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Why Java?

Mature language that is portable between many platforms.

Strongly typed and safe language.

Efficient memory management and garbage collection.

Easy to develop new applications since it has rich standard
libraries.

Efficient implementations with on-time compilations.

Support for multi-threading.

...



Introduction JaCoP Constraints JaCoP Search Applications Conclusions

JaCoP library

Finite domain constraint programming paradigm
implemented in Java 1.5 (ca. 40,000 lines of code).
Provides different type of constraints

most commonly used primitive constraints, such as
arithmetical constraints, equalities and inequalities,
logical, reified and conditional constraints,
combinatorial (global) constraints.

Provides a number of standard search methods.

It is used as usual Java API, either by providing it as a JAR
file or specifying access to a class directory containing all
JaCoP classes.

Used in several research projects at several places.
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JaCoP Example
import JaCoP.*;

import java.util.*;

public class Main {

static Main m = new Main ();

public static void main (String[] args) {

FDstore store = new FDstore(); // define FD store

int size = 4;

// define FDVs

FDV[] v = new FDV[size];

for (int i=0; i<size; i++)

v[i] = new FDV(store, "v"+i, 1, size);

// define constraints

store.impose( new XneqY(v[0], v[1]) );

store.impose( new XneqY(v[0], v[2]) );

store.impose( new XneqY(v[1], v[2]) );

store.impose( new XneqY(v[1], v[3]) );

store.impose( new XneqY(v[2], v[3]) );

// search for a solution and print results

ArrayList<FDV> list = new ArrayList<FDV>();

for(FDV var : v) list.add(var);

boolean result = Solver.searchOne(store, list, new SearchOne(), new IndomainMin(), new Delete());

if ( result )

System.out.println("Solution: " + list + "\n*** Yes");

else

System.out.println("*** No");

}

}
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v2

v3
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JaCoP Example (cont’d)

The program produces the following output

Solution: [v0=1, v1=2, v2=3, v3=1]

*** Yes



Introduction JaCoP Constraints JaCoP Search Applications Conclusions

JaCoP Constraints

primitive
X + Y = Z ,
X >= Y ,
X × Y = Z ,
etc.

conditional
IF (X = Y ) THEN B > 10 ELSE C <= 7
X = Y ⇔ A > C

reified
X = Y ⇔ B

logical
(X = Y ) ∨ (X = Z )
¬(A = B)
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JaCoP Combinatorial Constraints

Alldifferent, Alldiff, Alldistinct– all varibales have
different values.

Diff2– non-overlapping rectangles in 2-D space.

Cumulative– cumulative use of resources.

Circuit– Hamiltonian circuit in the graph.

Element– finite relation between I and V , V = List[I].

Assignment– Xi = j ⇔ Yj = i

ExtensionalSupport, ExtensionalConflict– relations
between variables defined by tuples.

Sum, SumWeighted– summation of finite domain variables.

Min, Max– min and max value form the list of variables.
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Constraints Implementation

All necessary data structures for constraint consistency are
built in FDstore.
All constraints extend abstract class Constraint that
defines, among other methods, two most important
methods

consistency

satisfied

Primitive constraints extend this class to
PrimitiveConstraint

notConsistency

notSatisfied

Propagation loop calls consistency methods for the
constraints in the evaluation queues.
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Constraints Implementation (cont’d)

Bounds consistency method for X + Y = Z

public void consistency (FDstore S) {

while ( S.newPropagation ) {

S.newPropagation = false;

in(S, X, Z.min() ­ Y.max(), Z.max() ­ Y.min());

in(S, Y, Z.min() ­ X.max(), Z.max() ­ X.min());

in(S, Z, X.min() + Y.min(), X.max() + Y.max());

}

}
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Basic features of the solver

Evaluation of constraints triggeret by events.

Satisfied constraints are removed from evaluation.

New constraint can be posed during search to build new
search methods.

Constraints can have a state that changes during search
and backtracking in a similar way as variables.

Easy to add new constraints with different consistency
methods; extend abstract class.

Can run large examples, e.g. ca. 180 000 constraints.



Introduction JaCoP Constraints JaCoP Search Applications Conclusions

JaCoP Search

JaCoP offers a number of search methods
search for a single solution,
find all solutions, and
find a solution that minimizes/maximizes a given cost
function.

Search is achieved using depth-first-search together with
consistency checking.

Search is parametrized (different classes for labeling,
delete, and indomain).
There are complete search methods and heuristics

depth-first-search and branch-and-bound,
credit search,
“limited discrepancy search”,
hierarchical search.
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Design Automation Area

Scheduling and resource assignment in high-level
synthesis.

Partial task assignment of task graphs under
heterogeneous resource constraints.

Time-energy design space exploration for multi-layer
memory architectures.

Synthesis of SoPC (System on Programmable Chip)– cell
synthesis and communication synthesis.

New synthesis method based on graph matching
constraint.

Parallel search.
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Assignment and Scheduling Based on Graph
Matching
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Distributed Ssearch– Golomb 11
Search tree is distributed into a number of computers or cores.
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Conclusions

Ease and intuitive to use while efficient,

Implementation based on the state-of-the-art constraint
programming algorithms backed by few years of
experimentation with different designs.

Not tailored to any specific domains, acceptable efficiency
for a wide range of different applications.

Successfully used in a number of research projects at
different places.
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