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Carlos Garcia Avello, Mete Çeliktin, and Søren Dissing
Directorate of ATM Strategies, Air Traffic Services Division

European Organisation for the Safety of Air Navigation (Eurocontrol)
96 rue de la Fusée, BE – 1130 Brussels, Belgium

firstname.surname@eurocontrol.int

SweConsNet’06 — Pierre Flener — Air-Traffic Complexity Resolution in Multi-Sector Planning — 1



'

&

$

%

Moment Complexity

The complexity of a given sector s at a given moment m is based on
the following terms:

• Traffic volume: Let Nsec be the number of flights in s at m.

• Vertical state: Let Ncd be the number of non-level (climbing or
descending) flights in s at m.

• Proximity to sector boundary : Let Nnsb be the number of flights
that are at most 15 nm horizontally or 40 FL vertically beyond
their entry to s, or before their exit from s, at m.

The moment complexity of sector s at moment m is a normalised
weighted sum of these terms:

C(s,m) = (asec ·Nsec + acd ·Ncd + ansb ·Nnsb) · Snorm
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Planned complexity after 11:10 on 23 June 2004 in sector EBMALNL
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Interval Complexity

The interval complexity of a given sector s over a given time interval
[m, . . . , m + k · L] is the average of the moment complexities of s at
the k + 1 sampled moments m + i · L, for 0 ≤ i ≤ k:

C(s,m, k, L) =
∑k

i=0 C(s, m + i · L)
k + 1

where k is called the smoothing degree,
and L is the time step between the sampled moments.
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Allowed Forms of Complexity Resolution

• Changing the take-off time of a not yet airborne flight by an
integer amount of minutes, within the range [−5, . . . , 10].

• Changing the remaining approach time into the chosen airspace
of an already airborne flight by an integer amount of minutes,
but only within the two layers of feeder sectors around that
airspace, at a speed-up (resp. slow-down) rate of maximum 1
(resp. 2) min per 20 min of approach time.

• Changing the altitude of passage over a way-point in the chosen
airspace by an integer amount of FL (hundreds of feet), within
the range [−30, . . . , 10], such that the flight climbs no more than
10 FL/min, or descends no more than 30 FL/min if it is a jet,
and 10 FL/min if it is a turbo-prop.
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Vertical Re-Profiling
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Planned profile (plain line) and resolved profile (dot-dashed line) that
minimises the number of climbing segments for the considered flight

at the three sampled moments m, m+L, and m+2L
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Pareto Optimisation

• Multi-objective minimisation problem: given a number of sectors
s1, s2, . . . , sn, minimise the vector of their complexities with
respect to a resolution R:

〈CR(s1,m, k, L), . . . , CR(sn,m, k, L)〉

• A vector of complexities is Pareto optimal if no element can be
reduced without increasing some other element.

• Standard technique: Combine the multiple objectives into a
single objective using a weighted sum:

n∑

i=1

αi · CR(si,m, k, L)

for some weights αi > 0. In practice, one often takes αi = 1.
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Some Parameters

• lookahead is a non-negative-integer amount of minutes; a typical
value is a multiple of 10 in the range [20, . . . , 90].

• now is the time, given as an (hour, minute) pair, at which a
resolved scenario is wanted with a forecast of lookahead minutes.

• Let m = now + lookahead be the start moment of the time
interval [m, . . . , m + k · L] for complexity resolution.

• k is the smoothing degree; a good value is 2.

• L is the time step, in seconds; a good value is 200.

• ff is the minimum fraction of the number of flights planned to be
in the chosen multi-sector airspace at the sampled moments
m+ i ·L that have to be there in the resolved flight profile as well.
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Some Decision Variables

• δT is a 1d array of integer variables for entry-time changes in
[−5, . . . , 10], indexed by Flights.

• δH is a 1d array of integer variables for flight-level changes in
[−30, . . . , 10], indexed by FlightPoints.

• bsec is a 3d array, indexed by Index = [0, . . . , k], OurSectors, and
Flights, of 0/1 variables, such that bsec[i, s, f ] = 1 if flight f is in
sector s at moment m + i · L when its entry-time change is δT [f ].

• bcd is a 3d array of 0/1 variables, such that bcd[i, s, f ] = 1 if flight
f is on a non-level segment in sector s at moment m + i · L when
its entry-time change is δT [f ] and the FL changes are as in δH.

• bnsb is a 3d array of 0/1 variables: bnsb[i, s, f ] = 1 if f is near the
boundary of s at m + i · L when its entry-time change is δT [f ].
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Some Constraints

• All relevant flights planned to take off at or before now have
taken off exactly according to their profile, but their approach
times (within the feeder sectors) can be modified. All other
relevant flights can necessarily only be changed to take off after
now . Formally:

∀f ∈ Flights .

if f.timeTakeOff ≤ now

then if now < tC [f ]

then −maxSpeedUp · a[f ]
20 ≤ δT [f ] ≤ maxSlowDown · a[f ]

20

else δT [f ] = 0

else δT [f ] ∈ ∆T ∧ f.timeTakeOff + δT [f ] · 60 > now
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• Flight-point pairs flown over at or before now cannot have their
flight levels changed:

∀p ∈ FlightPoints : p.timeOver ≤ now . δH[p] = 0

• Changed flight levels stay within the bounds of the sector, as
flights cannot be re-routed through a lower or higher sector:

∀s ∈ OurSectors . ∀f ∈ SectorFlights[s] . ∀p ∈ Profile[s, f ] .

Sector [s].bottomFL ≤ p.level + δH[p] ≤ Sector [s].topFL

• Define the bsec[i, s, f ] variables:

∀i ∈ Index . ∀s ∈ OurSectors . ∀f ∈ Flights .

if f ∈ SectorFlights[s]

then bsec[i, s, f ] = 1 ↔
(

first(Profile[s, f ]).timeOver ≤ m + i · L− δT [f ] · 60
< last(Profile[s, f ]).timeOver

)

else bsec[i, s, f ] = 0
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• Define the bcd[i, s, f ] variables:

∀i ∈ Index . ∀s ∈ OurSectors . ∀f ∈ Flights .

if f ∈ SectorFlights[s]

then bcd[i, s, f ] = 1 ↔




∃p ∈ Profile[s, f ] : p 6= last(Profile[s, f ]) .

p.timeOver ≤ m + i · L− δT [f ] · 60 < p′.timeOver∧
p.level + δH[p] 6= p′.level + δH[p′]




else bcd[i, s, f ] = 0

• Define the bnsb[i, s, f ] variables:

∀i ∈ Index . ∀s ∈ OurSectors . ∀f ∈ Flights .

if f ∈ SectorFlights[s]

then bnsb[i, s, f] = 1 ↔




0 ≤ m + i · L − (first(Profile[s, f]).timeOver + δT [f] · 60) ≤ hvnsb

∧ m + i · L < last(Profile[s, f]).timeOver + δT [f] · 60
∨

0 < last(Profile[s, f]).timeOver + δT [f] · 60 − (m + i · L) ≤ hvnsb

∧ first(Profile[s, f]).timeOver + δT [f] · 60 ≤ m + i · L




else bnsb[i, s, f] = 0
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• No flight has to climb more than maxUpJet or maxUpTurbo
levels per minute or descend more than maxDownJet or
maxDownTurbo levels per minute:

∀s ∈ OurSectors . ∀f ∈ SectorFlights[s] .

∀p ∈ Profile[s, f] : f.engineT ype = jet ∧ p 6= last(Profile[s, f]) .

−(p′.timeOver − p.timeOver) · maxDownJet ≤ ((p′.level + δH[p′]) − (p.level + δH[p])) · 60
≤ (p′.timeOver − p.timeOver) · maxUpJet

∧
∀s ∈ OurSectors . ∀f ∈ SectorFlights[s] .

∀p ∈ Profile[s, f] : f.engineT ype = turbo ∧ p 6= last(Profile[s, f]) .

−(p′.timeOver − p.timeOver) · maxDownTurbo ≤ ((p′.level + δH[p′]) − (p.level + δH[p])) · 60
≤ (p′.timeOver − p.timeOver) · maxUpTurbo

• A climbing or descending flight in a sector is necessarily in that
sector:

∀i ∈ Index . ∀s ∈ OurSectors . ∀f ∈ SectorFlights[s] . bcd[i, s, f] = 1 → bsec[i, s, f] = 1

• A flight near the boundary of a sector is necessarily in that
sector:

∀i ∈ Index . ∀s ∈ OurSectors . ∀f ∈ SectorFlights[s] . bnsb[i, s, f] = 1 → bsec[i, s, f] = 1
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• A flight in a sector cannot simultaneously be in any other sector:

∀i ∈ Index . ∀f ∈ Flights .
∑

s∈OurSectors

bsec[i, s, f ] ≤ 1

• A fraction of minimum ff of the sum N of the numbers of flights
that are planned to be in one of the chosen sectors at the sampled
moments m + i · L must remain in one of the chosen sectors:

∑

i∈Index

∑

s∈OurSectors

Nsec[i, s] ≥ dN · ff e
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The Search Procedure and Heuristics

1. Label the 0/1 variables bsec[i, s, f ], bcd[i, s, f ], and bnsb[i, s, f ]:
Priority goes to placing a flight f within a sector s at time
m + i · L, but neither on a non-level segment nor near the
boundary of s. Consider the sectors s by decreasing size of
SectorFlights[s], so as to begin with the sectors that are planned
to be the most busy.

2. Label the δT variables, using a value ordering by increasing
absolute value within [−10, . . . , 5].

3. Label the δH variables, using a value ordering by increasing
absolute value within [−30, . . . , 10].

This guarantees revised flight profiles that deviate as little as possible
from the original ones.
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Implementation

• The constraint program was implemented in OPL 3.7.

• Translating the designed constraint program into an OPL model
is merely a matter of slight syntax changes, despite the absence
of an existential quantifier in OPL.

• The resulting OPL model has non-linear higher-order constraints
and non-linear channelling constraints, hence the OPL compiler
translates the model into code for ILOG Solver, rather than for
CPLEX, and constraint solving takes place at runtime.
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Experimental Setup

• The chosen air-traffic control centre is Maastricht (Netherlands).

• The chosen multi-sector airspace within the Maastricht airspace
consists of five high-density, en-route, upper airspace sectors:

sectorId bottomFL topFL asec acd ansb Snorm

EBMALNL 245 340 7.74 15.20 5.69 1.35

EBMALXL 245 340 5.78 5.71 15.84 1.50

EBMAWSL 245 340 6.00 7.91 10.88 1.33

EDYRHLO 245 340 12.07 6.43 9.69 1.00

EHDELMD 245 340 4.42 10.59 14.72 1.11

• There are an additional 34 feeder sectors.
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Chosen multi-sector airspace: on the chosen day, the sectors
EBMAKOL and EBMANIL were collapsed into EBMAWSL
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• The chosen day is 23 June 2004.

• The chosen hours are the peak traffic hours, that is from 07:00 to
22:00 local time.

• The chosen flights follow standard routes (no free flight) and are
of the turbo-prop or jet type.

The Central Flow Management Unit (CFMU) provided us with the
1, 798 flight profiles for these choices.
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Results

lookahead k L Average planned Average resolved

20 2 210 87.92 47.69

20 3 180 86.55 50.17

45 2 210 87.20 45.27

45 3 180 85.67 47.81

90 2 210 87.29 44.67

90 3 180 85.64 47.13

Average planned and resolved complexities in the chosen airspace,
with ff = 90% of the flights kept in the chosen airspace, and
timeOut = 120 seconds on an Intel Pentium 4 CPU with 2.53GHz, a
512 KB cache, and a 1 GB memory
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Conclusion

• Success story for constraint programming.

• First usage of a more sophisticated notion of the air-traffic
complexity of a sector than just its number of flights.

• First attempt at complexity resolution, in multi -sector planning.

• Strategic use of the model, rather than actual deployment: new
definitions of air-traffic complexity can readily be experimented
with, and constraints can readily be changed or added.

• In practice, air-traffic complexity resolution will not be a COP,
as here, but rather a CSP, simply requiring the resolved
air-traffic complexities to be within prescribed intervals.

• No worries about potentially interacting pairs of flights, as their
number has a very low correlation with the air-traffic complexity.
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Future Work

• Constraints to avoid unacceptable complexity being generated
before the start moment m of the time interval [m, . . . , m + k ·L].

• Constraints on sufficiently fast implementability of resolved flight
profiles, and that implementing them is still offset by the
resulting complexity reductions and redistribution among sectors.
For instance, the number of flights affected by the changes may
have to be kept under a given threshold.

• Horizontal re-profiling, among static/dynamic list of other routes.

• Cost minimisation: of ground/air holding, . . .

• A notion of airline equity towards a collaborative decision
making process between Eurocontrol and the airlines.
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