On the Reification of
Global Constraints

Nicolas Beldiceanu™, Mats Carlsson*,
Pierre Flener” and Justin Pearson”

*TASC team (INRIA/CNRS), Mines de Nantes
*SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
AUppsaIa Univ., Dept. of Info. Technology, Uppsala, Sweden

What is it all about ?

Associate to a constraint Ctr(Arg,,Arg,,...,Arg.)
a 0/1 variable B so that:

Ctr(Arg,,Arg,,...,Arg.) < B

and of course use variable B
in other constraints

Overview

Introduction and motivation

How to derive reified global constraints
Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification

Conclusion

Reification today

Easy for arithmetic constraints
But not so easy for global constraints
Useful for expressing :

— Negation of a constraint
— Disjunction between constraints
— Cardinality operator

Many kernels implementors and users like it

Motivations

* Proving the equivalence of two constraints
models (see PhD thesis of Nadjib Lazaar where
one needs to negate global constraints)

* Learning models from positive (and negative
samples) <= our motivation

Our contribution

A simple way to look at global constraints
that allows to get reification in an easy way

Introduction and motivation

How to derive reified global constraints
Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification

Conclusion

Defining a global constraint

* A global constraint GC(A) is defined by :
— Some restrictions R(A),
— Some condition C(A).

 Example:
Constraint global _contiguity(VARIABLES)
Argument VARIABLES : collection(var—dvar)
Restrictions required(VARIABLES, var)
VARIABLES.var > 0
B VARIABLES.var < 1
condition

Enforce all variables of the VARIABLES collection to be assigned value 0 or 1. In addi-
tion, all variables assigned to value 1 appear contiguously.

Defining a global constraint

* Why to distinguish between restriction
and condition?
Because restrictions also apply to the negation

Defining a global constraint

* Why to distinguish between restriction
and condition?

Because restrictions also apply to the negation

e Remark

All constraint solvers (and the catalog) made a
mistake while defining automata constraints :
not providing explictly the alphabet

=> you cannot negate the constraint !

Reification of global constraint

GC(A) R(A)AC(A)

Intuition for deriving reified g.c.

Defining the meaning of most global constraints
obeys a determine and test scheme:

1) Determine (never fails !, PFD)
computes values from some arguments

2) Test

simple test on the computed values
(e.qg., arithmetic, automaton)

Intuition for deriving reified g.c.
(alldifferent)

1) Determine
sort the original variables

2) Test
check that they are strictly increasing

Intuition for deriving reified g.c.
(cumulative)

1) Determine
compute the cumulated resource consumption at
each task start (since the resource consumption
increases at these points)

2) Test

check that all previously computed resource
consumption are less than or equal to the overall
limit

Intuition for deriving reified g.c.
(nvalue)

1) Determine
compute the number of distinct values

2) Test

check that the computed number of distinct
values is actually equal to the target

Intuition for deriving reified g.c.
(cycle)

1) Determine
sort the successor variables (as for alldifferent)

compute the number of cycles

2) Test
check that sorted values are strictly increasing
check that number of cycle is equal to the target

Pure Functional Dependency Constraint

No additional condition is imposed by the constraint
other than determining some of its variables

[t can therefore never fail when the variables to be
determined are unrestricted !

Pure Functional Dependency Constraint
(examples)

element(INDEX, TABLE, VALUE)

INDEX : dvar
TABLE : collection(value—dvar)
VALUE : dvar

EXAMPLE

e lunctional dependency: VALUE determined by INDEX and TABLE.

Pure Functional Dependency Constraint
(examples)

global _cardinality(VARIABLES, VALUES)

VARIABLES : collection(var—dvar)
VALUES . collection(val—int,noccurrence—dvar)
EXAMPLE

(3,3,8,6),
val —3 noccurrence — 2,
< val — 5 mnoccurrence — 0, >

val — 6 noccurrence — 1

o Functional dependency: VALUES.noccurrence determmed by VARIABLES and
VALUES.val.

Pure Functional Dependency Constraint
(examples)

nvalue(NVAL, VARIABLES)

NVAL . dvar
VARIABLES : collection(var—dvar)

EXAMPLE

(4,(3,1,7,1,6))

e Functional dependency: NVAL determined by VARIABLES.

Pure Functional Dependency Constraint
(examples)

sort(VARIABLES1, VARIABLES2)

EXAMPLE
)
VARIABLES1 : collection(var—dvar) var 1.

VARIABLES2 : collection(var—dvar) < >

var — 5,
var — 2,
var — 1
var — 1,
var — 1,
var — 1,
var — 2,

var — 5,

\ var — 9)

Functional dependency: VARIABLES2 determined by VARIABLES1.

Pure Functional Dependency Constraint
(keyword in the catalogue)

3.7.197 +Pure functional dependency = [90 CONS]
® abs_value, ® eg-cst,
° ® equival
e among diff O, ® exactl
® among_interval, ® g
e among modulo, ® global cardinality,

23% of the constraints
of the catalogue

Reification of g.c.

RESTRICTIONS DETERMINE CHECK
R(A)NICF1(A1, Vi) A+ AN CFp(Ap, Vp) N(CN(Apy1) © b)
pure functional dependency ctrs arith. or automaton ctrs

o V; (with 1 <1 < p) is a non-empty set of distinct unrestricted variables, i.e., it has an empty
intersection with AUV U---UV;i_1UVig U---U)).

e A; CAUVIU---UV;_1 (with 1 <17 < p), ie., A; gets fixed when A, Vy,...,V;_1 are fixed.
e Ay has a non-empty intersection with V; U---UV), and is included in AUV U---UYV),.

e V; has a non-empty intersection with A;;q U---U Apyq, le., each introduced variable is used at

least once.

Introduction and motivation

How to derive reified global constraints
Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification

Conclusion

Core global constraints

3.7.65 +Core =

e alldifferent,

e cumulative,
I
e cycle,

o diffn,

e disjunctive,

e clement (see also elem for the usage),

[11 CONS]

global _cardinality,
global cardinality with _costs,
minimum weight _alldifferent,

nvalue,

sort. (reformulation)

ALLDIFFERENT({v1,...,vp))

PFD

SORT({(V1,...,0n), (W1, ..., wy)) A

CHECK

GLOBAL_CARDINALITY ((Z1,...,2y), (v1 01,...,Um Om))

PFD

GLOBAL_CARDINALITY({(Z1,...,Zn), (V1 P1,. .-, Um Pm)) A

CHECK

(01 =p1 A~ NOom =pm) < b

ELEMENT(2, (t1,...,tn),v)

PFD

ELEMENT(%, (t1,...,tn),w) A

CHECK
(v=w) &b

CUMULATIVE((s1 dy €1 71,. .., 8 dy €y Ty), limit)

PFD

For each pair of tasks 2, 7

— For j=1: (d; =0Ar;; =0)V (d; >0AT;; =71;)

— For j#i: ((sj <siNej >siNs;i<e)Arij=r1j)V
((Sj > S; V €; Ssiv.sz-:e,;)/\'rz-j:O)

For each task 2
STy = Ti1 + T Tin

CHECK

(s1+di=e1N---Asp+dy, =en A
sr1 < limit A --- A sry < limit) < b

CYCLE(nc, (S1,...,5n))

PFD

SORT(S, (11,...,7Tn))
PFD for alldifferent

for each s;
ELEMENT(%, S, s; 1) A ELEMENT(s;.1,5,8;2) A ---
Extracting i-th cycle A ELEI\/IENT(Si,n_Q’ S, Si,n—l)

MINIMUM(name;, (i, Si1,8i 2., Sin—1))
Getting a unique representative for i-th cycle

NVALUE(nb, (nameq, ..., namey))
Counting the number of distinct representatives

CHECK
Check for alldifferent

nc=nb) < b
Check on number of cycles

ntroduction and motivation
How to derive reified global constraints

Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification
Conclusion

Categories (automata)

Automata
(with, without counters)
(with, without signature constraint)

can construct reification from the automata

Example (automaton without counter)

Example (automaton with counter)

contain_sboxes(K,DIMS,

Category (Qlogic)

5 |O1 OBIJECTS,
4 02 SBOXES)
e origin(01,51,D) ¥ 01.x(D) + S1.t(D) . L03
e end(01,51,D) = 01.x(D) + $1.t(D) + 51.1(D) ,
e contains sboxes(Dims, 01,S1,02,S2) =t) 5
VD € Dims =
origin(01,S1,D) < 1.2 3 4 5 6
A Zi;%;;fﬁ [S,)Q ’<D) e all_contains(Dims,0IDS) &
end(01, S1,D) V01 € objects(0IDS)
e contains_objects(Dims, 01,02) = V02 € c?bjects(OIDS)
VS1 € sboxes([01.sid]) Ol.0id < =
352 € sboxes (| 02.sid |) 02.01id |
Dims, Dims,
01. contains_objects 01,
contains_sboxes Si; 02

e all contains(DIMENSIONS, 0IDS)

02,
\s2

Category (sort)

Many constraints on a collection of variables become
much simpler to define if you sort the variables
(use the sort constraint for that which is a PFD)

The nice point is that these reformulations are linear
in size wrt. number of variables,

e.g., get a linear size reformulation for alldifferent (unlike
the naive one, the one using gcc where values are
made explicit, the one of C. Bessiere and al.)

ntroduction and motivation
How to derive reified global constraints

Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification
Conclusion

Table providing reification for 313 out of 381 contraints (82 %)

Global Constraint Categories | Comment
ABS_VALUE(y,)] PFD, Logic | (y=|z|) &b
ALLDIFF_AT_LEAST K _POs(k, ((v)")") Logic Nt Nici Sopn (vie # i) > k

ALL_EQUAL((v)") Logic (vy=vg A Avg_y=1,) & b

ALL_INCOMPARABLE(((v)")") Conj conjunction of INCOMPARABLE constraints on
pairs of vectors

ALL_MIN_DIST(md, (v)") Sort SORT((v)", (s)")A(s9—51 > mdA-+-Asy—8p_1 >
md) & b

uses((u) ", (v)") GenPat Let (w)" be the values that can be as-
signed to the variables of (u)" and (v)":
cool(u)™ fui, o)) Acco((v)” s g)y) A
(=0Vor >0)A---A(gy=0Vo0,>0)) &b

VALLEY Auto(1,2)

VEC_EQ_TUPLE((v)", (t)") Logic (v =t A Aoy =ty) &b

VISIBLE !

WEIGHTED_PARTIAL_ALLDIFF 7

XOR PFD,

Auto(0,0)

ntroduction and motivation
How to derive reified global constraints

Reification of core global constraints
Categories used in reifying global constraints
A classification of g.c. wrt. reification
Conclusion

Conclusion

Exploit the determine and test scheme
for defining global constraints

* Asimple way for providing reification
(and negation, and reformulation)
* Could also be used for measuring cost

violation of global constraints
(evaluate cost related to the check part)

Observations

* Reasonable for a number of categories
(automata, PFD) where you get things for free
(using the meta data of the catalogue)

* Given a PFD constraint and its filtering
algorithm you should get a similar pruning
power for the reified version

Observations

* Huge for graph constraints (could be lowered)
From a practical point of view cubic size
reformulations are useless

* Reformulations of C. Bessiere et al. for
alldifferent, global cardinality, ... can
be unfolded to make PFD explicit

Conclusion

* You may (perhaps) exploit the constraints
network associated with these reifications?

The PFD part looks maybe similar to a dag?

Thanks

Technical report available at

http://soda.swedish-ict.se/5194/

