# Using Graph Properties for Global Constraints for Necessary Conditions and Filtering

Nicolas Beldiceanu<sup>1</sup>, Mats Carlsson<sup>2</sup> Jean-Xavier Rampon<sup>3</sup>, Charlotte Truchet<sup>3</sup> Sophie Demassey<sup>1</sup>, Thierry Petit<sup>1</sup>

École des Mines de Nantes<sup>1</sup> (EMN, LINA) Swedish Institute of Computer Science<sup>2</sup> (SICS) Université de Nantes<sup>3</sup> (UN, LINA)







March 14, 2006

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based F



## **Outline**

The Framework

**Example:** nvalue

**Graph Invariants** 

**Bounds On Graph Characteristics** 

**Towards Graph-Based Filtering** 

Conclusion

**Using Graph** Properties for Global Constraints for **Necessary Conditions** and Filtering

Nicolas Beldiceanu. Mats Carlsson, Jean-Xavier Rampon. Charlotte Truchet. Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

**Towards Graph-Based F** 



# **Context and Key Ideas**

- Global Constraints as Graph Properties of Structured Networks of Elementary Constraints of the Same Type [BelCarRam05].
- Graph Properties are not independent. They are related by Graph Invariants.
- ► Graph Invariants are generic. Some 150 of them have been collected in a database.
- Given a constraint C specified in terms of Graph Properties, the relevant Graph Invariants form necessary conditions for C.
- Bounds on Graph Characteristics can be computed dynamically and be used for pruning.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

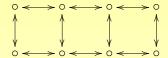
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 


**Bounds On Graph Char** 

Towards Graph-Based F



# **A Simple Global Constraint**

#### **Initial network**



Arcs are associated with elementary constraints.

#### **Final network**



Ask properties of sub-graph of elementary constraints that still hold.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

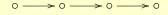
**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based F



# **Graph Generators**


#### **LOOP**



### **SELF**



#### **PATH**



#### **CHAIN**



Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit





Example: nvalue

Graph Invariants


Bounds On Graph Char

Towards Graph-Based F



# **Graph Generators**

**CIRCUIT** 



**CYCLE** 



#### **PRODUCT**



### **SYMMETRIC PRODUCT**



Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

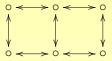
Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



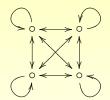
The Framework

Example: nvalue

Graph Invariants


**Bounds On Graph Char** 

Towards Graph-Based F




## **Graph Generators**

#### **GRID**



#### **CLIQUE**



Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based F



## **Graph Characteristics**

NVERTEX |V(G)|NEDGE |E(G)|

NSOURCE number of vertices without predecessor

NSINK number of vertices without successor

NCC number of connected components of G

MIN\_NCC number of vertices of smallest c.c. of G

MAX\_NCC number of vertices of largest c.c. of G

NSCC number of strongly connected components of *G* 

MIN\_NSCC number of vertices of smallest s.c.c. of *G* MAX\_NSCC number of vertices of largest s.c.c. of *G* 

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

\_ . . . . . .

Towards Graph-Based F



## **Graph Properties and Graph Invariants**

- ▶ A graph property is a relation  $C \circ V, \circ \in \{\leq, \geq, =, \neq\}$ , where C is a graph characteristic and V is a domain variable.
- A graph invariant is a relation on graph characteristics that is valid for a graph class.
- ► Example:

MIN\_NSCC ≠ MAX\_NSCC

⇒

NVERTEX > MIN\_NSCC + MAX\_NSCC

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

Graph Invariants

Bounds On Graph Char

Towards Graph-Based F



## nvalue(NVAL, VARS)

```
arguments NVAL: dvar, VARS: collection(var – dvar)
restrictions 0 ≤ NVAL ≤ |VARS|
arc input variables
arc generator clique
arc constraint VARS.var[1] = VARS.var[2]
graph properties NSCC = NVAL
example nvalue(3, {var – 3, var – 1, var – 7, var – 1})
```

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit

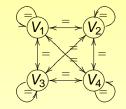


The Framework

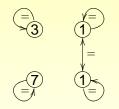
Example: nvalue

**Graph Invariants** 

Graph Invariants


**Bounds On Graph Char** 

Towards Graph-Based F




# $nvalue(3, {var - 3, var - 1, var - 7, var - 1})$

#### Initial network: variables unbound



### Final network: variables instantiated, NSCC = 3



Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

Graph Invariants

Bounds On Graph Char Towards Graph-Based F



# **Graph Invariants for nvalue**

A lower bound on NVAL in nvalue(NVAL, VARS):

$$NSCC \ge \lceil \frac{NVERTEX^2}{NARC} \rceil$$

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit





ne i iamework

Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based F



# **Tighter Graph Invariants**

- Typically, the graph for a global constraint has a specific structure. The arc generator and arc constraint determine the graph class.
- A general graph invariant:

## NARC ≤ NVERTEX<sup>2</sup>

► A tighter graph invariant that holds for graph class PATH:

$$NARC \le NVERTEX - 1$$

Other invariants are specific e.g. for acyclic, bipartite, or symmetric graphs. Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

Graph Invariants

Orapii iiivariants

Bounds On Graph Char Towards Graph-Based F



## A Database of Graph Invariants

Queried by: a set of graph characteristics (GCs) and a graph class, determined by the constraint of interest. Statistics:

| #graphs | #GC | #invariants |
|---------|-----|-------------|
| 1       | 1   | 13          |
| 1       | 2   | 50          |
| 1       | 3   | 34          |
| 1       | 4   | 12          |
| 1       | 5   | 2           |
| 2       | 2   | 10          |
| 2       | 3   | 10          |
| 2       | 4   | 6           |
| 2       | 5   | 16          |
| 2       | 6   | 4           |

**Using Graph** Properties for Global Constraints for **Necessary Conditions** and Filtering

Nicolas Beldiceanu. Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet. Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

**Towards Graph-Based F** 



## **Bounds on Graph Characteristics**

- Results to date on general graphs are shown in the table.
- Tighter and cheaper bounds can be found for specific graph classes.

| G.C.    | Sharp | Complexity | Bound                                                                                                                                |
|---------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| NARC    | yes   | Р          | $ E_T  +  X_{T,\neg T}  - \mu(\overrightarrow{G}(X_{T,\neg T}, E_U))$                                                                |
| NARC    | yes   | Р          | $ E_{TU} $                                                                                                                           |
| NVERTEX | yes   | NP         | $ X_T  + h(\overrightarrow{G}((X_{T,\neg T,\neg T}, X_{U,\neg T,T}), E_{U,T}))$                                                      |
| NVERTEX | yes   | Р          | $ X_{TU} $                                                                                                                           |
| NCC     | yes   | Р          | $ cc_{[ X_T  \geq 1]}(\overrightarrow{G}(X_{TU}, E_{TU})) $                                                                          |
| NCC     | yes   | Р          | $ cc_{[ E_T  \geq 1]}(\overrightarrow{G}(X_T, E_T))  + \mu_I(\overrightarrow{G}_{rem})$                                              |
| NSCC    | yes   | NP         | $ \operatorname{scc}_{[ X_T  \geq 1]}(\overrightarrow{G}(X_{TU}, E_{TU}))  + h(G_{\operatorname{\underline{NSCC}}}((Y, Z), E))$      |
| NSCC    | yes   | Р          | $ \operatorname{scc}(\overrightarrow{G}(X_{TU}, E_T)) $                                                                              |
| NSINK   | yes   | NP         | $ \operatorname{sink}_{[ X_T =1]}(\overrightarrow{G}(X_{TU}, E_{TU}))  + h(G'_r((Y, Z), E))$                                         |
| NSINK   | no    | Р          | $ \operatorname{sink}(\overrightarrow{G}(X_T, E_T))  +  X_U  -  \operatorname{source}_{[ X_U =1]}(\overrightarrow{G}(X_{TU}, E_T)) $ |
|         |       |            |                                                                                                                                      |

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit





The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based F



# Filtering: definitions

Given a constraint  $C(v_1, \ldots, v_n, x_1, \ldots, x_m)$  with associated digraph  $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ , binary arc constraint ctr, graph characteristics  $\Xi_1, \ldots, \Xi_n$ , and variables:

- ▶ A 0/1 variable  $z_j$  for each vertex  $j \in \mathcal{X}$ .
- ▶ A 0/1 variable  $z_{jk}$  for each arc  $(j, k) \in \mathcal{E}$ .

C is equivalent to the following system of constraints:

$$z_{jk} = 1 \Leftrightarrow ctr(x_j, x_k), (j, k) \in \mathcal{E}$$
 (1)

$$\mathbf{z}_{j} = \bigvee_{\{k \mid (j,k) \in \mathcal{E} \lor (k,j) \in \mathcal{E}\}} \mathbf{z}_{jk}, \ j \in \mathcal{X}$$
 (2)

$$c_i = \Xi_i(\{z_j \mid j \in \mathcal{X}\}, \{z_{jk} \mid (j,k) \in \mathcal{E}\}), \ 1 \le i \le n$$
 (3)

$$c_i \circ_i v_i, \ 1 \leq i \leq n \tag{4}$$

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

Graph Invariants

Bounds On Graph Char

Towards Graph-Based



# **Graph-Based Filtering: a first attempt**

- ▶ Given a constraint  $C(v_1, ..., v_n, x_1, ..., x_m)$ , filtering can be obtained by posting constraints (1,2,3,4).
- Constraints (3) need propagators:

## **PROCEDURE** $\Xi(\{z_{j} \mid j \in \mathcal{X}\}, \{z_{jk} \mid (j,k) \in \mathcal{E}\}, c)$

- 1: Evaluate  $\underline{c'}$  and  $\overline{c'}$  wrt.  $(\{z_j\}, \{z_{jk}\})$
- 2:  $min(c) \leftarrow max(\underline{c'}, min(c))$
- 3:  $\max(c) \leftarrow \min(\overline{c'}, \max(c))$
- 4: **if** min(c) = max(c) =  $\overline{c'}$  **then**
- 5: Fix some  $z_i, z_{ik}$  in order to avoid  $c' < \overline{c'}$
- 6: **if**  $min(c) = max(c) = \underline{c'}$  **then**
- 7: Fix some  $z_j, z_{jk}$  in order to avoid  $c' > \underline{c'}$

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based

Towards Graphi-Ba



## group01 — a PATH+LOOP Constraint

group01(NGroup, MinSize, MaxSize, MinDist, MaxDist, NOne, VARS) holds if:

- VARS is a sequence of 0/1-variables
- an i-group is a maximal sequence of values i
- VARS contains NGroup 1-groups
- MinSize (MaxSize) is the length of the smallest (largest) 1-group
- MinDist (MaxDist) is the length of the smallest (largest) 0-group
- NOne is the total number of 1s

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit

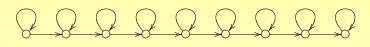


The Framework

Example: nvalue

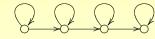
Graph Invariants

Bounds On Graph Char


Towards Graph-Based



# group01 — Graph Properties


group01(2, 2, 4, 1, 2, 6, {0, 0, 1, 1, 0, 1, 1, 1, 1})

### Initial network: variables unbound



#### Final network: ones





### Final network: zeros





Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based



## group01 — Filtering

group01(NGroup, MinSize, MaxSize, MinDist, MaxDist, NOne, VARS) with m 0/1-variables is equivalent to:

$$z_j = (VARS_j \wedge VARS_{j+1}), 1 \leq j < m$$
 (5)

$$NGroup = NCC(VARS, \{z_j\})$$
 (6)

$$MinSize = MIN\_NCC(VARS, \{z_j\})$$
 (7)

$$\textit{MaxSize} = \text{MAX\_NCC}(\textit{VARS}, \{z_j\})$$
 (8)

$$MinDist = MIN\_NCC_C(VARS, \{z_i\})$$
 (9)

$$MaxDist = MAX\_NCC_C(VARS, \{z_i\})$$
 (10)

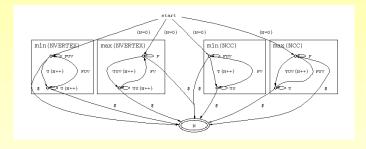
$$NOne = NVERTEX(VARS, \{z_i\})$$
 (11)

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit






Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based



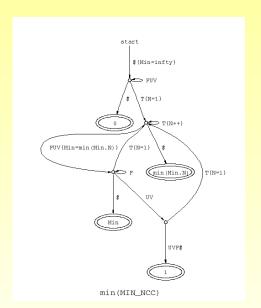


Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework


Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based



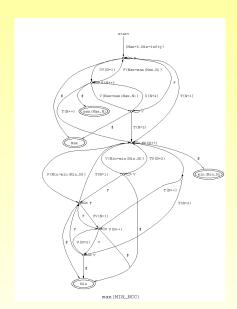


Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework


Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based I



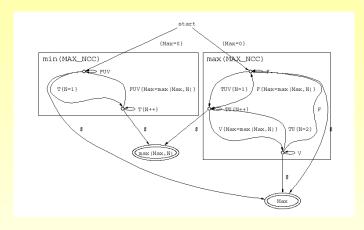


Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey,



The Framework


Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based I





Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

Towards Graph-Based



# Some Graph-Based Filtering for PATH+LOOP

Let *U* be a maximal sequence of nonground vertices joined by nonzero arcs. If  $dom(NCC) = {NCC}$  then:

- Any U neighboring two 1-vertices is assigned to a sequence of 1s.
- 2. Any *U* neighboring *no* 1-vertex is assigned to a sequence of 0s.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit





Example: nvalue

vanh luvavianta

Graph Invariants

Bounds On Graph Char

Towards Graph-Based



## Some Graph-Based Filtering for PATH+LOOP

Let *U* be a maximal sequence of nonground vertices. If  $dom(NCC) = {\overline{NCC}}$  then:

- 1. Within any U,  $z_i$  are assigned to 0.
- 2. Any U with odd |U| neighboring two 1-vertices is assigned to an alternating sequence 0, 1, ....
- 3. Any U with even |U| preceded by one 1-vertex is assigned to an alternating sequence 0, 1, . . ..
- 4. Any U with even |U| succeeded by one 1-vertex is assigned to an alternating sequence 1, 0, . . . .
- 5. Any *U* with odd |*U*| neighboring *no* 1-vertex is assigned to an alternating sequence 1, 0, . . ..

**Using Graph** Properties for Global Constraints for **Necessary Conditions** and Filtering

Nicolas Beldiceanu. Mats Carlsson, Jean-Xavier Rampon. Charlotte Truchet. Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

**Bounds On Graph Char** 

**Towards Graph-Based** 



## Conclusion

- The view of Global Constraints as Graph Properties of Structured Networks of Elementary Constraints of the Same Type is more than just a catalog.
- Generic invariants among the non-independent graph properties for a constraint C can be looked up automatically and give rise to necessary conditions.
- Bounds on Graph Characteristics can be computed dynamically and be used for pruning, allowing us to get a filtering scheme from a declarative description of a global constraint.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit





Example: nvalue

**Graph Invariants** 

Bounds On Graph Char

Towards Graph-Based F



## References

Nicolas Beldiceanu.

Global Constraints as Graph Properties on a Structured Network of Elementary Constraints of the Same Type.

Proc. CP'2000, LNCS 1894, 2004.

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon.

Global Constraint Catalog.

SICS Technical Report T2005-08, 2005.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

Graph invariants

**Bounds On Graph Char** 

Towards Graph-Based F



## References

Nicolas Beldiceanu, Mats Carlsson, Thierry Petit.

Deriving filtering algorithms from constraint checkers.

Proc. CP'2004, LNCS 3258, 2004.

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet.

Graph Invariants as Necessary Conditions for Global Constraints.

Proc. CP'2005, LNCS 3709, 2005.

Nicolas Beldiceanu, Thierry Petit, G. Rochard. Bounds of Graph Characteristics. Proc. CP'2005, LNCS 3709, 2005.

Using Graph
Properties for Global
Constraints for
Necessary Conditions
and Filtering

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, Charlotte Truchet, Sophie Demassey, Thierry Petit



The Framework

Example: nvalue

**Graph Invariants** 

Orapii iiivarianto

Bounds On Graph Char

**Towards Graph-Based F** 

