On the Reification of Global Constraints

Nicolas Beldiceanu*, Mats Carlsson*, Pierre Flener* and Justin Pearson*

*TASC team (INRIA/CNRS), Mines de Nantes +SICS, P.O. Box 1263, SE-164 29 Kista, Sweden ^Uppsala Univ., Dept. of Info. Technology, Uppsala, Sweden

What is it all about?

Associate to a constraint $Ctr(Arg_1, Arg_2, ..., Arg_n)$ a 0/1 variable B so that:

$$Ctr(Arg_1,Arg_2,...,Arg_n) \Leftrightarrow B$$

and of course use variable B in other constraints

Overview

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Reification today

- Easy for arithmetic constraints
- But not so easy for global constraints
- Useful for expressing :
 - Negation of a constraint
 - Disjunction between constraints
 - Cardinality operator
- Many kernels implementors and users like it

Motivations

 Proving the equivalence of two constraints models (see PhD thesis of Nadjib Lazaar where one needs to negate global constraints)

 Learning models from positive (and negative samples) <= our motivation

Our contribution

A simple way to look at global constraints that allows to get reification in an easy way

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Defining a global constraint

- A global constraint GC(A) is defined by :
 - Some restrictions R(A),
 - Some condition C(A).
- Example :

```
Constraint global_contiguity(VARIABLES)
```

Argument VARIABLES : collection(var-dvar)

Restrictions required(VARIABLES, var)

 $\begin{array}{l} \mathtt{VARIABLES.var} \geq 0 \\ \mathtt{VARIABLES.var} \leq 1 \end{array}$

condition

Enforce all variables of the VARIABLES collection to be assigned value 0 or 1. In addition, all variables assigned to value 1 appear contiguously.

Defining a global constraint

 Why to distinguish between restriction and condition?

Because restrictions also apply to the negation

Defining a global constraint

 Why to distinguish between restriction and condition?
 Because restrictions also apply to the negation

Remark

All constraint solvers (and the catalog) made a mistake while defining automata constraints: not providing explictly the alphabet

=> you cannot negate the constraint!

Reification of global constraint

$$GC(\mathcal{A})$$
 $R(\mathcal{A}) \wedge C(\mathcal{A})$

$$R(\mathcal{A}) \wedge (C(\mathcal{A}) \Leftrightarrow b)$$

Intuition for deriving reified g.c.

Defining the meaning of most global constraints obeys a determine and test scheme:

- 1) Determine (never fails !, PFD) computes values from some arguments
- 2) Test

simple test on the computed values (e.g., arithmetic, automaton)

Intuition for deriving reified g.c. (alldifferent)

1) Determine sort the original variables

2) Test
check that they are strictly increasing

Intuition for deriving reified g.c. (cumulative)

1) Determine

compute the cumulated resource consumption at each task start (since the resource consumption increases at these points)

2) Test

check that all previously computed resource consumption are less than or equal to the overall limit

Intuition for deriving reified g.c. (nvalue)

1) Determine compute the number of distinct values

2) Test

check that the computed number of distinct values is actually equal to the target

Intuition for deriving reified g.c. (cycle)

1) Determine

sort the successor variables (as for alldifferent) compute the number of cycles

2) Test

check that sorted values are strictly increasing check that number of cycle is equal to the target

Pure Functional Dependency Constraint

No additional condition is imposed by the constraint other than determining some of its variables

It can therefore **never fail** when the variables to be determined are unrestricted!

```
element(INDEX, TABLE, VALUE)
```

INDEX : dvar

TABLE : collection(value-dvar)

VALUE : dvar

EXAMPLE

 $(3, \langle 6, 9, 2, 9 \rangle, 2)$

• Functional dependency: VALUE determined by INDEX and TABLE.

```
global_cardinality(VARIABLES, VALUES)
```

```
VARIABLES : collection(var-dvar)
```

VALUES : collection(val-int, noccurrence-dvar)

EXAMPLE

```
 \left( \begin{array}{c} \langle 3,3,8,6 \rangle\,, \\ \langle \, \text{val} - 3 \quad \text{noccurrence} - 2, \\ \text{val} - 5 \quad \text{noccurrence} - 0, \\ \text{val} - 6 \quad \text{noccurrence} - 1 \end{array} \right)
```

• Functional dependency: VALUES.noccurrence determined by VARIABLES and VALUES.val.

nvalue(NVAL, VARIABLES)

NVAL : dvar

VARIABLES : collection(var-dvar)

EXAMPLE

(4, (3, 1, 7, 1, 6))

Functional dependency: NVAL determined by VARIABLES.

sort(VARIABLES1, VARIABLES2)

VARIABLES1 : collection(var-dvar)

VARIABLES2 : collection(var-dvar)

EXAMPLE

```
\left(egin{array}{c} {
m var}-1, \\ {
m var}-9, \\ {
m var}-1, \\ {
m var}-5, \\ {
m var}-2, \\ {
m var}-1, \\ {
m var}-1, \\ {
m var}-1, \\ {
m var}-1, \\ {
m var}-2, \\ {
m var}-2, \\ {
m var}-5, \\ {
m var}-9 \end{array}
ight)
```

Functional dependency: VARIABLES2 determined by VARIABLES1.

Pure Functional Dependency Constraint (keyword in the catalogue)

3.7.197 Pure functional dependency

[90 CONS]

- abs_value,
- among,
- among_diff_0,
- among_interval,
- among_modulo,

- eq_cst,
- equivalent,
- exactly,
- gcd,
- global_cardinality,

23% of the constraints of the catalogue

Reification of g.c.

- V_i (with $1 \le i \le p$) is a non-empty set of distinct unrestricted variables, i.e., it has an empty intersection with $A \cup V_1 \cup \cdots \cup V_{i-1} \cup V_{i+1} \cup \cdots \cup V_p$.
- $A_i \subseteq A \cup V_1 \cup \cdots \cup V_{i-1}$ (with $1 \le i \le p$), i.e., A_i gets fixed when A, V_1, \ldots, V_{i-1} are fixed.
- \mathcal{A}_{p+1} has a non-empty intersection with $\mathcal{V}_1 \cup \cdots \cup \mathcal{V}_p$ and is included in $\mathcal{A} \cup \mathcal{V}_1 \cup \cdots \cup \mathcal{V}_p$.
- V_i has a non-empty intersection with $A_{i+1} \cup \cdots \cup A_{p+1}$, i.e., each introduced variable is used at least once.

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Core global constraints

3.7.65 **v**Core **→**

[11 CONS]

- alldifferent,
- cumulative,
- cycle,
- diffn,
- disjunctive,
- <u>element</u> (see also <u>elem</u> for the usage),

- global_cardinality,
- global_cardinality_with_costs,
- minimum_weight_alldifferent,
- nvalue,
- sort. (reformulation)

ALLDIFFERENT $(\langle v_1, \ldots, v_n \rangle)$

PFD

$$SORT(\langle v_1, \ldots, v_n \rangle, \langle w_1, \ldots, w_n \rangle) \land$$

$$(w_1 < w_2 \land \cdots \land w_{n-1} < w_n) \Leftrightarrow b$$

GLOBAL_CARDINALITY(
$$\langle x_1, \ldots, x_n \rangle, \langle v_1 \ o_1, \ldots, v_m \ o_m \rangle$$
)

PFD

GLOBAL_CARDINALITY(
$$\langle x_1, \ldots, x_n \rangle, \langle v_1 \ p_1, \ldots, v_m \ p_m \rangle) \land$$

$$(o_1 = p_1 \wedge \cdots \wedge o_m = p_m) \Leftrightarrow b$$

ELEMENT
$$(i, \langle t_1, \ldots, t_n \rangle, v)$$

PFD

ELEMENT
$$(i, \langle t_1, \ldots, t_n \rangle, w) \land$$

$$(v = w) \Leftrightarrow b$$

CUMULATIVE $(\langle s_1 \ d_1 \ e_1 \ r_1, \ldots, s_n \ d_n \ e_n \ r_n \rangle, limit)$

PFD

For each pair of tasks
$$i, j$$

$$\begin{vmatrix}
- & \text{For } j = i : (d_i = 0 \land r_{ij} = 0) \lor (d_i > 0 \land r_{ij} = r_i) \\
- & \text{For } j \neq i : ((s_j \leq s_i \land e_j > s_i \land s_i < e_i) \land r_{ij} = r_j) \lor \\
((s_j > s_i \lor e_j \leq s_i \lor s_i = e_i) \land r_{ij} = 0)
\end{vmatrix}$$

For each task i

$$sr_i = r_{i1} + \dots + r_{in}$$

$$(s_1 + d_1 = e_1 \land \dots \land s_n + d_n = e_n \land sr_1 \le limit \land \dots \land sr_n \le limit) \Leftrightarrow b$$

$\text{CYCLE}(nc, \langle s_1, \ldots, s_n \rangle)$

PFD

$$\operatorname{SORT}(S, \langle r_1, \dots, r_n \rangle)$$
 PFD for all different

for each s_i

ELEMENT
$$(i, S, s_{i,1}) \land \text{ELEMENT}(s_{i,1}, S, s_{i,2}) \land \cdots$$

Extracting i-th cycle $\land \text{ELEMENT}(s_{i,n-2}, S, s_{i,n-1})$

MINIMUM
$$(name_i, \langle i, s_{i,1}, s_{i,2}, \dots, s_{i,n-1} \rangle)$$

Getting a unique representative for i-th cycle

$$NVALUE(nb, \langle name_1, \dots, name_n \rangle)$$

Counting the number of distinct representatives

$$(r_1 < r_2 \land \cdots \land r_{n-1} < r_n \land$$
 Check for all different $nc = nb) \Leftrightarrow b$ Check on number of cycles

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Categories (automata)

```
Automata
(with, without counters)
(with, without signature constraint)
```

can construct reification from the automata

Example (automaton without counter)

Example (automaton with counter)

Category (Qlogic)

- origin(01,S1,D) $\stackrel{\text{def}}{=}$ 01.x(D) + S1.t(D)
- $\bullet \; \mathtt{end}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1.x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D}) + \mathtt{S1.l}(\mathtt{D})$
- contains_sboxes(Dims, O1, S1, O2, S2) $\stackrel{\mathrm{def}}{=}$ $\forall D \in \mathtt{Dims}$

• contains_objects(Dims, 01, 02) $\stackrel{\text{def}}{=}$ \forall S1 \in sboxes([01.sid])

$$\exists S2 \in sboxes([02.sid])$$

contains_sboxes 01, 02.

contain_sboxes(K,DIMS,

• $all_contains(Dims, OIDS) \stackrel{\text{def}}{=}$

$$\forall \mathtt{01} \in \mathtt{objects}(\mathtt{OIDS})$$

$$\forall 02 \in \mathtt{objects}(\mathtt{OIDS})$$

$${\tt O1.oid} < \ \Rightarrow$$

contains_objects
$$\begin{pmatrix} Dims, \\ 01, \\ 02 \end{pmatrix}$$

all_contains(DIMENSIONS, OIDS)

Category (sort)

Many constraints on a collection of variables become much simpler to define if you sort the variables (use the sort constraint for that which is a PFD)

The nice point is that these reformulations are linear in size wrt. number of variables,

e.g., get a linear size reformulation for all different (unlike the naïve one, the one using gcc where values are made explicit, the one of C. Bessière and al.)

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Table providing reification for 313 out of 381 contraints (82 %)

Global Constraint	Categories	Comment
$ABS_VALUE(y, x)$	PFD, Logic	$(y= x) \Leftrightarrow b$
ALLDIFF_AT_LEAST_K_POS $(k, \langle \langle \mathbf{v} \rangle^m \rangle^n)$	Logic	$\bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} \sum_{\ell=1}^{m} (v_{i,\ell} \neq v_{j,\ell}) \ge k$
$ALL_EQUAL(\langle \mathbf{v} \rangle^n)$	Logic	$(v_1 = v_2 \land \dots \land v_{n-1} = v_n) \Leftrightarrow b$
ALL_INCOMPARABLE($\langle\langle \mathbf{v}\rangle^m\rangle^n$)	Conj	conjunction of INCOMPARABLE constraints on
		pairs of vectors
ALL_MIN_DIST $(md, \langle \mathbf{v} \rangle^n)$	Sort	$SORT(\langle \mathbf{v} \rangle^n, \langle \mathbf{s} \rangle^n) \land (s_2 - s_1 \ge md \land \dots \land s_n - s_{n-1} \ge md \land \dots \land s_n - s_n - s_n - s_n - s_{n-1} \ge md \land \dots \land s_n - s_n$
		$md) \Leftrightarrow b$
	~	~ · · · · ·
$\text{USES}(\langle \mathbf{u} \rangle^m, \langle \mathbf{v} \rangle^n)$	GenPat	Let $\langle \mathbf{w} \rangle^p$ be the values that can be as-
		signed to the variables of $\langle \mathbf{u} \rangle^m$ and $\langle \mathbf{v} \rangle^n$:
		$\operatorname{GCC}(\langle \mathbf{u} \rangle^m, \langle w_i, o_i \rangle_{i=1}^p) \wedge \operatorname{GCC}(\langle \mathbf{v} \rangle^n, \langle w_i, q_i \rangle_{i=1}^p) \wedge$
		$((q_1 = 0 \lor o_1 > 0) \land \dots \land (q_p = 0 \lor o_p > 0)) \Leftrightarrow b$
VALLEY	Auto(1,2)	
VEC_EQ_TUPLE $(\langle \mathbf{v} \rangle^n, \langle \mathbf{t} \rangle^n)$	Logic	$(v_1 = t_1 \land \dots \land v_n = t_n) \Leftrightarrow b$
VISIBLE	?	
WEIGHTED_PARTIAL_ALLDIFF	?	
XOR	PFD,	
	Auto(0,0)	

- Introduction and motivation
- How to derive reified global constraints
- Reification of core global constraints
- Categories used in reifying global constraints
- A classification of g.c. wrt. reification
- Conclusion

Conclusion

Exploit the **determine** and **test** scheme for defining global constraints

- A simple way for providing reification (and negation, and reformulation)
- Could also be used for measuring cost violation of global constraints (evaluate cost related to the check part)

Observations

Reasonable for a number of categories
 (automata, PFD) where you get things for free
 (using the meta data of the catalogue)

 Given a PFD constraint and its filtering algorithm you should get a similar pruning power for the reified version

Observations

Huge for graph constraints (could be lowered)
 From a practical point of view cubic size
 reformulations are useless

 Reformulations of C. Bessière et al. for alldifferent, global cardinality, ... can be unfolded to make PFD explicit

Conclusion

 You may (perhaps) exploit the constraints network associated with these reifications?

The PFD part looks maybe similar to a dag?

Thanks

Technical report available at

http://soda.swedish-ict.se/5194/