
Constraints on Set Variables for
Constraint-based Local Search

(MSc thesis at Uppsala University)

Rodrigo Gumucio

SAIS yearly workshop 2012

May 14, Örebro, Sweden
(Video link from La Paz, Bolivia)

Motivating problem: The Social Golfer problem

Imagine that in a golf club, g · s players meet once a week in
order to play golf in g groups of size s.

The challenge is to schedule a tournament over w weeks such
that any two players meet in at most one week.
An instance of this problem is denoted by

golf-g·s-w
where

g is the number of groups

s is the size of each group

w is the number of weeks

g·s is the total number of players

The figure above shows a solution to golf-3·3-4.

golf-g·s-w is a constraint problem

The social golfer problem can be modelled with constraints:
Each of the g · s players plays in exactly one group each week.
All g groups of a week are of the same size s.
Any two players meet in at most one week.

It can be modelled with either integer or set variables, and hence
with either integer or set constraints, respectively.

A set model is given by:
A 2d matrix of set variables:
Playersgw ≡ the set of players
meeting in group g of week w .
A new ATMOST1(Players)
set constraint to ensure any
two players meet at most once.

An integer model is given by
A 3d matrix of int variables:
Playergsw ≡ the player
of slot s in group g of week w .
A SOCIALTOURNAMENT(Player)
integer constraint to ensure any
two players meet at most once.

golf-g·s-w integer and set models

Consider again the golf-3·3-4 instance:
Model with set variables:

Playersgw has 3 · 4 set vars.
A single set constraint:
ATMOST1(Players).
No need to introduce a concept
outside the problem formulation.

Model with int variables:

Playergsw has 3 · 3 · 4 int vars.
A single integer constraint:
SOCIALTOURNAMENT(Player).
Needs to introduce the concept
of player slot within a group.

Constraint-based local search

Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.
It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

To find solutions using local search:
1 (Randomly) initialise all the variables.
2 Re-assign a few variables: local move.
3 If the new assignment is not good

enough, then go to step 2.

Constraint-based local search

Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.
It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

To find solutions using local search:
1 (Randomly) initialise all the variables.
2 Re-assign a few variables: local move.
3 If the new assignment is not good

enough, then go to step 2.

Constraint-based local search

Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.
It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

To find solutions using local search:
1 (Randomly) initialise all the variables.
2 Re-assign a few variables: local move.
3 If the new assignment is not good

enough, then go to step 2.

Constraint-based local search

Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.
It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

To find solutions using local search:
1 (Randomly) initialise all the variables.
2 Re-assign a few variables: local move.
3 If the new assignment is not good

enough, then go to step 2.

Constraint-based local search

Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.
It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

To find solutions using local search:
1 (Randomly) initialise all the variables.
2 Re-assign a few variables: local move.
3 If the new assignment is not good

enough, then go to step 2.

Constraints in constraint-based local search

Constraints are used mainly to:
Guide the local search to promising regions in the search space.
Determine when a given assignment is regarded as a solution.

Constraints are implemented by a set of functions:
Violation functions help to select a promising variable
(of a promising constraint) to re-assign in a move.
Differentiation functions help to make a move in a good direction
for a constraint or variable.

The violation functions for ATMOST1
basically count the number of times
two players meet after the first
allowed time.
ATMOST1 needs a differentiation
function for swap moves.
These functions must be very fast.

Main contributions

Solid evidence that, using constraint-based local search, solving
problems modelled with sets has the following advantages:

It can reduce the solution time.
It can even be a necessity in terms of memory.

The design and implementation of an extension of a
constraint-based local search solver (namely Comet) by:

Adding the notion of set constraint.
Providing the notion of set constraint system
(i.e., a constraint combinator for constraints on set variables).

Comet’s local search architecture

Comet is a language and tool for modelling and solving
constraint problems, using systematic or local search.
It represents the state-of-the art in constraint-based local search.

Comet’s architecture

Unfortunately, it does not support
set constraints for local search.
Fortunately, it does support
user-defined invariants on set
incremental variables.

An extension is possible: The architecture is open,
and set constraints can be built on top of set invariants!
Two new features are needed at the constraint layer:

Support for user-defined set constraints.
Support for a mechanism to combine such constraints,
that is at least one constraint combinator.

Extension of Comet’s local search

The extension consists of:

A SetConstraint<LS>

interface together with an
abstract class that provides a
mechanism to define set
constraints.
A set constraint system that
provides a mechanism to
combine set constraints.

interface SetConstraint <LS> {
...
var{set{int}}[] getSetVariables ();

var{int} violations ();
var{int} violations(var{set{int}} s);

int getSwapDelta(var{set{int}} s, int u,
int v, var{set{int}} t);

...
}

To define a set constraint, extend and specialise the abstract
class (named UserSetConstraint<LS>).
The provided constraint combinator (i.e., the set constraint
system) could be done only through a tricky implementation.
The full source code is in my MSc thesis.

The Social Golfer problem: the ATMOST1 constraint

My ATMOST1 constraint is the set version of the SOCIALTOURNAMENT
integer constraint of [Dynamic Decision Technologies, 2010].
The essence of the integer version: count the number of times players
a and b meet, denote it by #(a,b), and maintain it incrementally.
The same can be done with set variables: keep the set of groups where
a and b meet, denote it by m(a,b), and maintain it incrementally.
Note: |m(a,b)| = #(a,b).
The violation and differentiation functions are based on these values.
The constraint is satisfied whenever |m(a,b)| ≤ 1 for all a and b.

The Social Golfer problem: search

The tabu search algorithm of [Dynamic Decision Technologies, 2010]
(based on [Dotú and Van Hentenryck, 2007]) is adapted for the set
approach:
...
while (violations > 0 && (System.getCPUTime () - t0) < timeout)

selectMin(w in Weeks ,

g1 in Groups,s1 in Slots: conflict[w,g1,s1] > 0,
g2 in Groups: g2 != g1, s2 in Slots,

select golfers

delta = tourn.getSwapDelta(golfer[w,g1,s1], golfer[w,g2,s2]) :
tabu[w,golfer[w,g1,s1],golfer[w,g2,s2]] < it || violations + delta < best)

(delta) {
golfer[w,g1,s1] :=: golfer[w,g2,s2]; ...

...
while(violations > 0 && (System.getCPUTime () - t0) < timeout)

selectMin(w in Weeks ,

g1 in violatedGroups[w], g2 in Groups: g2 != g1, select groups

s1 in golfersInConflict[w,g1],
s2 in group[w,g2],

select golfers

delta = tourn.getSwapDelta(group[w,g1], s1, s2, group[w,g2]):
((tabu[w,s1 ,s2] < it) || violations + delta < best))
(delta){
group[w,g1]. delete(s1); group[w,g2]. insert(s1);
group[w,g2]. delete(s2); group[w,g1]. insert(s2); ...

The Social Golfer problem: results over 25 runs
Run time (milliseconds)

instance integer model set model
g-s-w n average min. max. std.dev. n average min. max. std.dev.
6-3-8 25 166367.08 7447 549890 152743.43 24 378689.79 64166 1165813 324722.24
6-4-6 25 72048.84 2958 229617 61596.19 25 49789.28 16503 190741 50348.29
6-5-6 0 > timeout - - - 3 360961.33 2291 714505 356134.68
7-3-9 25 7847.88 780 24463 5118.96 25 3134.92 2685 5575 802.60
7-4-7 24 352799.88 1907 831812 205866.61 25 196922.04 3726 423436 127522.16
7-6-4 25 85.80 65 126 26.44 25 71.12 69 80 2.63

8-3-10 25 1100.08 444 2834 502.67 25 348.64 286 490 38.19
8-4-8 25 694801.16 17162 1306108 512511.30 25 73475.88 1680 319205 76351.06
8-5-6 25 357.84 166 1237 286.40 25 167.80 73 441 104.77
8-6-5 25 2622.16 678 8278 1870.69 25 1491.72 619 2788 469.61
8-7-4 25 443.28 197 1016 226.10 25 451.96 283 1221 225.39
8-8-5 0 > timeout - - - 8 30385.25 6668 188221 63817.12

9-3-12 5 815324.00 28589 1577964 574503.40 23 791874.87 6454 1659081 544002.65
9-4-9 25 347040.68 111125 1136076 268002.54 25 38815.56 6211 66977 15127.62
9-5-7 25 8130.24 686 25774 7055.40 25 1129.12 1099 1183 19.26
9-6-6 25 245999.64 20040 875592 238568.03 25 16756.64 4404 43071 10762.36
9-7-5 25 23233.52 20090 38746 4959.37 25 20025.24 1550 91299 28131.22
9-8-4 25 2325.52 1857 3563 584.27 25 3205.56 432 7740 2588.93
9-9-5 3 496988.00 44865 748887 392401.56 0 > timeout - - -

10-3-13 25 35562.04 4894 188130 42931.09 25 7534.56 1312 36976 10748.78
10-4-10 25 960130.00 42674 1591866 535777.30 25 33905.04 2254 121984 34411.04

10-5-8 25 125212.08 9853 626327 158165.31 25 5563.68 1815 24087 5322.64
10-6-7 0 > timeout - - - 6 710276.33 198163 1705522 624786.04
10-7-5 25 435.32 429 446 4.59 25 405.76 394 438 12.04
10-8-5 2 950746.50 616029 1285464 473362.03 12 729656.17 41395 1633916 489606.14
10-9-4 25 26255.20 1860 143770 30612.23 25 17792.92 1431 49714 13697.91

The Social Golfer problem: solved instances

s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10
g w δ(w) w δ(w) w δ(w) w δ(w) w δ(w) w δ(w) w δ(w) w δ(w)

6 8 0 6 0 6 0 3 0 - - - - - - - -
7 9 0 7 0 6 −1 4 −1 8 0 - - - - - -
8 10 0 8 0 6 0 5 −3 4 0 5 −4 - - - -
9 12 0 9 0 7 0 6 −3 5 0 4 0 5 −5 - -

10 13 0 10 0 8 0 7 +1 5 0 5 +1 4 0 3 0

The δ(w) ≥ 0 values are relative [Dotú and Van Hentenryck, 2007],
which uses the same meta-heuristic; the negative ones are relative
the state of the art.

Two instances not solved by [Dotú and Van Hentenryck, 2007] were
solved (as by [Cotta et al., 2006] and [Harvey and Winterer, 2005]):

golf-10-6-7

golf-10-8-5

Schur’s problem

A set T of integers is sum-free if a,b ∈ T → a + b 6∈ T .
Example: {1,3,5}. Counterexamples: {1,3,4} and {1,2}.
Schur’s problem, denoted schur-k-n, is about finding a partition
of the set {1, . . . , n} into k sum-free sets.
Let S(k) denote the largest such n.
S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44, but S(5) is unknown.
Example: S(2) = 4 as {1,2,3,4} = {1,4} ∪ {2,3}.
Modelling this problem with integer variables will not scale:
A set model requires k SUM-FREE constraints, while
an integer model requires O

(
k · n2) SUM-FREE constraints.

To solve this problem with constraint-based local search:
A SUM-FREE set constraint is needed.
A tabu-search meta-heuristic is used for simplicity.

Schur’s problem: results

GC memory usage (KB)
instance integer model set model

o n average min. max. std.dev. n average min. max. std.dev.
3-13 25 31015.56 21224 37010 5209.47 25 18371 16955 18550 487.42
4-37 25 244420.28 161948 304502 46818.22 23 18295 17020 19334 559.48
4-38 25 258275.08 178221 319811 45790.06 18 18039 17078 19690 846.86
4-39 21 272206.86 200513 336613 49212.87 17 18777 17622 19685 493.68
4-40 7 277904.29 200637 331583 50458.18 5 17745 17275 18714 582.44
4-41 7 286657.71 210572 346756 56444.48 2 19155 18902 19408 357.80
4-42 6 327303.50 255207 364786 45433.86 1 17817 17817 17817 -
4-43 2 300813.00 239060 362566 87331.93 1 17401 17401 17401 -
4-44 1 396890.00 396890 396890 - 1 18214 18214 18214 -

VM memory usage (KB)
instance integer model set model

o n average min. max. std.dev. n average min. max. std.dev.
3-13 25 62914.56 32768 65536 9073.05 25 32768 32768 32768 0.00
4-37 25 492830.72 262144 524288 86943.33 23 32768 32768 32768 0.00
4-38 25 513802.24 262144 524288 52428.80 18 32768 32768 32768 0.00
4-39 21 524288.00 524288 524288 0.00 17 32768 32768 32768 0.00
4-40 7 524288.00 524288 524288 0.00 5 32768 32768 32768 0.00
4-41 7 524288.00 524288 524288 0.00 2 32768 32768 32768 0.00
4-42 6 524288.00 524288 524288 0.00 1 32768 32768 32768 -
4-43 2 524288.00 524288 524288 0.00 1 32768 32768 32768 -
4-44 1 524288.00 524288 524288 - 1 32768 32768 32768 -

Schur’s problem: solved instances

Problem instances require less memory using the set model.
Both the integer and set models find the best solutions to the
closed instances, that is Schur numbers up to S(4) = 44.
Unfortunately, the advantage in memory consumption is not
enough to find S(5), which thus remains open.

Steiner triple systems

A similar experiment was done for Steiner triple systems.
As expected, the set approach required much less memory.
Instances much larger than with an integer model are solved.
Check my MSc thesis for details.

Conclusion and contributions

I have demonstrated that set variables for constraint-based local
search are not only a convenience for faster & higher-level modelling.
Set variables, and hence set constraints, can be necessary because
solutions to problem instances with integer variables:

may not be found otherwise,
would not fit into memory, or
take much more time to be solved.

I have also contributed an extension of the constraint-based local
search back-end of Comet to support set constraints.

My MSc thesis is at
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159180.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159180

Bibliography

Cotta, C., Dotú, I., Fernández, A., and Van Hentenryck, P. (2006).
Scheduling social golfers with memetic evolutionary
programming.
In Hybrid Metaheuristics, volume 4030 of LNCS, pages 150–161.

Dotú, I. and Van Hentenryck, P. (2007).
Scheduling social tournaments locally.
AI Communications, 20(3):151–162.

Dynamic Decision Technologies (2010).
Comet tutorial (version 2.1.1), section 21.2.

Harvey, W. and Winterer, T. (2005).
Solving the MOLR and social golfers problems.
In Proceedings of CP’05, volume 3709 of LNCS, pages 286–300.

