
Synthesising

High-Level Constructs

for Set-Based Local Search

Magnus Ågren, Pierre Flener, Justin Pearson

Information Technology, Uppsala University

{agren,pierref,justin}@it.uu.se

SweConsNet’06 – March 15, 2006

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Motivation (1)

We introduced set variables and set constraints in local search.
(See our CPAIOR 2005 paper.)

Examples:

• S ⊂ T
• AllDisjoint({S1, . . . , Sn})
• MaxIntersect({S1, . . . , Sn}, a)

• Already addressed in constructive search: Gervet, Puget, Müller and Müller.

• Modelling and solving benefits.

SweConsNet’06 – March 15, 2006 1

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Motivation (2)

• Limited number of implemented set constraints.

• A new (set) constraint in local search requires one (at least):

– to define penalty and conflict functions for the constraint.
– to implement incremental maintenance algorithms for penalties and conflicts.

• A time-consuming and error-prone task!

SweConsNet’06 – March 15, 2006 2

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Idea

• A modelling language for set constraints.

– Extend the idea of combinators [Van Hentenryck, Michel & Liu 2004] to
quantifiers and set variables.

– Penalty and conflict functions need only be defined once.
– Incremental maintenance algorithms need only be implemented once.

• Existential Second-Order Logic (∃SOL).

– Small and simple, yet expressive language.
– Captures at least the complexity class NP.

SweConsNet’06 – March 15, 2006 3

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Local Search

• Start from a complete assignment (configuration) and iteratively move to
promising neighbouring configurations until a (good enough) solution is found.

• Constraints are used to guide the search in the right direction.

Example: 〈{x ∈ {1, 2, 3, 4}, y ∈ {1, 2, 3}}, {x < y}〉

x 7→ 1

y 7→ 3

y 7→ 1
x < y is queried

k(y) = 2

k′(x) = 3

k′(y) = 3

k′′(x) = 3

k′′(y) = 1

k′′′(x) = 1

k′′′(y) = 2

k(x) = 3

SweConsNet’06 – March 15, 2006 4

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Set Variables

• The domain DS of a set variable S is a power-set of values, i.e., DS = 2US.

• US is called the universe of S.

Examples:

US1 = US2 = {1, 2, 3}, US3 = {7, 12, 193}

k(S1) = {2, 3}, k(S2) = ∅, k(S3) = {7}

SweConsNet’06 – March 15, 2006 5

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of a Constraint

Definition 1. A penalty function of a constraint c is a function
penalty(c) : K → N s.t. penalty(c)(k) = 0 if and only if
c is satisfied w.r.t. k.

Examples:

• penalty(x ≤ y)(k) = max(k(x) − k(y), 0)

• penalty(AllDifferent(X))(k) = “Number of repeated values in X w.r.t. k”

SweConsNet’06 – March 15, 2006 6

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of S ⊂ T

penalty(S ⊂ T)(k) = |k(S) \ k(T)| +

{

1, if k(T) ⊆ k(S)

0, otherwise

Examples:

k1(S) = k1(T) = {a} gives penalty(S ⊂ T)(k1) = 1

k2(S) = {a}, k2(T) = ∅ gives penalty(S ⊂ T)(k2) = 2

k3(S) = ∅, k3(T) = {a} gives penalty(S ⊂ T)(k3) = 0

SweConsNet’06 – March 15, 2006 7

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Existential Second-Order Logic (with Counting)

BNF grammar of ∃SOL+

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉

〈Formula〉 ::= (〈Formula〉)

| (∀ | ∃)〈x〉 〈Formula〉
| 〈Formula〉 (∧ | ∨) 〈Formula〉
| 〈Literal〉
| 〈Formula〉 (|→ | ↔ |←) 〈Formula〉
| ¬〈Formula〉

〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉
| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉

| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

∃SOL+

• A sequence of ∃-quantified set
variables constrained by a logical
formula.

• All set variables share the same
universe U .

• Negation as well as implications
removed.

SweConsNet’06 – March 15, 2006 8

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Existential Second-Order Logic (with Counting)

BNF grammar of ∃SOL+

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉

〈Formula〉 ::= (〈Formula〉)

| (∀ | ∃)〈x〉 〈Formula〉
| 〈Formula〉 (∧ | ∨) 〈Formula〉
| 〈Literal〉
| 〈Formula〉 (|→ | ↔ |←) 〈Formula〉
| ¬〈Formula〉

〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉
| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉

| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

S ⊂ T in ∃SOL+

S ⊂ T
⇔

∃S∃T ((∀x(x /∈ S ∨ x ∈ T))∧
(∃x(x ∈ T ∧ x /∈ S)))

Quantification over the whole U .

SweConsNet’06 – March 15, 2006 8

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Inductive Definition: Penalty of an ∃SOL+ Formula

penalty(∃S1 · · · ∃Snφ)(k) = penalty(φ)(k)

penalty(∀xφ)(k) =
P

u∈U

penalty(φ)(k ∪ {x 7→ u})

penalty(∃xφ)(k) = min{penalty(φ)(k ∪ {x 7→ u} | u ∈ U})

penalty(φ ∧ ψ)(k) = penalty(φ)(k) + penalty(ψ)(k)

penalty(φ ∨ ψ)(k) = min{penalty(φ)(k), penalty(ψ)(k)}

penalty(|S| ≤ c)(k) =

(

0, if |k(S)| ≤ c

|k(S)| − c, otherwise

penalty(x ∈ S)(k) =

(

0, if k(x) ∈ k(S)

1, otherwise

penalty(x ≤ y)(k) =

(

0, if k(x) ≤ k(y)

1, otherwise

SweConsNet’06 – March 15, 2006 9

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(p(a ∈ T ∧ a /∈ S)(k),

p(b ∈ T ∧ b /∈ S)(k))

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(p(a ∈ T ∧ a /∈ S)(k),

p(b ∈ T ∧ b /∈ S)(k))

6. p(a ∈ T ∧ a /∈ S)(k) =

p(a ∈ T)(k) + p(a /∈ S)(k) =

1 + 1 = 2

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(p(a ∈ T ∧ a /∈ S)(k),

p(b ∈ T ∧ b /∈ S)(k))

6. p(a ∈ T ∧ a /∈ S)(k) =

p(a ∈ T)(k) + p(a /∈ S)(k) =

1 + 1 = 2

7. p(b ∈ T ∧ b /∈ S)(k) =

p(b ∈ T)(k) + p(b /∈ S)(k) =

1 + 0 = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(p(a ∈ T ∧ a /∈ S)(k),

1)

6. p(a ∈ T ∧ a /∈ S)(k) =

p(a ∈ T)(k) + p(a /∈ S)(k) =

1 + 1 = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + p(F2)(k)

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(2, 1)

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + 1

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

p(b /∈ S ∨ b ∈ T)(k)

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) =

min(p(b /∈ S)(k), p(b ∈ T)(k)) =

min(0, 1) = 0

5. p(F2)(k) = min(2, 1) = 1

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + 1

2. p(F1)(k) = p(a /∈ S ∨ a ∈ T)(k)+

0

3. p(a /∈ S ∨ a ∈ T)(k) =

min(p(a /∈ S)(k), p(a ∈ T)(k)) =

min(1, 1) = 1

4. p(b /∈ S ∨ b ∈ T)(k) = 0

5. p(F2)(k) = min(2, 1) = 1

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = p(F1)(k) + 1

2. p(F1)(k) = 1 + 0

3. p(a /∈ S ∨ a ∈ T)(k) = 1

4. p(b /∈ S ∨ b ∈ T)(k) = 0

5. p(F2)(k) = min(2, 1) = 1

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = 1 + 1

2. p(F1)(k) = 1 + 0 = 1

3. p(a /∈ S ∨ a ∈ T)(k) = 1

4. p(b /∈ S ∨ b ∈ T)(k) = 0

5. p(F2)(k) = min(2, 1) = 1

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S ⊂ T Formula

F = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))
︸ ︷︷ ︸

F1

∧ (∃x(x ∈ T ∧ x /∈ S))
︸ ︷︷ ︸

F2

)

U = {a, b}, k(S) = {a}, k(T) = ∅

1. p(F)(k) = 1 + 1 = 2

2. p(F1)(k) = 1 + 0 = 1

3. p(a /∈ S ∨ a ∈ T)(k) = 1

4. p(b /∈ S ∨ b ∈ T)(k) = 0

5. p(F2)(k) = min(2, 1) = 1

6. p(a ∈ T ∧ a /∈ S)(k) = 2

7. p(b ∈ T ∧ b /∈ S)(k) = 1

Indeed, exactly two values must be changed in k(S) and/or k(T) to satisfy
k(S) ⊂ k(T).

SweConsNet’06 – March 15, 2006 10

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Efficiency Issues

• The number of different configurations to explore in a real-life problem may
be as large as 500,000,000, if not larger.

• Recalculating from scratch the value of penalty(c)(k′) for a constraint c for
each neighbouring configuration k′ of k is impractical.

• The penalty functions must be defined incrementally.

• Two parts of each function penalty(c):

– penaltyinit(c)(k)
– penaltydelta(c)(k

′), where k′ = k + δ and penalty(c)(k) is known.
(Hence δ is the difference between k and k′.)

SweConsNet’06 – March 15, 2006 11

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incremental Penalty Maintenance Using Penalty Trees

Idea

• Build a syntax tree of an ∃SOL+

formula.

• Populate the syntax tree with
information to obtain a penalty
tree.

Syntax Tree of S ⊂ T

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

SweConsNet’06 – March 15, 2006 12

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incremental Penalty Maintenance Using Penalty Trees

Idea

• Build a syntax tree of an ∃SOL+

formula.

• Populate the syntax tree with
information to obtain a penalty
tree.

Penalty Tree of S ⊂ T

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

∅ ∅

∅

∅

∅

∅

∅

∅

SweConsNet’06 – March 15, 2006 12

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Initialising the Penalty Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 13

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

x /∈ S x ∈ T

∧∨

∀x ∃x

∧

∃S∃T • Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 0, (b) 7→ 0} {(a) 7→ 0, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

x /∈ S

∧∨

∀x ∃x

∧

∃S∃T

x ∈ T

• Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 0, (b) 7→ 0} {(a) 7→ 0, (b) 7→ 1}

{(a) 7→ 0, (b) 7→ 1}{(a) 7→ 0, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

x /∈ S x ∈ T

∨

∀x ∃x

∧

∃S∃T

∧

• Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 0, (b) 7→ 0} {(a) 7→ 0, (b) 7→ 1}

{(a) 7→ 0, (b) 7→ 1}{(a) 7→ 0, (b) 7→ 0}

{() 7→ 0}

{() 7→ 2}

{() 7→ 2}

x /∈ S x ∈ T

∧∨

∀x ∃x

∧

∃S∃T

{() 7→ 0}

• Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 0, (b) 7→ 0} {(a) 7→ 0, (b) 7→ 1}

{(a) 7→ 0, (b) 7→ 1}{(a) 7→ 0, (b) 7→ 0}

{() 7→ 0}

{() 7→ 2}

{() 7→ 0}

x /∈ S

∧∨

∀x ∃x

∧

∃S∃T

{() 7→ 0}

x ∈ T

• Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S ⊂ T

Change: Move a from S to T .
New state: U = {a, b}, k′(S) = ∅, k′(T) = {a}

{(a) 7→ 0, (b) 7→ 0} {(a) 7→ 0, (b) 7→ 1}

{(a) 7→ 0, (b) 7→ 1}{(a) 7→ 0, (b) 7→ 0}

{() 7→ 0}

{() 7→ 0}

{() 7→ 0}

x /∈ S x ∈ T

∧∨

∀x ∃x

∧

∃S∃T

{() 7→ 0}

• Only affected paths need
updating.

• Start from affected leaves and
update paths to the root node.

SweConsNet’06 – March 15, 2006 14

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflicting Variables

• A possible neighbourhood (1):
“Move each value in any set

to any other set”

• Impractical in reality!

• Focus on conflicting variables.

• A possible neighbourhood (2):
“Move each value in S to any

other set” where S has the
maximum conflict.

SweConsNet’06 – March 15, 2006 15

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflicting Variables

• A possible neighbourhood (1):
“Move each value in any set

to any other set”

• Impractical in reality!

• Focus on conflicting variables.

• A possible neighbourhood (2):
“Move each value in S to any

other set” where S has the
maximum conflict.

Splitting the Search Space

S2

S3
S4

S5

S1

Maximum Conflict

SweConsNet’06 – March 15, 2006 15

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflict of a Variable

Definition 2. Let P = 〈X ,D, C〉 be a CSP. A conflict function of c ∈ C is a
function conflict(c) : X ×K → N s.t. if conflict(c)(x, k) = 0
then ∀` ∈ Nx(k) : penalty(c)(k) ≤ penalty(c)(`).

Nx(k) is the set of configurations reachable from k by only changing k(x).

Examples:

conflict(x ≤ y)(z, k) =

(

max(k(x)− k(y), 0), if z = x or z = y

0, otherwise

conflict(AllDifferent(X))(x, k) =

(

1, if x ∈ X & ∃ y 6= x ∈ X : k(x) = k(y)

0, otherwise

SweConsNet’06 – March 15, 2006 16

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflict with respect to S ⊂ T

conflict(S ⊂ T)(Q, k) =

|k(S) \ k(T)| +

1, if Q = T and k(T) ⊆ k(S)

1, if Q = S and k(S) 6= ∅ and k(T) ⊆ k(S)

0, otherwise

Examples:

Recall: k2(S) = {a}, k2(T) = ∅, penalty(S ⊂ T)(k2) = 2

Then conflict(S ⊂ T)(S, k2) = 1 and conflict(S ⊂ T)(T, k2) = 2

Recall: k3(S) = ∅, k3(T) = {a}, penalty(S ⊂ T)(k3) = 0

Then conflict(S ⊂ T)(S, k) = 0 and conflict(S ⊂ T)(T, k) = 0

SweConsNet’06 – March 15, 2006 17

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Inductive Definition: Conflict w.r.t. an ∃SOL+ Formula

conflict(∃S1 · · · ∃Snφ)(S, k) = conflict(φ)(S, k)

conflict(∀xφ)(S, k) =
P

u∈U

conflict(φ)(S, k ∪ {x 7→ u})

conflict(∃xφ)(S, k) =
max{0} ∪ {penalty(∃xφ)(k) − (penalty(φ)(k ∪ {x 7→ u})−

conflict(φ)(S, k ∪ {x 7→ u})) | u ∈ U}
conflict(φ ∧ ψ)(S, k) =

P

{conflict(γ)(S, k) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

conflict(φ ∨ ψ)(S, k) =
max{0} ∪ {penalty(φ ∨ ψ)(k) − (penalty(γ)(k) − conflict(γ)(S, k)) |

γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}
conflict(|S| ≤ c)(S, k) = penalty(|S| ≤ c)(k)

conflict(x ∈ S)(S, k) = penalty(x ∈ S)(k)

SweConsNet’06 – March 15, 2006 18

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

T : {(a) 7→ 1, (b) 7→ 1}S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {() 7→ 0}
T : {() 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {() 7→ 0}
T : {() 7→ 1}

S : {() 7→ 1}
T : {() 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S ⊂ T

U = {a, b}, k(S) = {a}, k(T) = ∅

∧

∃S∃T

∃x∀x

∧∨

x ∈ Tx /∈ S

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

T : {(a) 7→ 1, (b) 7→ 1}

S : {() 7→ 0}
T : {() 7→ 1}

T : {() 7→ 2}
S : {() 7→ 1}

S : {() 7→ 1}
T : {() 7→ 1}

S : {(a) 7→ 1, (b) 7→ 0}

{(a) 7→ 1, (b) 7→ 0} {(a) 7→ 1, (b) 7→ 1}

{(a) 7→ 2, (b) 7→ 1}{(a) 7→ 1, (b) 7→ 0}

{() 7→ 1} {() 7→ 1}

{() 7→ 2}

{() 7→ 2}

SweConsNet’06 – March 15, 2006 19

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Abstract Conflict of a Variable

Let P = 〈X ,D, C〉 be a CSP, let c ∈ C, and let k be a configuration for X

Informally: The abstract conflict of a variable x with respect to c and k is the
maximum possible penalty decrease of c by only changing k(x).

Formally: The abstract conflict function of c is a function
ac(c) : X ×K → N such that:

ac(c)(x, k) = max{penalty(c)(k) − penalty(c)(`) | ` ∈ Nx(k)}

where Nx(k) is the set of configurations reachable from k by only
changing k(x).

SweConsNet’06 – March 15, 2006 20

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Properties of conflict(F)

Proposition 1. Let c be a constraint. Then ac(c) is a conflict function.

Proposition 2. Let F ∈ ∃SOL+, let k be a configuration for vars(F), and
let S ∈ vars(F). Then ac(F)(S, k) ≤ conflict(F)(S, k).

Proposition 3. Let F ∈ ∃SOL+, let k be a configuration for vars(F), and
let S ∈ vars(F). Then conflict(F)(S, k) ≤ penalty(F)(k).

Corollary. Let F ∈ ∃SOL+. conflict(F) is a conflict function.

SweConsNet’06 – March 15, 2006 21

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Progressive Party Problem

Period 2

Period 1

Constraints:
(c1) : Each guest crew shall party in each period,

(c2) : the capacity of the host boats is not exceeded,
(c3) : a guest crew visits a host boat at most once,

(c4) : two different guest crews meet at most once.

Model:

P : party periods, H: host boats, G: guest crews
H(h,p): set of guest boats on host boat h in period p

size(g): size of guest crew g
capacity(h): spare capacity of host boat h

(c1) : ∀p ∈ P : Partition({H(h,p) | h ∈ H}, G)

(c2) : ∀h ∈ H : ∀p ∈ P :
MaxWeightedSum(H(h,p), size, capacity(h))

(c3) : ∀h ∈ H : AllDisjoint({H(h,p) | p ∈ P})

(c4) : MaxIntersect({H(h,p) | h ∈ H & p ∈ P}, 1)

Neighbourhood: Move a guest crew from a host boat h to
another host boat h′ in the same period:

H
os

ts H(h1,p2) H(h1,p3)H(h1,p1)

H(h3,p1) H(h3,p2) H(h3,p3)

H(h2,p1) H(h2,p2) H(h2,p3)

Periods

SweConsNet’06 – March 15, 2006 22

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Progressive Party Problem

Period 2

Period 1

Constraints:
(c1) : Each guest crew shall party in each period,

(c2) : the capacity of the host boats is not exceeded,
(c3) : a guest crew visits a host boat at most once,

(c4) : two different guest crews meet at most once.

Model:

P : party periods, H: host boats, G: guest crews
H(h,p): set of guest boats on host boat h in period p

size(g): size of guest crew g
capacity(h): spare capacity of host boat h

(c1) : ∀p ∈ P : Partition({H(h,p) | h ∈ H}, G)

(c2) : ∀h ∈ H : ∀p ∈ P :
MaxWeightedSum(H(h,p), size, capacity(h))

(c3) : ∀h ∈ H : AllDisjoint({H(h,p) | p ∈ P})

(c4) : MaxIntersect({H(h,p) | h ∈ H & p ∈ P}, 1)

Neighbourhood: Move a guest crew from a host boat h to
another host boat h′ in the same period:

H
os

ts H(h1,p2) H(h1,p3)H(h1,p1)

H(h3,p1) H(h3,p2) H(h3,p3)

H(h2,p1) H(h2,p2) H(h2,p3)

Periods

SweConsNet’06 – March 15, 2006 22

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Results

Results with modelled AllDisjoint constraint.

H/periods (fails) 6 7 8 9 10

1-12,16 1.3 3.5 42.0

1-13 16.5 239.3
1,3-13,19 18.9 273.2 (3)

3-13,25,26 36.5 405.5 (16)
1-11,19,21 19.8 186.7

1-9,16-19 32.2 320.0 (12)

Results with built-in AllDisjoint constraint.

H/periods (fails) 6 7 8 9 10

1-12,16 1.2 2.3 21.0
1-13 7.0 90.5

1,3-13,19 7.2 128.4 (4)
3-13,25,26 13.9 170.0 (17)

1-11,19,21 10.3 83.0 (1)
1-9,16-19 18.2 160.6 (22)

SweConsNet’06 – March 15, 2006 23

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

• We use existential second-order
logic with counting (∃SOL+) for
user-defined set constraints.

• We introduced penalty and
conflict definitions for constraints
modelled in ∃SOL+.

• We developed algorithms for
incrementally maintaining the
penalty and conflicts of a formula
in ∃SOL+.

SweConsNet’06 – March 15, 2006 24

Magnus Ågren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

• We use existential second-order
logic with counting (∃SOL+) for
user-defined set constraints.

• We introduced penalty and
conflict definitions for constraints
modelled in ∃SOL+.

• We developed algorithms for
incrementally maintaining the
penalty and conflicts of a formula
in ∃SOL+.

Future Work

Revising the current local search
system:

• More built-in set constraints.
• Constraints on set and

integer variables, e.g., |S| = x.
• More efficient incremental

algorithms.
• Bounded quantification in ∃SOL+,

such as ∀(x ∈ S)φ(x)

SweConsNet’06 – March 15, 2006 24

