Constraints on Set Variables for
Constraint-based Local Search
(MSc thesis at Uppsala University)

Rodrigo Gumucio

SAIS yearly workshop 2012

May 14, Orebro, Sweden

(Video link from La Paz, Bolivia)

Motivating problem: The Social Golfer problem

@ Imagine that in a golf club, g - s players meet once a week in
order to play golf in g groups of size s.
4 weeks

[E23) @59 209)|[E20) E53) (FE0)|urmament for

[Eea Eeg Eo9)Ees Eeg) Gad)| :3’:?3;:.%53':

@ The challenge is to schedule a tournament over w weeks such
that any two players meet in at most one week.
@ An instance of this problem is denoted by
golf-g-s-w
where
g is the number of groups
s is the size of each group
w is the number of weeks
gs is the total number of
@ The figure above shows a solution to golf-3-3-4.

golf-g-s-w is @ constraint problem

@ The social golfer problem can be modelled with constraints:
e Each of the g - s players plays in exactly one group each week.
@ All g groups of a week are of the same size s.
e Any two players meet in at most one week.
@ It can be modelled with either integer or set variables, and hence
with either integer or set constraints, respectively.

A set model is given by: An integer model is given by
@ A 2d matrix of set variables: @ A 3d matrix of int variables:
Playersqgy = the Playergsy = the
meeting in group g of week w. of slot s in group g of week w.
@ A new ATMOST1(Players) @ A SOCIALTOURNAMENT(Player)
set constraint to ensure any integer constraint to ensure any

two players meet at most once. two players meet at most once.

golf-g-s-w integer and set models

Consider again the golf-3-3-4 instance:

Model with(set)variables:

[v @36 6|[@@e)
[v@a)[2ee)|leeas)
[veellaac|lasa]
[v3e0lleealleee]

@ Playersgy has 3 - 4 set vars.

@ A single set constraint:
ATMosT1(Players).

@ No need to introduce a concept

outside the problem formulation.

Model with @ variables:

0 @ O
@g@ @g @@
0.0 g@@ g@,@
0 090
o® 0% 0%

@ Playergsy has 3 - 3 - 4 int vars.

@ A single integer constraint:
SOCIALTOURNAMENT(Player).

@ Needs to introduce the concept
of player slot within a group.

Constraint-based local search

@ Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.

@ It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

violation = 13

Constraint-based local search

@ Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.

@ It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

Best A = -5

~—

violation = 13
swap

Constraint-based local search

@ Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.

@ It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

violation =8

Constraint-based local search

@ Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.

@ It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

swap
Best A = -8

I.‘#-—_'—-\\

violation =8

Constraint-based local search

@ Constraint-based local search is a useful technique to find
solutions to constraint problems using stochastic local search.

@ It trades the completeness and quality of a systematic search
technique (like constraint programming) for speed and scalability.

violation =0

@ To find solutions using local search: .';_ o OR
T . . | |
@ (Randomly) initialise all the variables. Poe 0%
@ Re-assign a few variables: local move. <A .2_\,!

© If the new assignment is not good
enough, then go to step 2.

- ; e)
Local moves Initial assignment

Constraints in constraint-based local search

@ Constraints are used mainly to:
o Guide the local search to promising regions in the search space.
e Determine when a given assignment is regarded as a solution.
@ Constraints are implemented by a set of functions:

@ Violation functions help to select a promising variable
(of a promising constraint) to re-assign in a move.

o Differentiation functions help to make a move in a good direction
for a constraint or variable.

@ The violation functions for ATMOST1
basically count the number of times
two players meet after the first
allowed time.

@ ATMOST1 needs a differentiation

R PR | EEE function for swap moves.

violation = 8 @ These functions must be very fast.

Main contributions

@ Solid evidence that, using constraint-based local search, solving
problems modelled with sets has the following advantages:
@ It can reduce the solution time.
e It can even be a necessity in terms of memory.
@ The design and implementation of an extension of a
constraint-based local search solver (namely Comet) by:
e Adding the notion of set constraint.
e Providing the notion of set constraint system
(i.e., a constraint combinator for constraints on set variables).

Comet’s local search architecture

@ Comet is a language and tool for modelling and solving
constraint problems, using systematic or local search.

@ It represents the state-of-the art in constraint-based local search.

@ Unfortunately, it does not support
set constraints for local search.

@ Fortunately, it does support
user-defined invariants on set
incremental variables.

Constraints

B

Incremental
variables

Comet’s architecture
@ An extension is possible: The architecture is open,

and set constraints can be built on top of set invariants!
@ Two new features are needed at the constraint layer:

e Support for user-defined set constraints.
@ Support for a mechanism to combine such constraints,
that is at least one constraint combinator.

Extension of Comet’s local search

The extension consists of:

@ A SetConstraint<LS>
interface together with an
abstract class that provides a
mechanism to define set
constraints.

@ A set constraint system that
provides a mechanism to
combine set constraints.

o

SetConstraint <LS> {
var{set{int}}[] getSetVariables();

violations () ;
violations (var{set{int}} s);

getSwapDelta (var{set{int}} s,
v, var{set{int}} t);

u,

@ To define a set constraint, extend and specialise the abstract
class (named UserSetConstraint<LS>).

@ The provided constraint combinator (i.e., the set constraint
system) could be done only through a tricky implementation.

@ The full source code is in my MSc thesis.

The Social Golfer problem: the ATMOST1 constraint

My ATMOST1 constraint is the set version of the SOCIALTOURNAMENT
integer constraint of [Dynamic Decision Technologies, 2010].

The essence of the integer version: count the number of times players
a and b meet, denote it by #(a, b), and maintain it incrementally.

The same can be done with set variables: keep the set of groups where
a and b meet, denote it by m(a, b), and maintain it incrementally.

Note: |m(a, b)| = #(a, b).
The violation and differentiation functions are based on these values.
The constraint is satisfied whenever |m(a, b)| < 1 for all aand b.

The Social Golfer problem: search

The tabu search algorithm of [Dynamic Decision Technologies, 2010]
(based on [Dotu and Van Hentenryck, 2007]) is adapted for the set
approach:

while (violations > 0 && (System.getCPUTime() - t0) < timeout)
selectMin(w in Weeks,
gl in Groups,sl in Slots: conflictl[w,gl,s1] > 0,
| g2 in Groups: g2 !'= gl, s2 in Slots, select golfers I
delta = tourn.getSwapDelta(golfer[w,gl,s1], golferl[w,g2,s2])
tabulw,golfer[w,gl,s1],golfer[w,g2,s2]] < it || violations + delta < best)
(delta) {
golfer[w,gl,s1] :=: golferl[w,g2,s2];

while (violations > 0 && (System.getCPUTime() - t0) < timeout)
selectMin(w in Weeks,

| gl in violatedGroups[w], g2 in Groups: g2 !'= gi, select groups
| st in golfersInConflict[w,gll, select golfers
s2 in grouplw,g2],
delta = tourn.getSwapDelta(grouplw,gll, si, s2, grouplw,g2]):
((tabulw,s1,s2] < it) || violations + delta < best))
(delta){

group[w,gl].delete(s1); grouplw,g2].insert(sl);
group [w,g2].delete (s2); grouplw,gll.insert(s2);

The Social Golfer problem: results over 25 runs

Run time (milliseconds)

instance integer model set model
g-s-w | n average min. max. std.dev. | n average min. max. std.dev.
6-3-8 | 25 166367.08 7447 549890 152743.43 | 24 378689.79 64166 1165813 324722.24
6-4-6 | 25 72048.84 2958 229617 61596.19 | 25 49789.28 16503 190741 50348.29
6-5-6 | 0 > timeout - - -| 3 360961.33 2291 714505 356134.68
7-3-9 | 25 7847.88 780 24463 5118.96 | 25 3134.92 2685 5575 802.60
7-4-7 | 24 352799.88 1907 831812 205866.61 | 25 196922.04 3726 423436 127522.16
7-6-4 | 25 85.80 65 126 26.44 | 25 71.12 69 80 2.63
8-3-10 | 25 1100.08 444 2834 502.67 | 25 348.64 286 490 38.19
8-4-8 | 25 694801.16 17162 1306108 512511.30 | 25 73475.88 1680 319205 76351.06
8-5-6 | 25 357.84 166 1237 286.40 | 25 167.80 73 441 104.77
8-6-5 | 25 2622.16 678 8278 1870.69 | 25 1491.72 619 2788 469.61
8-7-4 | 25 443.28 197 1016 226.10 | 25 451.96 283 1221 225.39
8-85| 0 > timeout - - -| 8 30385.25 6668 188221 63817.12
9-3-12 | 5 815324.00 28589 1577964 574503.40 | 23 791874.87 6454 1659081 544002.65
9-4-9 | 25 347040.68 111125 1136076 268002.54 | 25 38815.56 6211 66977 15127.62
9-5-7 | 25 8130.24 686 25774 7055.40 | 25 1129.12 1099 1183 19.26
9-6-6 | 25 245999.64 20040 875592 238568.03 | 25 16756.64 4404 43071 10762.36
9-7-5 |25 23233.52 20090 38746 4959.37 | 25 20025.24 1550 91299 28131.22
9-8-4 | 25 2325.52 1857 3563 584.27 | 25 3205.56 432 7740 2588.93
9-9-5 | 3 496988.00 44865 748887 39240156 | 0 > timeout - - -
10-3-13 | 25 35562.04 4894 188130 42931.09 | 25 7534.56 1312 36976 10748.78
10-4-10 | 25 960130.00 42674 1591866 535777.30 | 25 33905.04 2254 121984 34411.04
10-5-8 | 25 125212.08 9853 626327 158165.31 | 25 5563.68 1815 24087 5322.64
10-6-7| 0 > timeout - - -| 6 710276.33 198163 1705522 624786.04
10-7-5 | 25 435.32 429 446 459 | 25 405.76 394 438 12.04
10-8-5| 2 950746.50 616029 1285464 473362.03 | 12 729656.17 41395 1633916 489606.14
10-9-4 | 25 26255.20 1860 143770 30612.23 | 25 17792.92 1431 49714 13697.91

The Social Golfer problem: solved instances

s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10
gl w dw) | w dw |w dw|w éw|w dw|w dw|w éw|w iw)
6| 8 0| 6 0| 6 0| 3 0] - - - - - - - -
709 0| 7 o6 -—-1]4 -1|38 0] - -
8|10 0| 8 0| 6 0|5 -3]|4 0|5 -4 - -
9|12 0| 9 0|7 0|6 -3|5 0| 4 0|5 -5 - -
10 | 13 0] 10 0| 8 07 +1]|5 05 +1]4 0] 3 0

The §(w) > 0 values are relative [Dotu and Van Hentenryck, 2007],
which uses the same meta-heuristic; the negative ones are relative
the state of the art.

Two instances not solved by [Dotu and Van Hentenryck, 2007] were
solved (as by [Cotta et al., 2006] and [Harvey and Winterer, 2005]):

@ golf-10-6-7
® golf-10-8-5

Schur’s problem

@ Aset T of integersis sum-freeifa,be T - a+b¢ T.
Example: {1,3,5}. Counterexamples: {1,3,4} and {1,2}.

@ Schur’s problem, denoted schur-k-n, is about finding a partition
of the set {1,...,n} into k sum-free sets.
Let S(k) denote the largest such n.

@ S(1) =1, S(2) = 4, S(3) = 13, S(4) = 44, but S(5) is unknown.
Example: S(2) =4 as {1,2,3,4} ={1,4} u{2,3}.

@ Modelling this problem with integer variables will not scale:
A set model requires k SUM-FREE constraints, while
an integer model requires O (k - n?) SUM-FREE constraints.

@ To solve this problem with constraint-based local search:

o A SuM-FREE set constraint is needed.
o A tabu-search meta-heuristic is used for simplicity.

Schur’s problem: results

GC memory usage (KB)

instance integer model set model

o|ln average min. max. std.dev. | n average min. max. std.dev.
3-13 |25 3101556 21224 37010 5209.47 | 25 18371 16955 18550 487.42
4-37 | 25 244420.28 161948 304502 46818.22 | 23 18295 17020 19334 559.48
4-38 | 25 258275.08 178221 319811 45790.06 | 18 18039 17078 19690 846.86
4-39 | 21 272206.86 200513 336613 49212.87 | 17 18777 17622 19685 493.68
4-40 | 7 277904.29 200637 331583 50458.18 | 5 17745 17275 18714 582.44
4-41 | 7 286657.71 210572 346756 5644448 | 2 19155 18902 19408 357.80
4-42 | 6 327303.50 255207 364786 45433.86 | 1 17817 17817 17817 -
4-43 | 2 300813.00 239060 362566 87331.93 | 1 17401 17401 17401 -
4-44 | 1 396890.00 396890 396890 -1 18214 18214 18214 -

VM memory usage (KB)
instance integer model set model

o|ln average min. max. std.dev. | n average min. max. std.dev.
3-13 | 25 6291456 32768 65536 9073.05 | 25 32768 32768 32768 0.00
4-37 | 25 492830.72 262144 524288 86943.33 | 23 32768 32768 32768 0.00
4-38 | 25 513802.24 262144 524288 52428.80 | 18 32768 32768 32768 0.00
4-39 | 21 524288.00 524288 524288 0.00 | 17 32768 32768 32768 0.00
4-40 | 7 524288.00 524288 524288 0.00| 5 32768 32768 32768 0.00
4-41 | 7 524288.00 524288 524288 0.00 | 2 32768 32768 32768 0.00
4-42 | 6 524288.00 524288 524288 0.00 | 1 32768 32768 32768 -
4-43 | 2 524288.00 524288 524288 0.00 | 1 32768 32768 32768 -
4-44 | 1 524288.00 524288 524288 -1 32768 32768 32768 -

Schur’s problem: solved instances

@ Problem instances require less memory using the set model.

@ Both the integer and set models find the best solutions to the
closed instances, that is Schur numbers up to S(4) = 44.

@ Unfortunately, the advantage in memory consumption is not
enough to find S(5), which thus remains open.

Steiner triple systems

@ A similar experiment was done for Steiner triple systems.

@ As expected, the set approach required much less memory.
@ Instances much larger than with an integer model are solved.
@ Check my MSc thesis for details.

Conclusion and contributions

| have demonstrated that set variables for constraint-based local
search are not only a convenience for faster & higher-level modelling.
Set variables, and hence set constraints, can be necessary because
solutions to problem instances with integer variables:

@ may not be found otherwise,
@ would not fit into memory, or
@ take much more time to be solved.

| have also contributed an extension of the constraint-based local
search back-end of Comet to support set constraints.

My MSc thesis is at
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159180.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159180

Bibliography

[@ Cotta, C., Dotd, |., Fernandez, A., and Van Hentenryck, P. (2006).
Scheduling social golfers with memetic evolutionary
programming.

In Hybrid Metaheuristics, volume 4030 of LNCS, pages 150-161.

[@ Dotd, I. and Van Hentenryck, P. (2007).

Scheduling social tournaments locally.
Al Communications, 20(3):151-162.

[§ Dynamic Decision Technologies (2010).
Comet tutorial (version 2.1.1), section 21.2.

[@ Harvey, W. and Winterer, T. (2005).
Solving the MOLR and social golfers problems.
In Proceedings of CP’05, volume 3709 of LNCS, pages 286—-300.

