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Presentation Outline

What is Angelica?

Design goals

Feature summary.

Demo with focus on symbolic propagation.

Theory of symbolic propagation.

Questions.

What is Angelica?

An integrated constraint-solving environment (CSE).

Not a programming environment.

But final target is the domain of all 
executable efficient computer programs.

Top Design Goals

Brightness (ease of use)

Solidity (solver strength)

Extensibility (definitional power)

Brightness

Interactive user interface

Appealing constraint specification language:

Pure.

Readable

Orthogonal

Interactivity Features

Continuous solving with immediate screen updates during 
problem specification.

Modifiable specifications.

Colors are used to display world and propagator states.

Entries can be cloned, rearranged and piled in any order.

Fragmented selections.

Type system protects against bad or trivial assertions.

Windows can be teleported across the multiverse.
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CSL Features

Completely declarative.

Mathematical syntax (e.g. chain-associative operators).

Evaluation based on typed deterministic rewriting.

Same syntax for queries and assertions.

Everything nests and is first class.

Variable domains are types and vice versa.

Advanced type system:

Type inference.

Union, intersection, negation.

Subtyping.

Solidity Features

Partial evaluation.

Parallel search with propagator-aware distribution.

Symbolic propagation.

Universe Layout

Store

Isolated Propagators

Merged Propagators

Multiverse Example

x < 10 y > 100

x : Int
x : Bool

x = a x = c
x = b

Store Entry Structure

There are two kinds of store entries (stored constraints):

Bindings (substitutions).

Ascriptions (domain constraints).

A binding equates a variable and a term. Examples:

x = 3

y = y + z

An ascription constrains a variable to have a type denoted by 
some term. Examples:

x : Int

x : 2..9

x : 2..a -> 9..()

Main Store Design Issue

What kind of terms makes sense to allow in the rhs of a 
stored constraint?

Being too restrictive severely cripples propagation.

Being too permissive makes critical store operations 
ridiculously expensive or even undecidable and/or may, 
ironically, cripple propagation as well.
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Contribution & Thesis

By being far more permissive than what is typically the case 
in solvers based on search & propagation with computation 
spaces,

the strength of such solvers can be increased immensely,

without loosing any of the their essential  advantages.

Example Problem

x, y, z :: 0..()

44x + 73y - 52z = 1936!
30z - 46y - 16x = 4712!

abs(x - y) ≤ 100
x,y

z

General Store Restrictions

The store must never become inconsistent.

The store should never become jammed.

Critical store operations should have a reasonable 
computational complexity that is independent of the store 
size:

Adding information about a variable.

Retreiving the information stored about a variable.

Triggering suspended propagators.

Notifying suspended propagators (firing triggers).

Determining the state of the store.

The rules for designing well-behaved propagators should be 
understandable and achievable.

Store Consistency Rules

Store must never contain cycles.

There must never be more than one entry for the same 
variable.

Whenever the store constrains a variable to a potentially 
empty domain, there must be at least one propagator 
ensuring that the domain is in fact not empty.

Cycle Avoidance Rules

The store never binds a variable to a term containing that 
very variable or any other bound variable.

Stored ascriptions must not contain variables at all.

Cycle Removal Examples

x = x + y!

x = x + x y!

fac = λx:Int. if x = 0 then 1 else x fac(x - 1)!

even = λx:Nat. if x = 0 then true else odd(x - 1)!
odd = λx:Nat. if x = 0 then false else even(x - 1)!

x = 1, 2 » x!

x = (1) » x » (2)!
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Ruling Out Multiple Entries

New bindings of an already bound variable are always 
rejected. Instead, propagators are expected to use the old 
binding to obtain a new equation.

When binding a constrained variable, the new binding is 
always accepted but the already stored ascription is expelled 
from the store. The propagator that added the new binding is 
expected to take care of the expelled ascription.

If the store receives an ascription of an already constrained 
variable, the two ascription entries are merged using type 
intersection. The sending propagator gets a compatibility test 
in return.

Rejecting Jamming Terms  (1)

A variable may only be bound to accepted terms.

A term T is accepted only if it is final or it is true for all 
accepted terms S that unifying S with T is guaranteed to fail 
or add information to the store enabling the reduction of S 
and T to equal terms.

Rejecting Jamming Terms (2)

A term T is accepted only if all terms more precise than T are 
accepted.

A term S is more precise than a term T iff the range of S is a 
proper subset of the range of T.

The range of a term is the set of all terms to which the term 
may be eventually reduced.

Some Accepted Terms

2
Int -> Int
λx.x
x
1, 2, a, 5, 6, b, 8, 9

-x
x + y
2x
6x+ 4y + 7z (if x,y,z :: Int)

1, 2 » a » 8, 9
1, 2 » a » 5, 6 » b » 8, 9 (if length of a or b is known)

Some Rejected Terms

x y
f x
if a then b else c

Note on Store Updates

To avoid expensive recomputations, only irreducible 
(suspended or final) terminating terms are allowed in the rhs
of a store entry.

Since suspended terms may later become reducible, store 
entries need to be updated.

Store updates are triggered, launched, executed and 
scheduled like propagators. Hence, the immediate complexity 
of the critical store operations remains independent of the 
store size.


