
Stefano Di Alesio1,2

Arnaud Gotlieb1

Shiva Nejati1

Lionel Briand1,2

SweConsNet 2012
14/05/2012

emcelettronica.com

1Simula Research Laboratory
2University of Luxembourg

Testing Deadline Misses for Real-Time Systems
Using Constraint Optimization Techniques

We present a technique to use Constraint
Optimization to test deadline misses for RTES

Evaluation, Experience
and Current Work

Stefano Di Alesio - 2/20

Performance Requirements (PRs) vs.
Real Time Embedded Systems (RTES)

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑒𝑥𝑒𝑐(𝑗) 2 2 2

𝑝(𝑗) 100 101 102

𝑑𝑙(𝑗) 3 2 3

max⁡_𝑖𝑎(𝑗) 3 2 3

min⁡_𝑑𝑟(𝑗)
max⁡_𝑑𝑟(𝑗) 3 2 3

Using Constraint Programming for
Verification and Validation of RTES

RTES are typically safety-critical, and thus
bound to meet strict Performance Requirements

Stefano Di Alesio - 3/20

control-link.net

Performance Requirements are the most
difficult requirements to verify

Stefano Di Alesio - 4/20

They constraint the entire system’s
behavior and thus can’t be checked locally

They depend on the environment the
software interacts with (hw devices)

They depend on the computing
platform on which the software runs

capitalpaintinginc.com

libelium.com

pclaunches.com

http://www.capitalpaintinginc.com/illinois-commercial-residential-painters/uploads/2010/10/chicago-oil-refinery-painting.png

RTES have concurrent interdependent
tasks which have to finish before their
deadlines

Stefano Di Alesio - 5/20

Each task can trigger other tasks, and can share
computational resources with other tasks

Each task has a deadline (i.e., latest
finishing time) w.r.t. its arrival time

𝒓𝟏𝟐

𝑎00

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑎𝑡00

𝑎𝑡20

𝑑𝑙20

𝑎𝑡10
𝑑𝑙00

𝑑𝑙10

𝑻

𝑎01

𝑎10

𝑎20

𝑎00

𝑎𝑡01

Some task properties depend on the
environment, some are design choices

Particular sequences of arrival times of tasks
can determine deadline miss scenarios

Stefano Di Alesio - 6/20

𝒋𝟎, 𝒋𝟏, 𝒋𝟐 arrive at 𝒂𝒕𝟎, 𝒂𝒕𝟏, 𝒂𝒕𝟐 and
must finish before 𝒅𝒍𝟎, 𝒅𝒍𝟏, 𝒅𝒍𝟐

𝒋𝟏 can miss its deadline 𝒅𝒍𝟏
depending on when 𝒂𝒕𝟐 occurs!

𝑎0

𝑎1

𝑎1

𝑎2

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑎0

𝑎1

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑎0

𝑎𝑡0

𝑻

𝑎𝑡1

𝑎𝑡2

𝑑𝑙1

𝑑𝑙2

𝑑𝑙0

𝑎𝑡0

𝑎2

𝑎𝑡2

𝑑𝑙2
𝑎𝑡1

𝑑𝑙0

𝑑𝑙1

𝑻

Stefano Di Alesio - 7/20

A sequence of arrival times identified by our approach as
likely to lead to a deadline miss defines a Stress Test Case

Arrival times can be tuned
during software testing

Arrival times for tasks in a RTES
depend on the environment

We are looking for sequences of arrival times
maximizing the likelihood of deadline misses

Real Time Embedded System Real Time Embedded System

𝑎1 = 1
𝑎2 = 3
𝑎3 = 3
𝑎4 = 7

𝑎1 = 1
𝑎2 = 3
𝑎3 = 4
𝑎4 = 7

Stefano Di Alesio - 8/20

This problem has been well studied, but
each existing approach has its weaknesses

Schedulability

Theory
Model

Checking
Genetic

Algorithms
Basis Mathematical

Theory
System

Modeling
System

Modeling
Background WCET, Queuing

Theory, etc.
Fixed-point

Computation
Meta-Heuristic

Search
Key Features Theorems [1] Graph-based

/ Symbolic [2]
Non-Complete

Search [3]
Weaknesses Assumptions,

Multi-Core
Complex
Modeling

Non-Exhaustive
Search

[1] J. W. S. Liu, “Real-Time Systems”. Prentice Hall, 2000
[2] M. Mikucionis, K. Larsen, B. Nielsen, J. Illum, A. Skou, S.Palm, J.Pedersen, and P. Hougaaard, “Schedulability analysis using
UPPAAL: Herschel-Planck case study”, in ISoLA, 2010
[3] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time
systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Performance
Requirements

System Design
& Platform

Optimization
Engine

Stress Test Cases

input

output

RTES

Stefano Di Alesio - 9/20

Stress Test Cases are the optimal
solutions for the constraint program

Performance Requirements are
modeled as objective functions

The System is modeled through
constants, variables and constraints

We model the RTES Design, Platform and PRs
through a Integer Linear Program solved by CPLEX

Stefano Di Alesio - 10/20

Our approach tries to mitigate some
weaknesses found in related works

[1] J. W. S. Liu, “Real-Time Systems”. Prentice Hall, 2000
[2] M. Mikucionis, K. Larsen, B. Nielsen, J. Illum, A. Skou, S.Palm, J.Pedersen, and P. Hougaaard, “Schedulability analysis using
UPPAAL: Herschel-Planck case study”, in ISoLA, 2010
[3] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time
systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Schedulability

Theory
Model

Checking
Genetic

Algorithms
Basis Mathematical

Theory
System

Modeling
System

Modeling
Background WCET, Queuing

Theory, etc.
Fixed-point

Computation
Meta-Heuristic

Search
Key Features Theorems [1] Graph-based

/ Symbolic [2]
Non-Complete

Search [3]
Weaknesses Assumptions,

Multi-Core
Complex
Modeling

Non-Exhaustive
Search

Our

Approach
System

Modeling
Mathematical
Optimization

Complete
Search

Performance /
Scalability (?)

Stefano Di Alesio - 11/20

Assumption 2: The context switching time
between tasks is negligible w.r.t. 𝒕𝒒

Assumption 1: The scheduler checks tasks
for preemptions at regular intervals (𝒕𝒒)

Tasks and Platform design properties are
modeled through constants

// T: Observation interval (range of

time quanta)

int tq = ...;

range T = 0..tq-1;

// c: Number of Processor Cores

int c = ...;

// n: Number of tasks

int n = ...;

range J = 0..n-1;

tuple TaskExecution {

int task;

int execution;

}

int priority[J] = ...;

int task_deadline[J] = ...;

int max_interarrival_time[J] = ...;

int min_duration[J] = ...;

int max_duration[J] = ...;

int triggers[J, J] = ...;

int dependent[J, J] = ...;

Stefano Di Alesio - 12/20

𝒆𝒇𝒆(𝒂) ≝ earliest time when 𝒂 could start if
an unlimited number of cores was available

Tasks and Platform real time properties
are modeled through variables

dvar int arrival_time[a in A] in T;

dvar int duration[a in A] in

 min_duration[a.task]..max_duration[a

 .task];

dvar int eligible_for_execution[a in A]

 in est[a]..lst[a];

dvar int start[a in A] in est[a]..lst[a];

dvar int end[a in A] in eet[a]..let[a];

dvar int task_execution_deadline[a in A]

 in T;

dvar int deadline_miss[a in A] in -

 tq..tq;

dvar int active[a in A, t in T] in 0..1;

𝒂𝒄𝒕𝒊𝒗𝒆 𝒂, 𝒕 ≝ 𝟏 if 𝒂 is executing at time 𝒕
𝟎 otherwise [1]

0 1 2 3 4 5 6 7

𝑎0 1 0 0 0 0 0 1 0
𝑎1 0 0 0 0 0 0 0 1
𝑎2 0 1 1 0 0 1 0 0
𝑎3 0 0 0 1 1 0 0 0

Time quanta →

Ta
sk

 e
xe

cu
tio

ns

[1] C.L. Pape and P. Baptiste, “Resource Constraints for preemptive job-shop Scheduling”, Constraints, vol. 3, no. 4, pp. 263-287, 2098

Stefano Di Alesio - 13/20

1. Well-Formedness: relations directly
following from variables definitions

The Platform Scheduler behavior is
modeled through 5 sets of constraints

/* I. Well-formedness constraints */

forall(a in A) {

 wf3: eligible_for_execution[a] <=

 start[a];

 wf4: start[a] <= end[a];

 if(prevc(A, a).task == a.task)

 wf6: eligible_for_execution[a] ==

 maxl(arrival_time[a],

 end[prevc(A, a)]);

 else

 wf7: eligible_for_execution[a] ==

 arrival_time[a];

 wf8: duration[a] == sum(t in T)

 active[a, t];

 forall(t in T) {

 wf9: t == start[a] => active[a, t]

 == 1;

 wf10: t == end[a] - 1 => active[a,

 t] == 1;

 wf11: t <= start[a] - 1 =>

 active[a, t] == 0;

 wf12: t >= end[a] => active[a, t]

 == 0;

 }

Stefano Di Alesio - 14/20

2. Temporal Ordering: executions,
triggering and resource usage relations

The Platform Scheduler behavior is
modeled through 5 sets of constraints

/* II. Temporal Ordering constraints */

forall(a in A) {

 forall(a1 in A : a1.task == a.task &&

 a1.execution == a.execution-1)

 to1: start[a] >= end[a1];

 forall(a1 in A : triggers[a.task,

 a1.task] == 1)

 to2: end[a] == arrival_time[a1];

 forall(a1 in A : dependent[a.task,

 a1.task] == 1) {

 to3: start[a] != start[a1];

 to4: start[a] <= start[a1]-1 =>

 start[a1] >= end[a];

 }

 }

3. Multicore: computing
capacity of the platform

/* III. Multi-core Constraint */

forall(t in T)

 mc: sum(a in A) active[a, t] <= c;

Stefano Di Alesio - 15/20

The Platform Scheduler behavior is
modeled through 5 sets of constraints

4. Preemptive Scheduling: priority-
driven preemptive scheduling behavior

/* IV. Preemptive Scheduling Constraints */

forall(t in T, a0 in A, a1 in A)

 ps2: (active[a0, t] == 0 &&

 active[a1, t] == 1 &&

 sum(a2 in A) active[a2, t] == c &&

 eligible_for_execution[a0] <= t &&

 end[a0] >= t+1)

 =>

 (priority[a1.task] >=

 priority[a0.task]);

5. Good CPU Usage: scheduler’s CPU
Usage optimizations

/* V. Good CPU Usage Constraints */

forall(a in A, t in T)

 gcu1: (sum(a1 in A) active[a1, t]<=c-1)

 =>

 (active[a, t] == 1 ||

 eligible_for_execution[a]>= t+1 ||

 end[a] <= t);

forall(a0 in A, a1 in A, t in T : t < tq-1)

 gcu2: (active[a0, t] == 1 &&

 active[a0, t+1] == 0)

 =>

 (end[a0] == t+1 ||

 (active[a1, t+1] == 1 =>

 priority[a1.task] >=

 priority[a0.task]+1));

Stefano Di Alesio - 16/20

The Performance Requirement is modeled
as an objective function to maximize

The objective function is a
counter for deadline misses

wf13: deadline_miss[a] == end[a] -

 task_execution_deadline[a];

maximize

 sum(a in A)(maxl(0, minl(1, deadline_miss[a])));

Main limitation: each deadline miss is
given the same weight in the sum

Potential alternative [1]: non-linear
objective function to weight deadlines

𝒇 ≝ 𝒎𝒂𝒙(𝟎,𝒎𝒊𝒏 𝟏, 𝒆 𝒂𝒊 − 𝒅𝒍 𝒂𝒊)

𝒊

𝒇 ≝ ⁡ 𝟐𝒆 𝒂𝒊 −𝒅𝒍(𝒂𝒊)

𝒊

[1] L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early schedulability analysis and stress testing in real-time
systems”, Genetic Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

Stefano Di Alesio - 17/20

In this case, we found a solution where both
executions of task 𝒋𝟎 miss their deadline

Correctness was evaluated analyzing the results
computed starting from a set of toy examples

arrival_time (at): [0 3 2 4 0 3]

duration (dr): [3 3 2 2 3 3]

eligible_for_execution (efe): [0 7 2 4 0 3]

start (s): [0 7 2 4 0 3]

end (e): [7 10 4 6 3 6]

task_execution_deadline (edl): [3 6 4 6 3 6]

deadline_miss: [4 4 0 0 0 0]

active: [[1 1 0 0 0 0 1 0 0 0]

 [0 0 0 0 0 0 0 1 1 1]

 [0 0 1 1 0 0 0 0 0 0]

 [0 0 0 0 1 1 0 0 0 0]

 [1 1 1 0 0 0 0 0 0 0]

 [0 0 0 1 1 1 0 0 0 0]]

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑒𝑥𝑒𝑐(𝑗) 2 2 2
𝑝(𝑗) 100 101 102
𝑑𝑙(𝑗) 3 2 3

max⁡_𝑖𝑎(𝑗) 3 2 3
min⁡_𝑑𝑟(𝑗)
max⁡_𝑑𝑟(𝑗) 3 2 3

Stefano Di Alesio - 18/20

We evaluated Performance

by increasing 𝒏 and 𝒕𝒒

Most optimal solutions were found shortly after the search

started, even if the search took a much more time to terminate

It took a significant amount of time

to find all optimal solutions

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑒𝑥𝑒𝑐(𝑗) 2 2 2

𝑝(𝑗) 100 101 102

𝑑𝑙(𝑗) 3 2 3

max⁡_𝑖𝑎(𝑗) 3 2 3

min⁡_𝑑𝑟(𝑗)
max⁡_𝑑𝑟(𝑗) 3 2 3

Performance was evaluated by measuring
solving times with increasing input size

Stefano Di Alesio - 19/20

Problem: it’s hard to compute the 𝒂𝒄𝒕𝒊𝒗𝒆
matrix (𝟐𝒏∗𝒆𝒙𝒆𝒄 𝒋𝒏 ∗𝒕𝒒 possible values)

Our current work relies on improving the
approach scalability with respect to 𝒏 and 𝒕𝒒

Idea: we don’t really need the whole
matrix, but just to know where the 𝟏’s are!

0 1 2 3 4 5 6 7

𝑎0 1 0 0 0 0 0 1 0
𝑎1 0 1 1 1 0 1 0 0
𝑎2 0 0 0 0 1 0 0 0

0 1 2 3 4 5 6 7

𝑎0 1 1
𝑎1 1 1 1 1
𝑎2 1

running in
𝑎0 [0,1), [6,7)

𝑎1 [1,4), [5,6)
𝑎2 [4,5)

𝒋𝟎 𝒋𝟏 𝒋𝟐

𝑒𝑥𝑒𝑐(𝑗) 2 2 2

𝑝(𝑗) 100 101 102

𝑑𝑙(𝑗) 3 2 3

max⁡_𝑖𝑎(𝑗) 3 2 3

min⁡_𝑑𝑟(𝑗)
max⁡_𝑑𝑟(𝑗) 3 2 3

In summary, Constraint Optimization is a promising
approach to derive Stress Test Cases for RTES

System Platform, Tasks and PRs
are modeled in a Constraint
Program

Solving the CP finds tunable values
more likely to stress test the system

Stefano Di Alesio - 20/20

Questions?

istockphoto.com

Significant advantages over other
approaches encourage future work

