

Minimum set ✗ ✗ ✗ ✗ ✗

≥ 4 Implied SBCs
Minimum set ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
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6. Experimental Results

Enumerating all the 3× 3 matrices modulo total row and column symmetry,
in the absence of any actual problem constraints:

• 35 SBCs;

• 6 implied SBCs, by transitivity of ≤ lex ;

• 9 further implied SBCs, for domain sizes from 4 to at least 6, which canall be eliminated.

Run-times in seconds, under GNU Prolog, on a Sun SPARC Ultra station 10:

with all the
35 constraints

 without 15 implied constraints
 before internal
simplifications

 after internal
simplifications

domain size = 4

(8,240 matrices)

 Boolean≤ lex  11.0”    5.8”  2.1”
 linear ≤ lex    8.3”    4.5”  1.6”

domain size = 5

(57,675 matrices)

 Boolean≤ lex  61.0”  31.8”  12.4”
 linear ≤ lex  49.6”  26.7”  10.0”

domain size = 6

(289,716 matrices)

 Boolean≤ lex  269.0”  139.0”  56.1”
 linear ≤ lex  227.0”  122.6”  46.5”


