Constructive negation with the well-founded semantics for CLP

Włodek Drabent

Institute of Computer Science Polish Academy of Sciences, Warszawa, and IDA, Linköping University

Jan Maluszynski, Jakob Henriksson

SweCons May 2009

Summary

Initial motivation: adding rules to ontologies
 for Semantic Web.

General framework: combining

- normal logic programs (non monotonic)
- first order logic (monotonic).
- Instance: XSB Prolog + ontology reasoners.
- Applicable for adding negation for CLP
- Semantics based on well-founded sem. of LP.
 - Efficient top-down operational semantics.
 - Re-use of existing engines possible.

Hybrid Rules SweCons 2009

Outline

- Related work
- The well-founded semantics
- Our framework
 - declarative semantics
 - operational semantics

Hybrid Rules SweCons 2009

Related work – negation for CLP

Stuckey '91,'95 – CLP with completion semantics

Fages '97 – CLP with comp. sem, (based on Drabent '93,'95 – CLP(\mathcal{H}), comp. sem., WFS)

Dix+Stolzenburg '98 – CLP, WFS, restricted class of programs, not goal-driven.

Negation in logic programming

Three semantics

- Negation as finite failure
 - E.g. $P_1 = \{p \leftarrow p\}$, p neither true nor false
 - Completion semantics, Kunen, 3-valued
- Negation as (possibly) infinite failure E.g. Above: p false w.r.t. P_1 .
 - Well-founded semantics
 - Stable model semantics (answer set sem.)

Well-founded semantics, informally

Facts of P - true

Ground A, not an instance of a rule head – false.

Iterate using in rule bodies the obtained results.

Well-founded vs stable model semantics

WF AS

- 3-valued 2-valued t,f
- Equivalent for stratified programs
- Ex. $\{a \leftarrow \neg b. b \leftarrow \neg a.\}$
 - a,b undefined

two stable models $\{a, \neg b\}$ $\{b, \neg a\}$

■ Ex. $\{a \leftarrow \neg a\}$

a **u**ndefined

no stable models

7

Example: Two-person game

Program P:

```
win(X) :- move(X,Y), ~ win(Y).
move(a,b).
move(b,a).
move(a,c).
move(c,d).
move(d,e).
move(c,f).
move(e,f).
```

Well-founded model of P:

true false undefined

8

Well-founded semantics generalized

- Program = set P of hybrid rules + external theory T
- Constraints formulae of T allowed in rules, closed under ∃, ¬, ∧
- Hybrid rule $-H:-C, L_1,...,L_n$ normal clause, constraint allowed
- M a model of T
- P/M ground(P) with the constraints interpreted in M (i.e. replaced by true or false)
- \blacksquare WF(P/M) the well-founded model of P/M
- $(T,P) \models_{\mathsf{wf}} F$ iff F true in all well-founded models

WFS generalized, example; CLP(FD) or $CLP(\mathbb{N})$

$$win(X) \leftarrow C(X,Y), \neg win(Y)$$

 $\neg win(X)$

win(X)

should be implied by

$$\forall X_1. \neg C(X, X_1)$$

 $\exists X_1.C(X,X_1), \\ \forall X_2.\neg C(X_1,X_2)$

$$\forall X_1. \neg C(X, X_1) \lor$$

$$\exists X_2. C(X_1, X_2),$$

$$\forall X_3. \neg C(X_2, X_3)$$

$$\exists X_1.C(X, X_1),$$
 $(\forall X_2.\neg C(X_1, X_2) \lor \exists X_3.C(X_2, X_3),$
 $\forall X_4.\neg C(X_3, X_4))$

. . .

Operational semantics for hybrid rules

- Generalizes SLS-resolution
- SLS-resolution: SLD-resolution + "infinite failure"
 - goals (conjunctions of literals) + substitutions
- Generalization:
 - goals include constraints, over original constraint domain + Herbrand domain
 - Usually CLP(X) means $CLP(\mathcal{H}+X)$
- Top-down, goal-driven
 A tree of trees; 2 kinds of trees needed
 Non trivial handling of constraints, based on constructive negation for LP [D_'95]

Operational semantics, trees

Hybrid Rules SweCons 2009

Operational semantics, example

win(X) :-
$$C(X,Y)$$
, \sim win(Y).

The constraints from the previous example obtained as answers / negative answers.

Operational semantics for hybrid rules (3)

- **Sound** under rather weak conditions $(\exists C \Rightarrow C\theta \text{ for some } \theta, \text{ or } P \text{ safe, or special } \exists)$
- Complete when
 - (1) decidability of constraints
 - (2) no function symbols
 - (3) safeness
- $(1),(2) \Rightarrow$ declarative semantics **decidable**
- H:- C, L_1 ,..., L_n safe iff each variable occurs (or C bounds it to a variable occuring) in a positive literal L_i .

Soundness (formally)

(P,T) a hybrid program, G goal, . . .

If

- C is an answer of a t-tree for G
- $T \models C\theta$

then

 \blacksquare $(T,P) \vDash_{\mathsf{wf}} G\theta$.

If

- C is a negative answer of a tu-tree for G
- $T \models C\theta$

then

 $(T,P) \vDash_{\mathsf{wf}} \neg G\theta .$

The computed answers are correct w.r.t. all well-founded models of (T,P).

Hybrid Rules SweCons 2009

Completeness (formally)

(*P,T*) a hybrid program, *G* goal Additional requirements:

- Finite Herbrand universe
- P and G safe
- If $(T,P) \models_{wf} G\theta$ then there exists a t-tree for G with an answer C such that $T \models C\theta$
- If $(T,P) \models_{wf} \neg G\theta$ then there exists a tu-tree for G with a negative answer Csuch that $T \models C\theta$

Implementation

- Easy implementation by re-using reasoners for LP and external theory
- Prototype: XSB Prolog + Pellet DL reasoner
 - Constraints: DL concepts
 - Compilation to Prolog
 - Change of the DL reasoner easy
- http://www.ida.liu.se/hswrl, usable, almost finished

but constructive negation for LP omitted

17

Written (mainly) in XSB. Compiling P to XSB. Run-time system in XSB (+ Pellet interface in Java).

Publications

www.ipipan.waw.pl/~drabent/

2 conference papers (RR2007), best short paper award, 1 workshop paper (ALPSWS2007).

Journal paper, invited to special issue of "Knowledge and Information Systems", delayed reviews.

The framework - properties

- Negation: monotonic for constraint predicates non-monotonic for rule predicates
- Normal rules (not disjunctive)
- No restrictions on alphabet, on models of external theories, on equality in external theories (no CET, UNA)
 - Prolog built-ins available
 - Logic + Control for rules (like in logic programming)
- Efficient Few calls to DL solver

Summary

- Presented:
 - Generalization of WF semantics to CLP (and others)
 - Operational semantics
 - Complements known results for CLP with completion sem.
- Thus we know how negation can be dealt with.
 - except for stable model semantics
- Need for constructive negation? Examples?
 - We learned to live without it
- Use it in your programs!
 - possible even without a general implementation

Hybrid Rules SweCons 2009

THANK YOU

Hybrid Rules SweCons 2009

A comment on CLP theory

- Usually CLP(X) means CLP($\mathcal{H}+X$)
 - E.g. ?- p(2+2) fails with $\{p(4).\}$
 - \blacksquare Two equalities (of \mathcal{H} , of X)
- CLP(H) dealt with by unification
- CLP + negation
 - dealing with disequalities necessary
 - constructive negation for LP

A comment on the win example

For the example program, the well-founded semantics is equivalent to the 3-valued completion semantics.