Synthesising High-Level Constructs for Set-Based Local Search

Magnus \AA Agren, Pierre Flener, Justin Pearson Information Technology, Uppsala University {agren,pierref,justin}@it.uu.se

SweConsNet'06 – March 15, 2006

Motivation (1)

We introduced set variables and set constraints in local search. (See our CPAIOR ²⁰⁰⁵ paper.)

Examples:

- \bullet $S \subset T$
- \bullet $AllDisjoint(\{S_1, \ldots, S_n\})$
- \bullet $MaxInterest(\{S_1, \ldots, S_n\}, a)$
- \bullet Already addressed in constructive search: Gervet, Puget, Müller and Müller.
- Modelling and solving benefits.

Motivation (2)

- Limited number of implemented set constraints.
- ^A new (set) constraint in local search requires one (at least):
	- to define penalty and conflict functions for the constraint.
	- to implement incremental maintenance algorithms for penalties and conflicts.
- A time-consuming and error-prone task!

Idea

- A modelling language for set constraints.
	- $-$ Extend the idea of combinators [Van Hentenryck, Michel & Liu 2004] to quantifiers and set variables.
	- Penalty and conflict functions need only be defined once.
	- Incremental maintenance algorithms need only be implemented once.
- Existential Second-Order Logic (∃SOL).
	- $-$ Small and simple, yet expressive language.
	- $-$ Captures at least the complexity class NP.

Local Search

- Start from ^a complete assignment (configuration) and iteratively move to promising neighbouring configurations until ^a (good enough) solution is found.
- Constraints are used to guide the search in the right direction.

Example: $\langle \{x \in \{1, 2, 3, 4\}, y \in \{1, 2, 3\}\}, \{x \leq y\}\rangle$

Set Variables

- The domain D_S of a set variable S is a power-set of values, i.e., $D_S = 2^{\mathcal{U}_S}$.
- \bullet $\,\mathcal{U}_S$ is called the universe of $S.$

Examples:

$$
\mathcal{U}_{S_1} = \mathcal{U}_{S_2} = \{1, 2, 3\}, \, \mathcal{U}_{S_3} = \{7, 12, 193\}
$$

 $k(S_1) = \{2, 3\}, k(S_2) = \emptyset, k(S_3) = \{7\}$

Penalty of ^a Constraint

Definition 1. A penalty function of a constraint c is a function $penalty(c): \mathcal{K} \rightarrow \mathbb{N}$ s.t. $penalty(c)(k) = 0$ if and only if c is satisfied w.r.t. k .

Examples:

- penalty $(x \le y)(k) = \max(k(x) k(y), 0)$
- penalty $(AllDifferent(X))(k) = "Number of repeated values in X w.r.t. k"$

Penalty of $S \subset T$

$$
penalty(S \subset T)(k) = |k(S) \setminus k(T)| + \begin{cases} 1, & \text{if } k(T) \subseteq k(S) \\ 0, & \text{otherwise} \end{cases}
$$

Examples:

$$
k_1(S) = k_1(T) = \{a\}
$$
 gives $penalty(S \subset T)(k_1) = 1$

$$
k_2(S) = \{a\}, k_2(T) = \emptyset
$$
 gives $penalty(S \subset T)(k_2) = 2$

$$
k_3(S) = \emptyset, k_3(T) = \{a\}
$$
 gives $penalty(S \subset T)(k_3) = 0$

Existential Second-Order Logic (with Counting)

BNF grammar of [∃]SOL⁺

- \exists SOL⁺
- A sequence of ∃-quantified set variables constrained by ^a logical formula.
- All set variables share the same universe \mathcal{U} .
- Negation as well as implications removed.

Existential Second-Order Logic (with Counting)

BNF grammar of [∃]SOL⁺

$$
S\subset T
$$

 $S \subset T$ in \exists SOL⁺

 $\exists S\exists T((\forall x(x \notin S \lor x \in T)) \land$

 $(\exists x(x \in T \land x \notin S)))$

Quantification over the whole U .

Inductive Definition: Penalty of an [∃]SOL⁺ Formula

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1. $p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1. $p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$ 2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +$ $p(b \notin S \lor b \in T)(k)$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n2.
$$
p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +
$$

\n
$$
p(b \notin S \lor b \in T)(k)
$$

\n3.
$$
p(a \notin S \lor a \in T)(k) =
$$

\n
$$
\min(p(a \notin S)(k), p(a \in T)(k)) =
$$

\n
$$
\min(1, 1) = 1
$$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n2.
$$
p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +
$$

$$
p(b \notin S \lor b \in T)(k)
$$

\n3.
$$
p(a \notin S \lor a \in T)(k) =
$$

$$
\min(p(a \notin S)(k), p(a \in T)(k)) =
$$

$$
\min(1, 1) = 1
$$

\n4.
$$
p(b \notin S \lor b \in T)(k) =
$$

$$
\min(p(b \notin S)(k), p(b \in T)(k)) =
$$

$$
\min(0, 1) = 0
$$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n5. $p(\mathcal{F}_2)(k) = \min(p(a \in T \land a \notin S)(k),$
\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +$
\n $p(b \notin S \lor b \in T)(k)$
\n3. $p(a \notin S \lor a \in T)(k) =$
\n $\min(p(a \notin S)(k), p(a \in T)(k)) =$
\n $\min(1, 1) = 1$
\n4. $p(b \notin S \lor b \in T)(k) =$
\n $\min(p(b \notin S)(k), p(b \in T)(k)) =$
\n $\min(0, 1) = 0$

$$
\mathcal{F} = \exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land (\exists x (x \in T \land x \notin S)))
$$

$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \in T \land a \notin S)(k)$
\n3. $p(a \notin S \lor a \in T)(k) = p(a \notin S \lor b \in T)(k)$
\n4. $p(b \notin S \lor b \in T)(k) = p(a \in T) \land (k) + p(a \notin S)(k) = p(a \in T)(k) + p(a \notin S)(k) = p(a \notin S \lor b \in T)(k) = p(a \in T)(k) + p(a \notin S)(k) = p(b \notin S \lor b \in T)(k) = p(b \notin S \lor b \in T)(k) = p(b \notin S)(k), p(b \in T)(k) = p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S \lor b \in T)(k) = p(b \notin S$

$$
\mathcal{F} = \exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land (\exists x (x \in T \land x \notin S)))
$$

$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \in T \land a \notin S)(k)$
\n3. $p(a \notin S \lor a \in T)(k) = p(a \notin S \lor b \in T)(k)$
\n4. $p(b \notin S \lor b \in T)(k) = p(a \in T) \land b \notin S)(k) = p(a \in T)(k) + p(a \notin S)(k) = p(a \in T)(k) + p(a \notin S)(k) = p(a \in T)(k) + p(b \notin S)(k) = p(b \in T \land b \notin S)(k) = p(b \in T)(k) + p(b \notin S)(k) = p(b \in T)(k) = p(b \in T)(k) + p(b \notin S)(k) =$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n5. $p(\mathcal{F}_2)(k) = \min(p(a \in T \land a \notin S)(k),$
\n6. $p(a \in T \land a \notin S)(k) =$
\n7. $p(a \notin S \lor a \in T)(k) =$
\n8. $p(a \notin S \lor a \in T)(k) =$
\n9. $p(a \in T \land a \notin S)(k) =$
\n10. $p(a \in T)(k) + p(a \notin S)(k) =$
\n11. $p(a \in T)(k) + p(a \notin S)(k) =$
\n22. $p(a \in T)(k) =$
\n3. $p(a \notin S \lor a \in T)(k) =$
\n4. $p(b \notin S \lor b \in T)(k) =$
\n5. $p(\mathcal{F}_2)(k) = \min(p(a \in T \land b \notin S)(k) = 1)$
\n6. $p(a \in T \land a \notin S)(k) + p(a \notin S)(k) =$
\n7. $p(b \in T \land b \notin S)(k) = 1$
\n8. $p(b \notin S \lor b \in T)(k) =$
\n9. $p(a \in T \land a \notin S)(k) = 1$
\n10. $p(a \in T \land a \notin S)(k) = 1$
\n11. $p(a \in T \land a \notin S)(k) =$
\n12. $p(a \in T \land a \notin S)(k) =$
\n13. $p(a \notin S \lor a \in T)(k) =$
\n14. $p(b \notin S \lor b \in T)(k) =$
\n15. $p(a \in T \land a \notin S)(k) =$
\n16. $p(a \in T \land a \notin S)(k) =$
\n17. $p(b \in T \land b \notin S)(k) =$
\n18. $p(b \notin S \lor b \in T)(k) =$
\n19. $p(a \in T \land a \notin S)(k) =$
\n10. $p(a \in T \land a \notin S)(k) =$
\n11. $p(a \in T \land a \notin$

$$
\mathcal{F} = \exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land (\exists x (x \in T \land x \notin S)))
$$

$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)
$$

\n5. $p(\mathcal{F}_2)(k) = \min(2, 1)$
\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +$
\n6. $p(a \in T \land a \notin S)(k) = 2$
\n $p(b \notin S \lor b \in T)(k)$
\n7. $p(b \in T \land b \notin S)(k) = 1$
\n3. $p(a \notin S \lor a \in T)(k) =$
\n $\min(p(a \notin S)(k), p(a \in T)(k)) =$
\n $\min(1, 1) = 1$
\n4. $p(b \notin S \lor b \in T)(k) =$
\n $\min(p(b \notin S)(k), p(b \in T)(k)) =$
\n $\min(0, 1) = 0$

$$
\mathcal{F} = \exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land (\exists x (x \in T \land x \notin S)))
$$

$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1
$$

\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + 6$. $p(a \in T \land a \notin S)(k) = 2$
\n $p(b \notin S \lor b \in T)(k)$
\n3. $p(a \notin S \lor a \in T)(k) =$
\n $\min(p(a \notin S)(k), p(a \in T)(k)) =$
\n $\min(1, 1) = 1$
\n4. $p(b \notin S \lor b \in T)(k) =$
\n $\min(p(b \notin S)(k), p(b \in T)(k)) =$
\n $\min(0, 1) = 0$
\n7. $p(b \in T \land b \notin S)(k) =$

$$
\mathcal{F} = \exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land (\exists x (x \in T \land x \notin S)))
$$

$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1
$$

\n2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +$
\n3. $p(a \notin S \lor a \in T)(k) =$
\n4. $p(b \notin S \lor b \in T)(k) = 0$
\n5. $p(\mathcal{F}_2)(k) = \min(2, 1) = 1$
\n6. $p(a \in T \land a \notin S)(k) = 2$
\n7. $p(b \in T \land b \notin S)(k) = 1$
\n8. $p(a \notin S \lor a \in T)(k) =$
\n9. $p(a \notin S)(k), p(a \in T)(k) =$
\n10. $p(b \notin S \lor b \in T)(k) = 0$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1.
$$
p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1
$$
\n2. $p(\mathcal{F}_1)(k) = 1 + 0$ \n3. $p(a \notin S \lor a \in T)(k) = 1$ \n4. $p(b \notin S \lor b \in T)(k) = 0$

5.
$$
p(\mathcal{F}_2)(k) = \min(2, 1) = 1
$$
\n6. $p(a \in T \land a \notin S)(k) = 2$ \n7. $p(b \in T \land b \notin S)(k) = 1$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1. $p(\mathcal{F})(k) = 1 + 1$ 2. $p(\mathcal{F}_1)(k) = 1 + 0 = 1$ 3. $p(a \notin S \lor a \in T)(k) = 1$ 4. $p(b \notin S \lor b \in T)(k) = 0$

5. $p(\mathcal{F}_2)(k) = \min(2, 1) = 1$ 6. $p(a \in T \land a \notin S)(k) = 2$ 7. $p(b \in T \land b \notin S)(k) = 1$

$$
\mathcal{F} = \exists S \exists T (\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S)))}_{\mathcal{F}_2}
$$
\n
$$
\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset
$$

1. $p(\mathcal{F})(k) = 1 + 1 = 2$ 2. $p(\mathcal{F}_1)(k) = 1 + 0 = 1$ 3. $p(a \notin S \lor a \in T)(k) = 1$ 4. $p(b \notin S \lor b \in T)(k) = 0$

5.
$$
p(\mathcal{F}_2)(k) = \min(2, 1) = 1
$$
\n6. $p(a \in T \land a \notin S)(k) = 2$ \n7. $p(b \in T \land b \notin S)(k) = 1$

Indeed, exactly two values must be changed in $k(S)$ and/or $k(T)$ to satisfy $k(S) \subset k(T)$.

Efficiency Issues

- The number of different configurations to explore in ^a real-life problem may be as large as 500,000,000, if not larger.
- \bullet Recalculating from scratch the value of $penalty(c)(k')$ for a constraint c for each neighbouring configuration k' of k is impractical.
- The penalty functions must be defined incrementally.
- $\bullet~$ Two parts of each function $penalty(c)$:
	- $penalty_{init}(c)(k)$
	- $\hskip1cm penalty_{delta}(c)(k'),$ where $k'=k+\delta$ and $penalty(c)(k)$ is known. (Hence δ is the difference between k and $k'.$)

Incremental Penalty Maintenance Using Penalty Trees

Idea

- \bullet Build a syntax tree of an $\mathrm{3SOL}^{+}$ formula.
- Populate the syntax tree with information to obtain ^a penalty tree.

Incremental Penalty Maintenance Using Penalty Trees

Idea

- \bullet Build a syntax tree of an $\mathrm{3SOL}^{+}$ formula.
- Populate the syntax tree with information to obtain ^a penalty tree.

Initialising the Penalty Tree of $S \subset T$

$$
\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset
$$

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

Conflicting Variables

- ^A possible neighbourhood (1): "Move each value in any set to any other set"
- Impractical in reality!
- Focus on conflicting variables.
- ^A possible neighbourhood (2): "Move each value in S to any other set" where S has the maximum conflict.

Conflicting Variables

- ^A possible neighbourhood (1): "Move each value in any set to any other set"
- Impractical in reality!
- Focus on conflicting variables.
- ^A possible neighbourhood (2): "Move each value in S to any other set" where S has the maximum conflict.

Conflict of ^a Variable

Definition 2. Let $P = \langle X, \mathcal{D}, \mathcal{C} \rangle$ be a CSP. A conflict function of $c \in \mathcal{C}$ is a function $conflict(c): \mathcal{X} \times \mathcal{K} \rightarrow \mathbb{N}$ s.t. if $conflict(c)(x, k) = 0$ then $\forall \ell \in \mathcal{N}_x(k)$: $penalty(c)(k) \leq penalty(c)(\ell)$.

 $\mathcal{N}_x(k)$ is the set of configurations reachable from k by only changing $k(x)$.

Examples:

$$
conflict(x \le y)(z, k) = \begin{cases} \max(k(x) - k(y), 0), & \text{if } z = x \text{ or } z = y \\ 0, & \text{otherwise} \end{cases}
$$

$$
conflict(\text{AllDifferent}(\mathcal{X}))(x, k) = \begin{cases} 1, & \text{if } x \in \mathcal{X} \ \& \exists \ y \ne x \in \mathcal{X} : k(x) = k(y) \\ 0, & \text{otherwise} \end{cases}
$$

Conflict with respect to $S \subset T$

$$
conflict(S \subset T)(Q, k) =
$$

\n
$$
|k(S) \setminus k(T)| + \begin{cases} 1, & \text{if } Q = T \text{ and } k(T) \subseteq k(S) \\ 1, & \text{if } Q = S \text{ and } k(S) \neq \emptyset \text{ and } k(T) \subseteq k(S) \\ 0, & \text{otherwise} \end{cases}
$$

Examples:

Recall: $k_2(S) = \{a\}, k_2(T) = \emptyset$, penalty $(S \subset T)(k_2) = 2$ Then $conflict(S \subset T)(S, k_2) = 1$ and $conflict(S \subset T)(T, k_2) = 2$

Recall: $k_3(S) = \emptyset$, $k_3(T) = \{a\}$, penalty $(S \subset T)(k_3) = 0$ Then $conflict(S \subset T)(S, k) = 0$ and $conflict(S \subset T)(T, k) = 0$

Inductive Definition: Conflict w.r.t. an ∃SOL⁺ Formula

$$
conflict(\exists S_1 \cdots \exists S_n \phi)(S, k) = conflict(\phi)(S, k)
$$

\n
$$
conflict(\forall x \phi)(S, k) = \sum_{u \in U} conflict(\phi)(S, k \cup \{x \mapsto u\})
$$

\n
$$
conflict(\exists x \phi)(S, k) =
$$

\n
$$
max\{0\} \cup \{penalty(\exists x \phi)(k) - (penalty(\phi)(k \cup \{x \mapsto u\}) -
$$

\n
$$
conflict(\phi)(S, k \cup \{x \mapsto u\})) \mid u \in U\}
$$

\n
$$
conflict(\phi \land \psi)(S, k) = \sum \{conflict(\gamma)(S, k) \mid \gamma \in \{\phi, \psi\} \land S \in vars(\gamma)\}
$$

\n
$$
conflict(\phi \lor \psi)(S, k) =
$$

\n
$$
max\{0\} \cup \{penalty(\phi \lor \psi)(k) - (penalty(\gamma)(k) - conflict(\gamma)(S, k)) \mid \gamma \in \{\phi, \psi\} \land S \in vars(\gamma)\}
$$

\n
$$
conflict(|S| \le c)(S, k) = penalty(|S| \le c)(k)
$$

\n
$$
conflict(x \in S)(S, k) = penalty(x \in S)(k)
$$

 $\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset$

 $\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset$

 $\mathcal{U} = \{a, b\}, k(S) = \{a\}, k(T) = \emptyset$

$$
\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset
$$

$$
\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset
$$

$$
\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset
$$

Abstract Conflict of ^a Variable

Let $P = \langle X, D, C \rangle$ be a CSP, let $c \in C$, and let k be a configuration for X

Informally: The abstract conflict of a variable x with respect to c and k is the maximum possible penalty decrease of c by only changing $k(x)$.

Formally: The abstract conflict function of c is a function $ac(c): \mathcal{X} \times \mathcal{K} \rightarrow \mathbb{N}$ such that:

 $ac(c)(x, k) = \max\{penalty(c)(k) - penalty(c)(\ell) | \ell \in \mathcal{N}_x(k)\}\$

where $\mathcal{N}_x(k)$ is the set of configurations reachable from k by only changing $k(x)$.

Properties of $conflict(\mathcal{F})$

Proposition 1. Let c be a constraint. Then $ac(c)$ is a conflict function.

Proposition 2. Let $\mathcal{F} \in \exists SOL^+$, let k be a configuration for $vars(\mathcal{F})$, and let $S \in vars(\mathcal{F})$. Then $ac(\mathcal{F})(S,k) \leq conflict(\mathcal{F})(S,k)$.

Proposition 3. Let $\mathcal{F} \in \exists SOL^+$, let k be a configuration for $vars(\mathcal{F})$, and let $S \in vars(\mathcal{F})$. Then $conflict(\mathcal{F})(S,k) \le penalty(\mathcal{F})(k)$.

Corollary. Let $\mathcal{F} \in \exists SOL^{+}$. $conflict(\mathcal{F})$ is a conflict function.

Progressive Party Problem

Constraints:

- (c_1) : Each guest crew shall party in each period,
- (c_2) : the capacity of the host boats is not exceeded,
- (c_3) : a guest crew visits a host boat at most once,
- (c_4) : two different guest crews meet at most once.

Model:

P: party periods, H : host boats, G : guest crews $H_{(h,p)}$: set of guest boats on host boat h in period p $size(q)$: size of guest crew q capacity(h): spare capacity of host boat h

 $(c_1) : \forall p \in P : \text{Partition}(\{H_{(h,p)} \mid h \in H\}, G)$ (c_2) : $\forall h \in H : \forall p \in P$: $\label{eq:MaxWeightedSum} MaxWeightedSum(H_{(h,p)}, \textit{size}, \textit{capacity}(h))$ $(c_3) : \forall h \in H : AllDisjoint(\{H_{(h,p)} \mid p \in P\})$ (c_4) : MaxIntersect $({H(h,p) \mid h \in H \& p \in P}, 1)$

Neighbourhood: Move a guest crew from a host boat h to another host boat h' in the same period:

SweConsNet'06 – March 15, 2006 22

Progressive Party Problem

Constraints:

- (c_1) : Each guest crew shall party in each period,
- (c_2) : the capacity of the host boats is not exceeded,
- (c_3) : a guest crew visits a host boat at most once,
- (c_4) : two different guest crews meet at most once.

Model:

P: party periods, H : host boats, G : guest crews $H_{(h,p)}$: set of guest boats on host boat h in period p $size(g)$: size of guest crew g capacity(h): spare capacity of host boat h

$$
(c_1) : \forall p \in P : Partition(\{H_{(h,p)} \mid h \in H\}, G)
$$

(c_2) : $\forall h \in H : \forall p \in P :$
\n
$$
MaxWeightedSum(H_{(h,p)}, size, capacity(h))
$$

(c_3) : $\forall h \in H : AllDisjoint(\{H_{(h,p)} \mid p \in P\})$
(c_4) : MaxInterest(\{H_{(h,p)} \mid h \in H \& p \in P\}, 1)

Neighbourhood: Move a guest crew from a host boat h to another host boat h' in the same period:

SweConsNet'06 – March 15, 2006 22

Results

Results with modelled AllDisjoint constraint.

Conclusion

Contributions

- We use existential second-order logic with counting $($ \exists SOL⁺ $)$ for user-defined set constraints.
- We introduced penalty and conflict definitions for constraints modelled in ∃SOL+.
- We developed algorithms for incrementally maintaining the penalty and conflicts of ^a formula in ∃SOL+.

Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

- We use existential second-order logic with counting $($ \exists SOL⁺ $)$ for user-defined set constraints.
- We introduced penalty and conflict definitions for constraints modelled in ∃SOL+.
- We developed algorithms for incrementally maintaining the penalty and conflicts of ^a formula in \exists SOL⁺.

Revising the current local search system:

Future Work

- More built-in set constraints.
- Constraints on set and integer variables, e.g., $|S| = x$.
- More efficient incremental algorithms.
- \bullet Bounded quantification in $\mathrm{3SOL}^{+},$ such as $\forall (x \in S)\phi(x)$