Constraint Reasoning and Motion Planning in the SAUNA Project

Federico Pecora, Marcello Cirillo, Dimitar Dimitrov*

<name>.<surname>@oru.se

Center for Applied Autonomous Sensor Systems (AASS) Örebro University, SWEDEN

* Work funded by project SAUNA (Safe Autonomous Navigation) Coordinator: Dimiter Driankov

- Motivation

AGVs for Industrial Automation

 Autonomous Ground Vehicles (AGVs) becoming paramount to industrial automation

mining (e.g., Atlas-Copco) construction (e.g., Volvo) logistics (e.g., Kollmorgen)

- Several key processes are still ad-hoc and labor-intensive
 - · AGV paths often pre-defined and hand-crafted
 - crude planning/allocation/scheduling heuristics
 - conflicts "avoided off-line" rather than resolved on-line
 - lack of flexibility and reconfigurability

- Motivation

What If...

- Site operators could post high-level requirements
 - new tasks, vehicles
 e.g., "pick up new incoming loads"
 - spatial constraints
 e.g., "zone A is now off-limits"
 - temporal constraints e.g., "complete mission of vehicle A within 10 minutes"
- Vehicles could adapt their current and scheduled trajectories accordingly
 - vehicles coordinate automatically in response to posted requirements
- Performace of vehicles could be automatically taken into account by other vehicles

Motivation

The Core Issue of Coordination

- Coordination is necessary to ensure absence of collisions and deadlocks
- Current practice: compute trajectories for all vehicles before coordination occurs
 - collisions and deadlocks are dealt with locally
 - overall fleet requirements cannot be guaranteed
- Our view: all decisions regarding vehicle trajectories can be seen as constraints on trajectories
 - some constraints known in advance, some need to be inferred
- Least commitment: impose increasigly tight constraints on trajectory, but do not commit to specific solution until execution

Outline

- Conflict Resolution as Refinement of Trajectory Envelopes
- Control with Trajectory Envelopes

4 Evaluation

Non-Holonomic Vehicles

- Vehicles are non-holonomic \Rightarrow no sideways motion
- "Car-like" vehicles

Kinematic Model

$$\begin{split} \dot{q} &= f(q, v) = (v \cos(\theta), v \sin(\theta), \frac{v}{l} \tan(\phi), \dot{\theta}) \\ q &= (x, y, \theta, \phi) \in \mathbb{R}^4 \text{ (state vector)} \\ v &= (v, \dot{\theta}) \in \mathbb{R}^2 \text{ (control vector)} \end{split}$$

• Path: $p:[0,1] \to \mathbb{R}^2$ (parametrized using arc length)

• **Trajectory:** $p(\sigma(t))$ (σ = time history along path)

Trajectories and Trajectory Envelopes (I)

- Trajectory envelope: spatial requirements on *p* and temporal requirements on *σ*(*t*)
 - temporal envelope, spatial envelope

Trajectories and Trajectory Envelopes (II)

- Trajectory $p(\sigma(t))$ is admissible if
 - it can be obtained from the evolution of the kinematic model
 - $p / \sigma(t)$ lies within the spatial / temporal envelope

Explicit Requirements as Constraints

- Avoiding fixed obstacles = imposing spatial constraits on trajectory envelopes
 - drivable area encoded as spatial constraints
 - any additional spatial requirements can be posted as well
- High-level temporal requirements = imposing temporal constraints on trajectory envelopes
 - deadlines, durations, and any other temporal requirements can be posted directly on trajectory envelopes
- We can constrain admissible trajectories to account for all high-level spatial and temporal requirements
 - however, collisions between vehicles and deadlocks are still possible...

9/27

Computing Spatial Envelopes (I)

- Paths computed over drivable area using ARA*
 - anytime path planning algorithm [Likhachev et al., 2003]
 - uses kinematically feasible motion primitives

Computing Spatial Envelopes (I)

- Paths computed over drivable area using ARA*
 - anytime path planning algorithm [Likhachev et al., 2003]
 - uses kinematically feasible motion primitives

Computing Spatial Envelopes (I)

- Paths computed over drivable area using ARA*
 - anytime path planning algorithm [Likhachev et al., 2003]
 - uses kinematically feasible motion primitives

Computing Spatial Envelopes (II)

- Spatial envelopes computed over obtained paths
 - sample paths with given $\Delta \sigma \propto (1/\text{curvature of the path})$
 - calculate polyhedron $\mathscr{S}_{i}^{(j)}$ enclosing the sampled point

Computing Temporal Envelopes

Impose temporal bounds on spatial envelope traversal

$$\ell_i^{(j)} \le e_i^{(j)} - s_i^{(j)} \le u_i^{(j)}$$

$$\ell_{i,i+1}^{(j)} \le e_i^{(j)} - s_{i+1}^{(j)} \le u_{i,i+1}^{(j)}$$

 Bounds computed with slowest and fastest speed traversal of reference path

$$\begin{split} \ell_i &= e_i^{\text{fast}} - s_i^{\text{slow}}, \quad u_i = e_i^{\text{slow}} - s_i^{\text{fast}}, \\ \ell_{i,i+1} &= e_i^{\text{fast}} - s_{i+1}^{\text{slow}}, \quad u_{i,i+1} = e_i^{\text{slow}} - s_{i+1}^{\text{fast}}, \end{split}$$

Outline

Conflict Resolution as Refinement of Trajectory Envelopes

3 Control with Trajectory Envelopes

4 Evaluation

13/27

Spatio-Temporal Conflicts

- Polygons that overlap in time and space constitute a conflict
- Eliminating the temporal overlap resolves a conflict

Spatio-temporal overlap:

$$\begin{split} \mathscr{S}_{i}^{(j)} \cap \mathscr{S}_{k}^{(m)} \neq \emptyset \land \\ \begin{bmatrix} s_{i}^{(j)}, e_{i}^{(j)} \end{bmatrix} \cap \begin{bmatrix} s_{k}^{(m)}, e_{k}^{(m)} \end{bmatrix} \neq \emptyset \end{split}$$

Semantics of temporal overlap:

 $\begin{bmatrix} s_i^{(j)}, e_i^{(j)} \end{bmatrix} \cap \begin{bmatrix} s_k^{(m)}, e_k^{(m)} \end{bmatrix} \neq \boldsymbol{\emptyset} \text{ if } \\ \max\left(\underline{s}_i^{(j)}, \underline{s}_k^{(m)}\right) \leq \min\left(\underline{e}_i^{(j)}, \underline{e}_k^{(m)}\right)$

14/27

Conflict Resolution as a Meta-CSP (I)

- Spatio-temporal conflicts solved by posting temporal constraints [Cesta et al., 2002]
 - remove temporal overlap between polygons
- Search for resolving constraints cast as a CSP
 - variables: pairs of spatio-temporally overalpping polygons
 - values: temporal constraints that eleminate temporal overlap
- Collisions are avoided by refining the trajectory envelopes
 - adding temporal constraints to eliminate temporal overlap
- Note: temporal envelope refinement can be alternated with spatial envelope refinement
 - adding spatial constraints to eliminate spatial overlap

Conflict Resolution as a Meta-CSP (II)

- Search for resolving temporal constraints performed using standard backtracking search algorithm
- Variable ordering heuristic based on spatial features
 - prefer pairs of polygons that are spatially closer to other conflicting pairs
- Value ordering heuristic based on temporal features
 - prefer orderings that least impact overall temporal flexibility
- Conflict resolution also eliminates deadlocks
 - backtracking search breaks cycles on resource usage (resources = intersections of temporally overlapping polygons)

Outline

2 Conflict Resolution as Refinement of Trajectory Envelopes

Control with Trajectory Envelopes

Evaluation

< ∃ >

From Trajectory Envelopes to Control Actions (I)

- Conflict resolution refines the temporal envelope to obtain conflict- and deadlock-free trajectory envelopes
- We now have available many alternative trajectories that can be sampled from these envelopes
 - spatial constraints designate the polygons in which vehicles should be
 - temporal constraints determine flexible bounds on each polygon

From Trajectory Envelopes to Control Actions (II)

- Each vehicle has a tracking controller
 - computes kinematically feasible control actions for vehicle
 - minimizing divergence from a reference trajectory
 - while accounting for spatial constraints
 - based on efficient QP solver [Dimitrov et al., 2011]
- Controller input = nominal path + fixed temporal bounds + spatial envelope

19/27

Sampling Trajectory Envelopes (I)

- Due to efficient formulation, controller can compute control actions for several alternative reference trajectories
 - choose "best" one to follow according to trakcing performance
- Alternative bounds can be computed in polynomial time
 - controllers choose current alternative consistently w/ other vehicles (executed temporal profiles must be solution of the STP)

Sampling Trajectory Envelopes (I)

- Due to efficient formulation, controller can compute control actions for several alternative reference trajectories
 - choose "best" one to follow according to trakcing performance
- Alternative bounds can be computed in polynomial time
 - controllers choose current alternative consistently w/ other vehicles (executed temporal profiles must be solution of the STP)

Sampling Trajectory Envelopes (I)

- Due to efficient formulation, controller can compute control actions for several alternative reference trajectories
 - choose "best" one to follow according to trakcing performance
- Alternative bounds can be computed in polynomial time
 - controllers choose current alternative consistently w/ other vehicles (executed temporal profiles must be solution of the STP)

Outline

- 2 Conflict Resolution as Refinement of Trajectory Envelopes
- 3 Control with Trajectory Envelopes

< ∃ >

21/27

Quantitative Evaluation on Artificial Problems

- 900 problems
- 9 test sets (2–10 vehicles)
- randomly generated paths
- 100 trials per test set
- Note: artificially difficult problems

Quantitative Evaluation on Artificial Problems

- Average conflict resolution time < 1 sec with up to 8 vehicles
- Maximum time to calculate an alternative temporal profile < 50 msec

Realistic Test Run

- 7 Linde vehicles, 140 polyhedra, pre-assigned start/destination poses
- Path planning: 5 sec / Conflict resolution: 34 sec (13 temporal constraints)
- Time to calculate alternative temporal profiles: 250 msec

- Conclusions

Conclusions

- Fleet management typically consists of several processes
 - all processes impose requirements on trajectories
- Constraint-based formulation provides processes with a uniform model
 - perception, planning, scheduling, control all contribute to refining trajectory envelopes
- Not all proccesses are necessarily automated
 - human operators, a pre-existing dispatching strategy, ...
 - this is important for industrial application
- Modular approach maximizes the ability to react at different levels
 - modules impose increasingly low-level constraints on overall solution
 - commitment to specific trajectories done as late as possible

25 / 27

Conclusions

SAUNA Functional View

F. Pecora et al. - Constraint Reasoning and Motion Planning SAUNA - SAIS/SweConsNet Workshop, May 14th 2012, Örebro

- Conclusions

▶ < E > < E >

References

References

Cesta, A., Oddi, A., and Smith, S. F. (2002).

A constraint-based method for project scheduling with time windows. *Journal of Heuristics*, 8(1):109–136.

Dimitrov, D., Sherikov, A., and Wieber, P.-B. (2011).

A sparse model predictive control formulation for walking motion generation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2292–2299.

Likhachev, M., Gordon, G., and Thrun, S. (2003).

ARA*: Anytime A* with provable bounds on sub-optimality. Advances in Neural Information Processing Systems, 16.

27 / 27