Constraints on Set Variables for Constraint-based Local Search

(MSc thesis at Uppsala University)

Rodrigo Gumucio

SAIS yearly workshop 2012

May 14, Örebro, Sweden (Video link from La Paz, Bolivia)

Motivating problem: The Social Golfer problem

• Imagine that in a golf club, $g \cdot s$ players meet once a week in order to play golf in g groups of size s.

- The challenge is to schedule a tournament over w weeks such that any two players meet in at most one week.
- An instance of this problem is denoted by

where

```
g is the number of groups
s is the size of each group
w is the number of weeks
g.s is the total number of players
```

The figure above shows a solution to golf-3·3-4.

golf-g·s-w is a constraint problem

- The social golfer problem can be modelled with constraints:
 - Each of the $g \cdot s$ players plays in exactly one group each week.
 - All g groups of a week are of the same size s.
 - Any two players meet in at most one week.
- It can be modelled with either *integer* or *set* variables, and hence with either *integer* or *set* constraints, respectively.

A set model is given by:

- A 2d matrix of set variables:
 Players_{gw} = the set of players
 meeting in group g of week w.
- A new ATMOST1(Players) set constraint to ensure any two players meet at most once.

An integer model is given by

- A 3d matrix of int variables:
 Player_{gsw} ≡ the player
 of slot s in group g of week w.
- A SOCIALTOURNAMENT(Player) integer constraint to ensure any two players meet at most once.

golf-g·s-w integer and set models

Consider again the golf-3.3-4 instance:

Model with set variables:

- Players_{aw} has 3 · 4 set vars.
- A single set constraint: ATMOST1(Players).
- No need to introduce a concept outside the problem formulation.

Model with (int) variables:

- Player_{gsw} has 3 · 3 · 4 int vars.
- A single integer constraint: SOCIALTOURNAMENT(Player).
- Needs to introduce the concept of player slot within a group.

- Constraint-based local search is a useful technique to find solutions to constraint problems using stochastic local search.
- It trades the completeness and quality of a systematic search technique (like constraint programming) for speed and scalability.

- Constraint-based local search is a useful technique to find solutions to constraint problems using stochastic local search.
- It trades the completeness and quality of a systematic search technique (like constraint programming) for speed and scalability.

- Constraint-based local search is a useful technique to find solutions to constraint problems using stochastic local search.
- It trades the completeness and quality of a systematic search technique (like constraint programming) for speed and scalability.

- Constraint-based local search is a useful technique to find solutions to constraint problems using stochastic local search.
- It trades the completeness and quality of a systematic search technique (like constraint programming) for speed and scalability.

- Constraint-based local search is a useful technique to find solutions to constraint problems using stochastic local search.
- It trades the completeness and quality of a systematic search technique (like constraint programming) for speed and scalability.

- To find solutions using local search:
 - (Randomly) initialise all the variables.
 - 2 Re-assign a few variables: local move.
 - If the new assignment is not good enough, then go to step 2.

Constraints in constraint-based local search

- Constraints are used mainly to:
 - Guide the local search to promising regions in the search space.
 - Determine when a given assignment is regarded as a solution.
- Constraints are implemented by a set of functions:
 - Violation functions help to select a promising variable (of a promising constraint) to re-assign in a move.
 - Differentiation functions help to make a move in a good direction for a constraint or variable.

- The violation functions for ATMOST1 basically count the number of times two players meet after the first allowed time.
- ATMOST1 needs a differentiation function for swap moves.
- These functions must be very fast.

Main contributions

- Solid evidence that, using constraint-based local search, solving problems modelled with sets has the following advantages:
 - It can reduce the solution time.
 - It can even be a necessity in terms of memory.
- The design and implementation of an extension of a constraint-based local search solver (namely Comet) by:
 - · Adding the notion of set constraint.
 - Providing the notion of set constraint system (i.e., a constraint combinator for constraints on set variables).

Comet's local search architecture

- Comet is a language and tool for modelling and solving constraint problems, using systematic or local search.
- It represents the state-of-the art in constraint-based local search.

Comet's architecture

- Unfortunately, it does not support set constraints for local search.
- Fortunately, it does support user-defined invariants on set incremental variables.
- An extension is possible: The architecture is open, and set constraints can be built on top of set invariants!
- Two new features are needed at the constraint layer:
 - Support for user-defined set constraints.
 - Support for a mechanism to combine such constraints, that is at least one constraint combinator.

Extension of Comet's local search

The extension consists of:

- A SetConstraint<LS> interface together with an abstract class that provides a mechanism to define set constraints.
- A set constraint system that provides a mechanism to combine set constraints.

- To define a set constraint, extend and specialise the abstract class (named UserSetConstraint<LS>).
- The provided constraint combinator (i.e., the set constraint system) could be done only through a tricky implementation.
- The full source code is in my MSc thesis.

The Social Golfer problem: the ATMOST1 constraint

- My ATMOST1 constraint is the set version of the SOCIALTOURNAMENT integer constraint of [Dynamic Decision Technologies, 2010].
- The essence of the integer version: count the number of times players a and b meet, denote it by #(a,b), and maintain it incrementally.
- The same can be done with set variables: keep the set of groups where a and b meet, denote it by m(a, b), and maintain it incrementally.
- Note: |m(a,b)| = #(a,b).
- The violation and differentiation functions are based on these values.
- The constraint is satisfied whenever $|m(a,b)| \le 1$ for all a and b.

The Social Golfer problem: search

The tabu search algorithm of [Dynamic Decision Technologies, 2010] (based on [Dotú and Van Hentenryck, 2007]) is adapted for the set approach:

```
while (violations > 0 && (System.getCPUTime() - t0) < timeout)
selectMin(w in Weeks,

g1 in violatedGroups[w], g2 in Groups: g2 != g1,

s1 in golfersInConflict[w,g1],
s2 in group[w,g2],

delta = tourn.getSwapDelta(group[w,g1], s1, s2, group[w,g2]):
((tabu[w,s1,s2] < it) || violations + delta < best))
(delta){
group[w,g1].delete(s1); group[w,g2].insert(s1);
group[w,g2].delete(s2); group[w,g1].insert(s2); ...</pre>
```

The Social Golfer problem: results over 25 runs

Run time (milliseconds) instance integer model set model g-s-w n average min. max. std.dev. n average min max. std.dev. 6-3-8 25 166367.08 7447 549890 152743.43 24 378689.79 64166 1165813 324722.24 6-4-6 25 72048.84 2958 229617 61596.19 25 49789.28 16503 190741 50348 29 6-5-6 0 3 360961.33 2291 714505 356134.68 > timeout 7-3-9 25 7847.88 780 24463 5118.96 25 3134.92 2685 5575 802.60 7-4-7 24 352799.88 1907 831812 205866.61 25 196922.04 3726 423436 127522.16 7-6-4 25 85.80 65 25 126 26 44 71 12 69 80 2 63 8-3-10 25 1100.08 444 2834 502.67 25 348.64 286 490 38.19 8-4-8 25 694801.16 17162 1306108 512511.30 25 73475.88 1680 319205 76351.06 8-5-6 25 25 73 357.84 166 1237 286.40 167.80 441 104 77 8-6-5 25 2622.16 678 8278 1870.69 25 1491.72 619 2788 469.61 8-7-4 25 443.28 197 25 451.96 283 1221 1016 226.10 225.39 8-8-5 0 > timeout 8 30385.25 6668 188221 63817.12 9-3-12 5 815324.00 28589 1577964 574503.40 23 791874.87 6454 1659081 544002.65 25 9-4-9 25 347040.68 111125 1136076 268002.54 38815.56 6211 66977 15127.62 9-5-7 25 7055 40 25 1099 8130.24 686 25774 1129 12 1183 19 26 9-6-6 25 245999.64 20040 875592 238568.03 25 16756.64 4404 43071 10762.36 9-7-5 25 23233.52 20090 38746 4959.37 25 20025.24 1550 91299 28131.22 9-8-4 25 2325.52 1857 3563 584.27 25 3205.56 432 7740 2588.93 9-9-5 496988.00 44865 748887 392401.56 0 > timeout 25 10-3-13 25 35562.04 4894 188130 42931.09 7534.56 1312 36976 10748.78 10-4-10 25 960130.00 42674 1591866 535777.30 25 33905.04 2254 121984 34411.04 25 25 10-5-8 125212.08 9853 626327 158165.31 5563.68 1815 24087 5322.64 10-6-7 0 > timeout 710276.33 198163 1705522 624786.04 6 10-7-5 25 435.32 429 446 4.59 25 405.76 394 438 12.04 10-8-5 950746.50 616029 1285464 473362.03 12 729656.17 41395 1633916 489606.14 25 25 10-9-4 26255.20 1860 143770 30612.23 17792.92 1431 49714 13697.91

The Social Golfer problem: solved instances

	s=3		s=4		s = 5		s = 6		s = 7		s = 8		s = 9		<i>s</i> = 10	
g	W	$\delta(w)$	W	$\delta(w)$	w	$\delta(w)$	W	$\delta(w)$	W	$\delta(w)$	w	$\delta(w)$	W	$\delta(w)$	W	$\delta(w)$
6	8	0	6	0	6	0	3	0	-	-	-	-	-	-	-	-
7	9	0	7	0	6	-1	4	-1	8	0	-	-	-	-	-	-
8	10	0	8	0	6	0	5	-3	4	0	5	-4	-	-	-	-
9	12	0	9	0	7	0	6	-3	5	0	4	0	5	-5	-	-
10	13	0	10	0	8	0	7	+1	5	0	5	+1	4	0	3	0

The $\delta(w) \geq 0$ values are relative [Dotú and Van Hentenryck, 2007], which uses the same meta-heuristic; the negative ones are relative the state of the art.

Two instances not solved by [Dotú and Van Hentenryck, 2007] were solved (as by [Cotta et al., 2006] and [Harvey and Winterer, 2005]):

- golf-10-6-7
- golf-10-8-5

Schur's problem

- A set T of integers is sum-free if $a, b \in T \rightarrow a + b \notin T$. Example: $\{1, 3, 5\}$. Counterexamples: $\{1, 3, 4\}$ and $\{1, 2\}$.
- Schur's problem, denoted schur-k-n, is about finding a partition of the set {1,...,n} into k sum-free sets.
 Let S(k) denote the largest such n.
- S(1)=1, S(2)=4, S(3)=13, S(4)=44, but S(5) is unknown. Example: S(2)=4 as $\{1,2,3,4\}=\{1,4\}\cup\{2,3\}$.
- Modelling this problem with integer variables will not scale: A set model requires k SUM-FREE constraints, while an integer model requires $O(k \cdot n^2)$ SUM-FREE constraints.
- To solve this problem with constraint-based local search:
 - A SUM-FREE set constraint is needed.
 - A tabu-search meta-heuristic is used for simplicity.

Schur's problem: results

instance			integer me	odel	set model						
0	n	average	min.	max.	std.dev.	n	average	min.	max.	std.dev.	
3-13	25	31015.56	21224	37010	5209.47	25	18371	16955	18550	487.42	
4-37	25	244420.28	161948	304502	46818.22	23	18295	17020	19334	559.48	
4-38	25	258275.08	178221	319811	45790.06	18	18039	17078	19690	846.86	
4-39	21	272206.86	200513	336613	49212.87	17	18777	17622	19685	493.68	
4-40	7	277904.29	200637	331583	50458.18	5	17745	17275	18714	582.44	
4-41	7	286657.71	210572	346756	56444.48	2	19155	18902	19408	357.80	
4-42	6	327303.50	255207	364786	45433.86	1	17817	17817	17817	-	
4-43	2	300813.00	239060	362566	87331.93	1	17401	17401	17401	-	
4-44	1	396890.00	396890	396890	-	1	18214	18214	18214	-	
VM memory usage (KB)											

instance			integer mo	odel	set model					
0	n	average	min.	max.	std.dev.	n	average	min.	max.	std.dev.
3-13	25	62914.56	32768	65536	9073.05	25	32768	32768	32768	0.00
4-37	25	492830.72	262144	524288	86943.33	23	32768	32768	32768	0.00
4-38	25	513802.24	262144	524288	52428.80	18	32768	32768	32768	0.00
4-39	21	524288.00	524288	524288	0.00	17	32768	32768	32768	0.00
4-40	7	524288.00	524288	524288	0.00	5	32768	32768	32768	0.00
4-41	7	524288.00	524288	524288	0.00	2	32768	32768	32768	0.00
4-42	6	524288.00	524288	524288	0.00	1	32768	32768	32768	-
4-43	2	524288.00	524288	524288	0.00	1	32768	32768	32768	-
4-44	1	524288.00	524288	524288	-	1	32768	32768	32768	-

Schur's problem: solved instances

- Problem instances require less memory using the set model.
- Both the integer and set models find the best solutions to the closed instances, that is Schur numbers up to S(4) = 44.
- Unfortunately, the advantage in memory consumption is not enough to find S(5), which thus remains open.

Steiner triple systems

- A similar experiment was done for Steiner triple systems.
- As expected, the set approach required much less memory.
- Instances much larger than with an integer model are solved.
- Check my MSc thesis for details.

Conclusion and contributions

I have demonstrated that set variables for constraint-based local search are not only a convenience for faster & higher-level modelling. Set variables, and hence set constraints, can be necessary because solutions to problem instances with integer variables:

- may not be found otherwise,
- would not fit into memory, or
- take much more time to be solved.

I have also contributed an extension of the constraint-based local search back-end of Comet to support set constraints.

My MSc thesis is at

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-159180.

Bibliography

- Cotta, C., Dotú, I., Fernández, A., and Van Hentenryck, P. (2006). Scheduling social golfers with memetic evolutionary programming.
 - In *Hybrid Metaheuristics*, volume 4030 of *LNCS*, pages 150–161.
- Dotú, I. and Van Hentenryck, P. (2007). Scheduling social tournaments locally. *Al Communications*, 20(3):151–162.
- Dynamic Decision Technologies (2010). Comet tutorial (version 2.1.1), section 21.2.
- Harvey, W. and Winterer, T. (2005).
 Solving the MOLR and social golfers problems.
 In *Proceedings of CP'05*, volume 3709 of *LNCS*, pages 286–300.