JaCoP

Java Constraint Programming libraray and its
applications

Krzysztof Kuchcinski
Krzysztof.Kuchcinski@cs.1lth.se

Department of Computer Science
Lund University

@ Introduction and General Features

9 JaCoP Constraints and Their Implementation
9 JaCaoP Search

e Applications

e Conclusions

Introduction

Why Java?

Mature language that is portable between many platforms.

Efficient memory management and garbage collection.

Easy to develop new applications since it has rich standard
libraries.

@ Efficient implementations with on-time compilations.
@ Support for multi-threading.

0
@ Strongly typed and safe language.
o
o

Introduction

JaCoP library

@ Finite domain constraint programming paradigm
implemented in Java 1.5 (ca. 40,000 lines of code).
@ Provides different type of constraints

@ most commonly used primitive constraints, such as
arithmetical constraints, equalities and inequalities,

@ logical, reified and conditional constraints,

@ combinatorial (global) constraints.

@ Provides a number of standard search methods.

@ Itis used as usual Java API, either by providing it as a JAR
file or specifying access to a class directory containing all
JaCoP classes.

@ Used in several research projects at several places.

Introduction

JaCoP Example

import JaCoP.x;
import java.util.x;
public class Main {

static Main m = new Main ();

public static void main (String[] args) {
FDstore store = new FDstore(); // define FD store
int size = 4;
// define FDVs
FDV[] v = new FDV[size];
for (int i=0; i<size; i++)

v[i] = new FDV(store, "v"+i, 1, size);

// define constraints
store.impose(new XneqY(v[0], v[1]));
store.impose(new XneqY(v[0], v[2]));
store.impose(new XneqY(v[1], v[2]));
store.impose(new XneqY(v([1], v[3]));
store.impose(new XneqY(v([2], v[3]));

// search for a solution and print results
ArrayList<FDV> list = new ArrayList<FDV>();
for(FDV var : v) list.add(var);
boolean result = Solver.searchOne(store, list, new SearchOne(), new IndomainMin(), new Delete());
if (result)
System.out.println("Solution:
else
System.out.println("«=% No");

+ list + "\n#x* Yes");

Introduction

JaCoP Example (contd)

The program produces the following output

Solution: [v0=1, vl1=2, v2=3, v3=1]
x%% Yes

JaCoP Constraints

JaCoP Constraints

@ primitive
o X+Y =7,
@ X >=Y,
@ X xY =727,
@ etc.
@ conditional
@ IF (X =Y)THENB > 10ELSEC <=7
e X=Y&A>C
@ reified
e X=Y<B
@ logical
e (X=Y)v(X=2)
*] —\(A:B)

JaCoP Constraints

JaCoP Combinatorial Constraints

Alldifferent, Alldiff, Alldistinct— all varibales have
different values.

Diff2— non-overlapping rectangles in 2-D space.
Cumulative— cumulative use of resources.

Circuit— Hamiltonian circuit in the graph.

Element— finite relation between | and V, V = List[l].
Assignment— X; =] < Yj =i

ExtensionalSupport, ExtensionalConflict— relations
between variables defined by tuples.

Sum, SumWeighted— summation of finite domain variables.

JaCoP Constraints

Constraints Implementation

@ All necessary data structures for constraint consistency are
built in FDstore.
@ All constraints extend abstract class Constraint that

defines, among other methods, two most important
methods

@ consistency
@ satisfied
@ Primitive constraints extend this class to
PrimitiveConstraint
@ notConsistency
@ notSatisfied
@ Propagation loop calls consistency methods for the
constraints in the evaluation queues.

JaCoP Constraints

Constraints Implementation (cont'd)

Bounds consistency method for X + Y = Z

public void consistency (FDstore S) {
while (S.newPropagation) {
S.newPropagation = false;
in(S, X, Z.min() - Y.max(), Z.max() - Y.min());
in(S, Y, Z.min() - X.max(), Z.max() - X.min());
in(S, Z, X.min() + Y.min(), X.max() + Y.max());

JaCoP Constraints

Basic features of the solver

@ Evaluation of constraints triggeret by events.
@ Satisfied constraints are removed from evaluation.

@ New constraint can be posed during search to build new
search methods.

@ Constraints can have a state that changes during search
and backtracking in a similar way as variables.

@ Easy to add new constraints with different consistency
methods; extend abstract class.

@ Can run large examples, e.g. ca. 180 000 constraints.

JaCoP Search

JaCoP Search

@ JaCoP offers a number of search methods
@ search for a single solution,
@ find all solutions, and
@ find a solution that minimizes/maximizes a given cost
function.
@ Search is achieved using depth-first-search together with
consistency checking.

@ Search is parametrized (different classes for labeling,
delete, and indomain).
@ There are complete search methods and heuristics

@ depth-first-search and branch-and-bound,
@ credit search,

@ “limited discrepancy search”,

@ hierarchical search.

Applications

Design Automation Area

Scheduling and resource assignment in high-level
synthesis.

Partial task assignment of task graphs under
heterogeneous resource constraints.

Time-energy design space exploration for multi-layer
memory architectures.

Synthesis of SOPC (System on Programmable Chip)- cell
synthesis and communication synthesis.

New synthesis method based on graph matching
constraint.

Parallel search.

Applications

Assignment and Scheduling Based on Graph

Matching

¥

data-flow graph components

Applications

Assignment and Scheduling Based on Graph

Matching

¥

N

data-flow graph components

Applications

Distributed Ssearch— Golomb 11

Search tree is distributed into a number of computers or cores.

Runtime [s]

300

200

100 -+

o —4+——"F—"F——t—

Conclusions

Conclusions

@ Ease and intuitive to use while efficient,

@ Implementation based on the state-of-the-art constraint
programming algorithms backed by few years of
experimentation with different designs.

@ Not tailored to any specific domains, acceptable efficiency
for a wide range of different applications.

@ Successfully used in a number of research projects at
different places.

Conclusions

Reference

@ K. Kuchcinski and R. Szymanek.
JaCoP Library. User’s Guide.
Technical Report, Lund University, 2006.

[l K. Kuchcinski.
Constraints-driven scheduling and resource assignment.
ACM Transactions on Design Automation of Electronic
Systems (TODAES), 8(3):355-383, July 2003.

@ K. Kuchcinski.
Constraint programming for embedded system design:
Principles and practice.
Lecture notes, 2005.

	Introduction and General Features
	JaCoP Constraints and Their Implementation
	JaCoP Search
	Applications
	Conclusions

