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Constraint Programming for Fun
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 What is constraint programming?

Sudoku is constraint programming

 ... as a reminder ... for real, later



...is constraint programming!

Sudoku
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Sudoku
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 Assign blank fields digits such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8



Sudoku

2009-05-27Constraint Programming for Real, Schulte, KTH

5

 Assign blank fields digits such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8



Sudoku
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 Assign blank fields digits such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8



Block Propagation
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 No field in block can take digits 3,6,8

8

6 3



Block Propagation
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 No field in block can take digits 3,6,8
 propagate to other fields in block

 Rows and columns: likewise

1,2,4,5,7,9 8 1,2,4,5,7,9

1,2,4,5,7,9 6 3

1,2,4,5,7,9 1,2,4,5,7,9 1,2,4,5,7,9



Propagation
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 Prune digits from fields such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8

1,2,3,4,5,6,7,8,9



Propagation
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 Prune digits from fields such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

96

2

7

1

94

8

6 3

4

6 8

1

8

1,3,5,6,7,8



Propagation
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 Prune digits from fields such that:

digits distinct per rows, columns, blocks

9

2 9

52

7 3

6

2

6 9

7

4 9

1

8

6 3

86

4 1

8

1,3,6,7



Propagation
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 Prune digits from fields such that:

digits distinct per rows, columns, blocks

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8

1,3,6



Iterated Propagation
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 Iterate propagation for rows, columns, blocks

 What if no assignment: search... later

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8



Sudoku is Constraint Programming
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 Modeling: variables, values, constraints

 Solving: propagation, search

9

2

2 5

9

7 3

6

2

6 9

7

4 9

1

8

6 3

4

6 8

1

8

 Variables: fields
 take values: digits

 maintain set of 
possible values

 Constraints: distinct
 relation among 

values for variables



Constraint Programming
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 Variable domains
 finite domain integer, finite sets, multisets, intervals, ...

 Constraints
 distinct, arithmetic, scheduling, graphs, ...

 Solving
 propagation, branching, exploration, ...

 Modeling
 variables, values, constraints, heuristics, symmetries, 

...



Constraint Programming for Real
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 Key ideas and principles
 constraint propagation and search

 Why does constraint programming matter?

 Excursions
 capturing structure: distinct reconsidered

 local reasoning: admitting failure

 user-defined constraints: rostering
 compositional modeling: scheduling [if time allows]

 Summary
 strength and challenges

 two entry pointers



Key Ideas and Principles
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Running Example: SMM
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 Find distinct digits for letters such that

SEND

+ MORE

= MONEY



Constraint Model for SMM
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 Variables: 

S,E,N,D,M,O,R,Y  {0,…,9}

 Constraints:

distinct(S,E,N,D,M,O,R,Y)

1000×S+100×E+10×N+D

+         1000×M+100×O+10×R+E

= 10000×M+1000×O+100×N+10×E+Y

S0 M0



Solving SMM
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 Find values for variables

such that

all constraints satisfied



Finding a Solution

2009-05-27Constraint Programming for Real, Schulte, KTH

21

 Compute with possible values 
 rather than enumerating assignments

 Prune inconsistent values
 constraint propagation

 Search
 branch: define search tree

 explore: explore search tree for solution



constraint store

propagators

constraint propagation

Constraint Propagation
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Constraint Store
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 Maps variables to possible values

x{1,2,3,4}  y{1,2,3,4}  z{1,2,3,4}



Constraint Store
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 Maps variables to possible values
 other domains: finite sets, float intervals, graphs, ...

x{1,2,3,4}  y{1,2,3,4}  z{1,2,3,4}

finite domain constraintsfinite domain constraints



Propagators
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 Implement constraints

distinct(x1, …, xn)

x + 2×y = z

schedule(t1, …, tn)



Propagators
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 Strengthen store by constraint propagation
 prune values in conflict with implemented constraint

x{1,2,3,4}  y{1,2,3,4}  z{1,2,3,4}

distinct(x, y, z) x + y = 3



Propagators
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 Strengthen store by constraint propagation
 prune values in conflict with implemented constraint

x{1,2}  y{1,2}  z{1,2,3,4}

distinct(x, y, z) x + y = 3



Propagators
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 Iterate propagator execution until fixpoint
 no more pruning possible

x{1,2}  y{1,2}  z{3,4}

distinct(x, y, z) x + y = 3



Propagation for SMM
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 Results in store
S{9} E{4,…,7} N{5,…,8} D{2,…,8} 

M{1} O{0} R{2,…,8} Y{2,…,8}

 Propagation alone not sufficient!
 decompose into simpler sub-problems

 branching



Constraints and Propagators
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 Constraints state relations among variables
 which value combinations satisfy constraint

 Propagators implement constraints
 prune values in conflict with constraint

 freedom of what to implement (more later)

 Constraint propagation executes propagators
 until no more pruning possible (fixpoint)



Well-behaved Propagators
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 Semantic: propagator implements constraint
 correct no solution of constraint ever removed

 complete decision procedure for assignments

propagation + search is complete

 Operational: constraint propagation works
 contracting values are removed

monotonic stronger pruning only on stronger input

 No restriction on
 strength how much pruning

 how how propagator is implemented



branching

exploration

best solution search

Search
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Branching
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 Create subproblems with additional constraints
 enables further propagation

 defines search tree

x{1,2}  y{1,2}  z{3,4}

distinct(x, y, z) x + y = 3

x{1}  y{2}  z{3,4}

distinct(x, y, z) x + y = 3

x{2}  y{1}  z{3,4}

distinct(x, y, z) x + y = 3

x=1 x≠1



Example Branching Strategy
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 Pick variable x with at least two values

 Pick value n from domain of x

 Branch with

x=n and xn



Exploration
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 Iterate propagation and branching

 Orthogonal: branching  exploration
 exploration: interactive, parallel, ...

 Nodes:
 unsolved  failed  solved



Heuristics for Branching

2009-05-27Constraint Programming for Real, Schulte, KTH

36

 Which variable
 least possible values (first-fail)

 application dependent heuristic

 Which value
minimum, median, maximum

x=n or xn

 split with median n

x<n or xn

 Problem specific
most loaded resource, task with least slack, …

 order tasks on same resource, ...



SMM: Solution With First-fail
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SEND

+ MORE

= MONEY

9567

+ 1085

= 10652



Best Solution Search
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 Naïve approach infeasible
 compute all solutions

 choose best

 Branch-and-bound approach
 compute first solution

 add “betterness” constraint to open nodes

 next solution will be “better”

 prunes search space



Summary
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 Modeling
 variables with domain

 constraints to state relations

 branching strategy

 Solving
 constraint propagation

 constraint branching

 search tree exploration



Why Does CP Matter?
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Widely Applicable
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 Timetabling

 Scheduling

 Crew rostering

 Resource allocation

 Workflow planning and optimization

 Gate allocation at airports

 Sports-event scheduling

 Railroad: track allocation, train allocation, schedules

 Automatic composition of music

 Genome sequencing

 Frequency allocation

 …



Draws on Variety of Techniques
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 Artificial intelligence
 basic idea, search, ... 

 Operations research
 scheduling, flow, ...

 Algorithms
 graphs, matchings, networks, ...

 Programming languages
 programmability, extensionability, ...



Essential
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Compositional middleware for combining
 smart algorithmic (solving)

 problem substructures (modeling)

components (propagators)
 scheduling, graphs, flows, …

while supporting
 essential extra constraints

 to be explored in the following excursions



distinct (alldifferent) reconsidered

Capturing Structure
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Distinct Propagator
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 Infeasible: no dedicated propagator
 decompose distinct(x1, ..., xn)

 into xi ≠ xj (1 ≤ i < j ≤ n) disequality propagators

 too many propagators O(n2), propagation too weak

 Not much better: naive distinct propagator
 wait until variable becomes assigned

 remove value from all other variables

 propagation too weak



Naïve Is Not Good Enough
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 distinct(x, y, z)

 decomposition: x ≠ y and x ≠ z and y ≠ z 

 x{1,2,3}, y{1,2}, z{1,2}
 should propagate x{1} 

 x{1,2}, y{1,2}, z{1,2}
 should exhibit failure without search 



Strong Distinct Propagator

2009-05-27Constraint Programming for Real, Schulte, KTH

47

 Strong - global - distinct propagator
 only keep values appearing in a solution to constraint

 essential for many problems (permutation problems)

 takes global perspective on constraint

 is strongest: domain-consistent, hyper-arc consistent, ...

 Can be propagated efficiently
 O(n2.5) is efficient [Régin, 1994]

 Uses graph algorithms
 solutions of constraint  properties of graph

 characterize all solutions: prune excess values



Variable Value Graph
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 Bipartite graph
 variable nodes → value nodes

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}



Solution: Maximal Matching
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 Compute single maximal matching
 matched edge variable node → value node

 free edge value node → variable node

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}



Characterize All Solutions
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 Edges that can appear in any matching
 even alternating cycles (x0 → 0 → x2 → 2 → x1 → 1 → x0)

 even alternating paths (6 → x5 → 5 → x4 → 4)

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}



Characterize All Solutions
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 Edges that can appear in any matching
 even alternating cycles (x0 → 1 → x1 → 2 → x2 → 0 → x0)

 even alternating paths (6 → x5 → 5 → x4 → 4)

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}



Characterize All Solutions
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 Edges that can appear in any matching
 even alternating cycles (x0 → 0 → x2 → 2 → x1 → 1 → x0)

 even alternating paths (4 → x4 → 5 → x5 → 6)

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={1,3}

s(x4)={2,3,4,5}

s(x5)={5,6}



Prune Edges (Values)
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 Prune edges that cannot appear in any matching
 accordingly: prune values from variables

x0

x1

x2

x3

x4

x5

0

1

2

3

4

5

6

s(x0)={0,1}

s(x1)={1,2}

s(x2)={0,2}

s(x3)={3}

s(x4)={4,5}

s(x5)={5,6}



Global Constraints

2009-05-27Constraint Programming for Real, Schulte, KTH

54

 Reasons for globality: decomposition...
 semantic: ...not possible

 operational: ...less propagation

 algorithmic: ...less efficiency

 Plethora available
 scheduling, sequencing, cardinality, sorting, circuit, ...

 systematic catalogue with hundreds available 
http://www.emn.fr/x-info/sdemasse/gccat/

 sometimes not straightforward to pick the right one 
(strength versus efficiency, etc)

http://www.emn.fr/x-info/sdemasse/gccat/
http://www.emn.fr/x-info/sdemasse/gccat/
http://www.emn.fr/x-info/sdemasse/gccat/


Summary
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 Constraints capture problem structure
 ease modeling (commonly recurring structures)

 enable solving (efficient algorithms available)

 Constraints as
 reusable

 powerful

software components



How to Deal with Distinct...
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 Assume n variables, at most d values

 SAT (propositional formulae)
O(nd) clauses [Gent, Nightinggale, 2004]

 other encodings possible

 MILP (mixed integer linear programs)
 introduce O(nd) new 0/1 variables

 decompose into O(n+d) linear (in)equations

[Hooker, 2007, p 368]



SMM: Strong Propagation
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SEND

+ MORE

= MONEY

9567

+ 1085

= 10652



beauty and curse of 

constraint programming

Local Reasoning
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Kakuro
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11 4

5

14 10

17

3

6 4

3

10

3



Kakuro
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 Fields take digits

 Hints describe
 for row or column

 digit sum must be hint

 digits must be distinct

11 4

5

14 10

17

3

6 4

3

10

3



Kakuro
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 For hint 3

1 + 2

11 4

5

14 10

17

3

6 4

3

10

3

1

2



Kakuro
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 For hint 3

1 + 2

or

2 + 1

11 4

5

14 10

17

3

6 4

3

10

3

2

1



Kakuro
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 For hint 4

1 + 3

11 4

5

14 10

17

3

6 4

3

10

3

1 3



Kakuro
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 For hint 4

1 + 3

or

3 + 1

11 4

5

14 10

17

3

6 4

3

10

3

3 1



Kakuro
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 For hint 3

1 + 2

 For hint 4

1 + 3

11 4

5

14 10

17

3

6 4

3

10

3

3 1

2



2

Kakuro Solution
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11 4

5

14 10

17

3

6 4

3

10

3

3

9 5 1 2

5 1 3 1

3 1 4 2

2 1



Modeling and Solving Kakuro
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 Obvious model: for each hint
 distinct constraint

 sum constraint

 Good case... (?)
 few variables per hint

 few values per variable

 Let’s try it...
 22×14, 114 hints: 9638 search nodes, 2min 40sec

 90×124, 4558 hints: ? search nodes, ? years

years? centuries? eons?



Failing for Kakuro...
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 Beauty of constraint programming
 local reasoning

 propagators are independent

 variables as simple communication channels

 Curse of constraint programming
 local reasoing

 propagators are independent

 variables as simple communication channels



workforce rostering

Kakuro reconsidered

User-defined Constraints
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Modeling Rostering: User-defined
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 Personel rostering: example
 one day off (o) after weekend shift (w)

 one day off (o) after two consectuive long shifts (l)

 normal shifts (n) 

 Infeasible to implement propagator for ever-

changing rostering constraints 

 User-defined constraints: describe legal 

rosters by regular expression
 (wo | llo | n)*



Regular Constraint
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 Propagation idea: maintain all accepting paths
 from start state (0) to a final state (0): solutions!

 symbols on transitions comply with variable values

0

1

2

n

l

l

w

o

(wo | llo | n)*

regular(x1, …, xn, r)

 x1 … xn word in r

 or, accepted by DFA d for r



Propagating Regular
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 Example: regular(x, y, z, d)
 x, y, z in {w,o,l,n}

 in reality: w=0, o=1, l=2, n=3

0

x y z



Propagating Regular
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 Forward pass
 all paths from start state

0

x

0

y z

1

2

n

l

w



Propagating Regular
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 Forward pass: optimization
 each state at most once for each variable (“layer”)

 several incoming/outgoing edges per state

0

x

0

y z

0

1 1

2 2

n

l

o

n

l

l

ww



Propagating Regular
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 Forward pass finished

0

x

0

y z

0 0

1 1 1

2 2 2

n

l

o

n n

l

l

l

l

w ww

o



Propagating Regular
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 Backward pass
 start: remove non-final states for last layer

0

x

0

y z

0 0

1 1

2 2

n

l

o

n n

l

l

ww

o



Propagating Regular
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 Backward pass
 start: remove non-final states for last layer

 continue: remove states with no outgoing edges

0

x

0

y z

0 0

1

2 2

n

l

o

n n

l

ww

o



Propagating Regular
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 Pruning

x{n,l,w} y{n,l,w,o} z{n,o}

0

x

0

y z

0 0

1

2 2

n

l

o

n n

l

ww

o



Getting Even Better
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 Variants of regular constraint
 original regular constraint [Pesant, 2004]

 use way more efficient MDD instead of DFA [Yap ea, 

2008]

 cost-based variants available [Pesant, ea, 2007]



AI’s Legacy
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 Original model for constraint propagation
 constraints used for propagation in extension (list of 

solutions): no propagators

 single algorithm for all constraints (consistency)

 often restricted to binary constraints

 Beautiful model
 insightful for understanding propagation

 rich connections (complexity, relational databases, …)

 rich notion of levels of pruning: arc consistency, path 

consistency, k-consistency, …



AI’s Legacy: Solving for Real?
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 Constraints used for propagation in extension
 unable to exploit structure for efficient solving

 unrealistic for large arity: distinct with n variables has 

n! solutions, ….

 Single algorithm for all constraints
 infeasible in general: constraints may be NP-hard

 no compromise between pruning and efficiency

 Often restricted to binary constraints
 decomposition destroys propagation



The Best of Both Worlds
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 Start from propagator-based constraint 

propagation
 take advantage of dedicated algorithms

 Dedicated propagator for user-defined 

constraints
 only pay, if needed

 incredibly efficient: MDD-based propagator [Yap ea, 

2008]



Kakuro Reconsidered
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 Real model: for each hint
 one regular constraint combining distinct and sum

 precompute when model is setup

 Good case...
 few solutions for combined constraint

 Let’s try again (precomputation time included)
 22×14, 114 hints: 0 search nodes, 28 msec

 90×124, 4558 hints: 0 search nodes, 345 msec



Summary
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 User-defined constraints
 high degree of flexibility

 efficient and perfect propagation

 limited to medium-sized constraints

 use specialized propagator rather than extensional 

framework

 Kakuro: decomposition is harmful [again]
 capture essential structure by few constraints

 best by single constraint
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Scheduling Resources: Problem
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 Tasks
 duration

 resource

 Precedence constraints
 determine order among two tasks

 Resource constraints
 at most one task per resource 

[disjunctive, non-preemptive scheduling]



Scheduling: Bridge Example
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Scheduling: Solution
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 Start time for each task

 All constraints satisfied

 Earliest completion time
minimal make-span



Scheduling: Model
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 Variable for start-time of task a

start(a)

 Precedence constraint: a before b

start(a) + dur(a)  start(b)
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 Variable for start-time of task a

start(a)

 Precedence constraint: a before b

start(a) + dur(a)  start(b)

 Resource constraint:

a before b

or

b before a
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 Variable for start-time of task a

start(a)

 Precedence constraint: a before b

start(a) + dur(a)  start(b)

 Resource constraint:

start(a) + dur(a)  start(b)

or

b before a
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 Variable for start-time of task a

start(a)

 Precedence constraint: a before b

start(a) + dur(a)  start(b)

 Resource constraint:

start(a) + dur(a)  start(b)

or

start(b) + dur(b)  start(a)

[use so-called reification for this]



Model: Easy But Too Naive
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 Local view
 individual task pairs

O(n2) propagators for n tasks

 Global view (again a global constraint)
 all tasks on resource

 single propagator

 smarter algorithms possible



2009-05-27Constraint Programming for Real, Schulte, KTH

94

Edge Finding: Idea

 Assume a subset O of tasks and a task tO
 compute earliest completion time of O

ect(O)

 compute latest completion time of O - {t}

lct(O - {t})

 if 

ect(O) > lct(O - {t})

then

t must run last in O

 Can be done in O(n log n) for n tasks
[Carlier & Pinson, 1994] [Vilím ea., 2004] 
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Edge Finding

 Assume
 start(a)  {0,…,11} dur(a) = 6 

 start(b)  {1,…,7} dur(b) = 4

 start(c)  {1,…,8} dur(c) = 3

a

b

c
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Edge Finding

 Assume O={a,b,c}, t=a

 Clearly, a must go last

a

{b,c}



2009-05-27Constraint Programming for Real, Schulte, KTH

97

Edge Finding

 Assume O={a,b,c}, t=a

 Clearly, a must go last

a

{b,c}
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Edge Finding

 Propagate

 start(a)  {8,…,11}

a

b

c



Constraint-based Scheduling
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 Rich set of methods
 propagation

 branching heuristics

 search methods

 Many variants
 disjunctive, cumulative, elastic, preemptive, ...

 batch processing, setup times, ...

[Baptiste, Le Pape, Nuijten, Constraint-based Scheduling. 
Kluwer, 2001]



Scheduling: Bridge Example
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infamous: 

additional 

side 

constraints



Summary
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 Modeling is compositional
 reasoning is too!

 Powerful global constraints...

plus...

essential additional side constraints

 Scheduling domain
 show case of constraint programming
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Strength
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 Captures structure
 use structure for efficient reasoning

 unique distinction from SAT and LP

 Flexible, compositional, reusable
 add additional side constraints

 add new algorithmic components

 high return on investment into global constraints

 Simple
 clear model based on propagators

 Efficient systems available
 commercial and open source



Challenges
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 Modeling: art not science
 true to some extent for most approaches

 here: identify substructures, know strength of different 
methods

 array of techniques: symmetry breaking, implied 
constraints, heuristics, ... 

 Search: mostly naive
 local decision making

 no global techniques such as learning (SAT), or strong 
branching, impact-based search (LP)

 remedies in their infancy



The Essence
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 Constraint programming is about…

...local reasoning exploiting structure

 Strength
 simplicity, compositionality, exploiting structure

 Challenges
 lack of global picture during search

 difficult to find global picture due to rich structure

 Future
 part of hybrid solutions



Resources
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 Complete and recent overview
 Rossi, Van Beek, Walsh, eds. Handbook of Constraint 

Programming, Elsevier, 2006 (around 950 pages).

 National perspective
 Flener, Carlsson, Schulte. Constraint Programming in 

Sweden, IEEE Intelligent Systems, pages 87-89. IEEE 

Press, March/April, 2009. 


