Motivation

- What is a matrix model?
- What are row and column symmetries?
- Why bother?

What is a Matrix Model?

- Constraint program that contains (one or more) matrices of decision variables.
- Benefits
 - Effective representation of a problem
 - Efficient solving of the model
 - Captures common modelling patterns

- Given **n** weeks and **n/2** periods for every week
 - schedule a match for every week and period.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

Each <w,p> corresponds to the match played on period p of week w

Diversity of Matrix Models

- Many problems in diverse domains can naturally be modelled and effectively solved using matrix models
- Combinatorial problems
 - BIBDs, magic squares, projective planes, ...
- Design
 - Rack configuration, template and slab design, ...
- Scheduling
 - Classroom, social golfer, sports scheduling, ...
- Assignment
 - Warehouse location, progressive party, ...

- ...

What are Row and Column Symmetries?

- In a CSP
 - Symmetry involves the variables, the values, or both
 - Maps each search state (partial assignment, solution, failure etc) into an equivalent one.
- In a matrix model
 - Rows and/or columns can represent objects which are indistinguishable and are therefore symmetric.
- We can permute any two rows or columns (or both).

- Weeks are indistinguishable
- Periods are indistinguishable

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

- Weeks are indistinguishable
- Periods are indistinguishable

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

- Weeks are indistinguishable
- Periods are indistinguishable

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

- Weeks are indistinguishable
- Periods are indistinguishable

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	3 vs 7	4 vs 7	3 vs 6	0 vs 2	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 4	0 vs 3	5 vs 7	1 vs 7	0 vs 6	5 vs 6
Period 3	4 vs 5	2 vs 6	1 vs 6	0 vs 4	3 vs 5	2 vs 7	0 vs 7
Period 4	6 vs 7	0 vs 5	2 vs 5	1 vs 2	4 vs 6	3 vs 4	1 vs 3

- Weeks are indistinguishable
- Periods are indistinguishable

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	3 vs 7	4 vs 7	3 vs 6	0 vs 2	1 vs 5	2 vs 4
Period 2				l '	1		
Period 3	4 vs 5	2 vs 6	1 vs 6	0 vs 4	3 vs 5	2 vs 7	0 vs 7
Period 4	6 vs	0 vs 5	2 vs 5	1 vs 2	+ vs 6	3 vs 4	1 vs 3

Why Bother?

- For **nxm** matrix with row and colum symmetry
 - there are n!*m! symmetries (super-exponentinal)
- It can be very expensive to search symmetric and failed branches of the search tree
- Eliminating all symmetries is not easy
 - Exact methods have to deal with very large number of symmetries
 - The effort required could easily be exponential
- Can we reduce many of the symmetries in a simplier way?

Our Contribution

- Identify an important class of symmetries that occur frequently in CSPs
 - A matrix of decision variables in which row and/or columns can be swapped.
- Show how simple constraints can be added to such matrix models to break these symmetries
- Extend our results to deal with
 - matrices with more than 2 dimensions
 - partial symmetries (ie, strict subsets of the rows/columns are symmetric)
 - symmetric values (e.g. teams in Sports Scheduling)

Overview of Rest of Talk

- Breaking Row and/or Column Symmetries
- Extensions
- Effectiveness via Experimental Results
- Breaking All Symmetries
- Conclusions and Future Work

Breaking Row (Column) Symmetry

Lexicographic Ordering (used to order dictionaries)

$$[A,B,C] \leq_{lex} [D,E,F]$$

- A<D or
- (A=D and B<E) or
- (A=D and B=E and C<F) or
- (A=D and B=E and C=F)

Breaking Row (Column) Symmetry

- Lexicographic ordering is total
- Forcing the rows to be lexicographically ordered breaks all row symmetry

lexicographic ordering

$$[A B C] \leq_{lex} [D E F] \leq_{lex} [G H I]$$

Α	В	С
D	Е	F
G	Н	Ι

anti-lexicographic ordering
$$[G\ H\ I] \leq_{lex} [D\ E\ F] \leq_{lex} [A\ B\ C]$$

Breaking Row and Column Symmetries

- Breaking both row and column symmetries is difficult
- Rows and columns intersect
- After constraining the rows to be lexicographically ordered
 - we distinguish the columns
 - the columns are not symmetric anymore!

Good News ©

- A symmetry class is an equivalence class of assignments
 - two assignments are equivalent if there is a symmetry mapping one assignment into the other
- Each symmetry class of assignments has at least one element where both the rows and the columns are lexicographically ordered
 - But there may be no element with rows lex ordered and columns anti-lex ordered
- To break row and column symmetries, we can insist that the rows and columns are both lexicographically ordered (double-lex)

Bad news 🕾

- A symmetry class of assignments may have more than one element where both the rows and the columns are lexicographically ordered
- Double-lex does not break all row and column symmetries

0	1			0	1
0	1	swap the columns swap row 1 and row 3		1	0
1	0		·	1	0

How Effective is Double-lex?

BIBD problem <7, 7, 3, 3, 1>

Obj₁ Obj₇ $\Sigma = 3$ Block₁ $\Sigma = 3$ Block₇ $\Sigma = 3$ $\Sigma = 3$

Example: <7, 7, 3, 3, 1>

Block₁

(Obj ₁ Obj ₇								
	0	1	1	0	0	1	0		
	1	0	1	0	1	0	0		
	0	0	1	1	0	0	1		
	1	1	0	0	0	0	1		
	0	0	0	0	1	1	1		
	1	0	0	1	0	1	0		
	0	1	0	1	1	0	0		

Block₇

■ Example: <7, 7, 3, 3, 1>

Block ₁
Block ₇

(Obj ₁ (
	0	1	1	0	0	1	0		
	1	0	1	0	1	0	0		
	0	0	1	1	0	0	1		
	1	1	0	0	0	0	1		
	0	0	0	0	1	1	1		
	1	0	0	1	0	1	0		
	0	1	0	1	1	0	0		

Example: <7, 7, 3, 3, 1>

		Obj ₁	<u>L</u>		
	Block ₁	0	1	1	
		1	0	1	
		0	0	1	
		1	1	0	
		0	0	0	(
		1	0	0	
	Block ₇	0	1	0	
7					

Obj₇

Experimental Results

- Double-lex reduces the total number of solutions from the orders of millions to the orders of tens
- Double-lex breaks much more symmetry than
 - imposing lexicographic ordering constraints only on the rows
 - imposing lexicographic ordering constraints only on the columns
 - setting the first row and column

Extensions I: Higher Dimensions

Given an n-dimensional matrix, at any dimension exhibiting symmetry, insist that the slices are lexicographically ordered

Extensions II: Partial Symmetry

- When strict subsets of the rows/columns are indistinguishable
- Impose lexicographic ordering constraints only on the rows/columns of the subsets

Extensions III: Value Symmetry

- The values are indistinguishable
- Values of variables can freely be permuted
- Example
 - Vertex Colouring
 - Variables: Vertices
 - Values: Colours
 - Assign a colour to every vertex such that neighbouring vertices are assigned different colours

Extensions III: Value Symmetry

indistingusihable values

ındı	ctinc	บาดเห	anıa.	ravic
IIIUI	SULL	เนอแห	avic	rows
	3	, •. •	J	

X	Υ	Z
01	0	0
01	01	0
0	01	1

$$\Sigma=1$$
 $\Sigma=1$ $\Sigma=1$

$$V_1 \le _{lex} V_2 \le _{lex} V_3$$

Breaking All Symmetries

- It is possible to break all symmetry when
 - all values in the matrix are distinct

Example application? Magic squares?

Breaking All Symmetries

- It is possible to break all symmetry when
 - every row of a 0/1 matrix must have a single 1
- Many Problems
 - Slab design, rack design, ...

Why?

- The 1 in the next row must occur either directly below or one column to the left
- The only freedom is how many consecutive rows have 1s in the same column
- We break this symmetry by constraining the columns to be ordered by their sums

Breaking All Symmetries

- It is possible to break all symmetry when
 - every row sum is different, but we do not know the sums

- Ordering row sums breaks all row symmetry
 - The columns are still indistinguishable
- Lexicographic ordering columns then breaks all the symmetries

Conclusions

- Many CSPs can be naturally modelled by multidimensional matrices of decision variables.
- Row and column symmetries are very common in matrix models.
- An nxm matrix with row and column symmetries exhibits super-exponential number of symmetries
- Breaking all such symmetries is difficult
 - No one has an effective way of dealing with all row and column symmetries

Conclusions (cont'd)

- Constraining both the rows and columns to be lexicographically ordered breaks considerable amount of symmetries, if not all
- Posing lexicographic ordering constraint
 - GAC on \leq lex is O(n)
 - "Global Constraints for Lexicographic Orderings" by Ian Miguel on Thursday!

Conclusions (cont'd)

- Results can be extended cope with
 - symmetries in higher dimensions
 - partial symmetries
 - symmetric values
- It is sometimes possible to break all row and column symmetries

Future Work

- After imposing double-lex, how many symmetries remain?
- Is it worth trying to break the remaining symmetries?
- Can we devise DVOs to work well with (double-)lex?
- What other orderings can we impose?