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Compilers, Code Generation, Register Allocation

Traditional compiler:

front-end
instruction
selector

instruction
scheduler

register
allocator

source
program

assembly
program

code generator

Key code generation task: register allocation

assignment
spilling
coalescing
packing
local vs. global
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Problems in Traditional Code Generation

All tasks are interdependent

staging is sub-optimal

Each task is NP-hard: solved by heuristic algorithms

fast but sub-optimal and complex

“Lord knows how GCC does register allocation
right now”. (Anonymous, GCC Wiki)
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Can We Do Better?

1 Potentially optimal code:

task integration
combinatorial optimization

2 Simpler design: separation of modeling and solving

. . . sounds like something for CP

previous CP approaches:

scheduling only (Malik et al., 2008)
integrated code generation

scheduling, assignment (Kuchcinski, 2003)
selection, scheduling, allocation (Leupers et al., 1997)

→ limitation: local (cannot handle control-flow)
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Our Approach

Constraint model unifying

global register allocation with all its essential aspects
instruction scheduling

Based on a novel program representation

Robust code generator based on a problem decomposition

Current code quality: on par with LLVM (state of the art)
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Running Example: Factorial

int factorial(int n) {

int f = 1;

while (n > 0) {

f = f * n;

n--;

}

return f;

}
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Low-Level Program Representation

After instruction selection

Control-flow graph:

vertices: blocks of instructions without control-flow
arcs: jumps and branches

Instruction: defined temps, operation, used temps

t7 ← mul t6, t5

A temp is live while it might still be used

Two temps interfere if they are live simultaneously

non-interfering temps can share registers
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Linear Static Single Assignment (LSSA)

How to model interference of global temps?

start from Static Single Assignment (SSA)
decompose global temps into multiple local temps

New invariant: in LSSA all temps are local

→ simple interference model

Input form to the register allocation model
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Linear Static Single Assignment: Factorial

t1, t2 ←
t3 ← li
t4 ← slti t2
← bne t4
← t1, t2, t3

t5, t6, t7 ←
t8 ← mul t7, t6
t9 ← subiu t6
← bgtz t9
← t5, t8, t9

t10, t11 ←
← jr t10
← t11

t1 ≡ t5
t2 ≡ t6
t3 ≡ t7

t1 ≡ t10
t3 ≡ t11

t10 ≡ t5
t11 ≡ t8

t6 ≡ t9
t7 ≡ t8
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Register Assignment

to which register do we assign each temporary t?

rt?
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Register Assignment: Geometric View
cy
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processor registers
..
.

..
.

..
.

t

issue of definer(t)

last issue of users(t)

Interfering temps cannot share registers: disjoint2

Global: congruent temps share the same register
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Register Assignment: Example

$v0$v1$a0$a1

. . .

. . . $ra

cy
cl
e

0

1

2

3

4

5

in

li

slti

bne

nop

out

t1t2
t3

t4

rt1 7→ $ra, rt2 7→ $a0, rt3 7→ $v0, rt4 7→ $v1
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Spilling and Coalescing: Copies

Spilling requires copying temps from/to memory

introduce copy instructions

Copy operations:

register to memory (sw)
memory to register (lw)
register to register (move)
nothing (null)

Copies can be implemented by different operations:

t6 ← {sw, move, null} t3
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Spilling and Coalescing: Factorial with Copies

t1, t2 ←
t3 ← li
t4 ← slti t2
t5 ← {move, sw, null} t2
t6 ← {move, sw, null} t3
← bne t4
← t1, t5, t6 t7, t8, t9 ←

t10 ← {move, lw, null} t8
t11 ← {move, lw, null} t9
t12 ← mul t11, t10
t13 ← subiu t10
t14 ← {move, sw, null} t12
t15 ← {move, sw, null} t13
← bgtz t13
← t7, t14, t15t16, t17 ←

t18 ← {move, lw, null} t17
← jr t16
← t18

t1 ≡ t7
t5 ≡ t8
t6 ≡ t9t1 ≡ t16

t6 ≡ t17

t16 ≡ t7
t17 ≡ t14

t8 ≡ t15
t9 ≡ t14
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Spilling and Coalescing: Unified Register File
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Spilling and Coalescing: Operation Variables

which operation implements each copy instruction i?
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Spilling and Coalescing: Constraints

Operation selection:

The register spaces to which copy temps are allocated are
determined by the selected operation.

if t6 ← t3 is implemented by sw:

t3 must be assigned to processor registers
t6 must be assigned to memory registers

Coalescing:

A copy is implemented by null iff its temps are assigned
to the same register.

21 / 35



Spilling and Coalescing: Example

Block with two copies:

t5 ← null t2
t6 ← sw t3

$v0$v1$a0$a1

. . .

. . . $ra m1 m2 . . .

. . .cy
cl
e

0

1

2

3

4

5

6

in

li

sw

slti, null

bne

nop

out

t1

t2t3

t4

t5
t6

null

sw
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Register Packing

AX BX CX
AH AL BH BL CH CL

. . .

. . .

cy
cl
e 0

1

t1
t2

t3

t4

No model changes required
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Instruction Scheduling

in which cycle is each instruction i issued?

Classic scheduling model:

dependencies among instructions

resource constraints

Connection to register allocation: live ranges
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LSSA Decomposition

Key: congruences are the only link between blocks

rt1 = rt7
rt5 = rt8
rt6 = rt9rt1 = rt16

rt6 = rt17

rt16 = rt7
rt17 = rt14

rt8 = rt15
rt9 = rt14

rt1 rt2 rt3

rt4 rt5 rt6

rt7 rt8 rt9

rt10 rt11 rt12

rt13 rt14 rt15

rt16 rt17 rt18
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Solving Strategy

modeler global solver local solver

SSA
function

LSSA
function

local problems

local solutions

assembly
code

1 Convert to LSSA form

2 Solve satisfaction problem for global register assignment

3 Solve local optimization problems for each block

minimize makespan

4 Combine local solutions to form a global one

5 Iterate until optimality (or time-out)
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Experiment Setup

86 functions from bzip2 (SPECint 2006 suite)

Selected MIPS32 instructions with LLVM 3.0

Implementation with Gecode 3.7.3

Sequential search on standard desktop machine
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Quality of Generated Code vs. LLVM
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Solving Time
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Conclusion

1 Model unifying:

essential aspects of register allocation
instruction scheduling

→ state-of-the-art code quality

2 Problem decomposition

→ robust generator for thousands of instructions

Key: tailored problem representation (LSSA form)

Lots of future work:

search heuristics, symmetry breaking . . .
integration with instruction selection
evaluate for other processors and benchmarks
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