Synthesising High-Level Constructs for Set-Based Local Search

Magnus Ågren, Pierre Flener, Justin Pearson Information Technology, Uppsala University {agren,pierref,justin}@it.uu.se

SweConsNet'06 - March 15, 2006

Motivation (1)

We introduced set variables and set constraints in local search. (See our CPAIOR 2005 paper.)

- $\bullet \ S \subset T$
- $AllDisjoint(\{S_1,\ldots,S_n\})$
- $MaxIntersect(\{S_1,\ldots,S_n\},a)$
- Already addressed in constructive search: Gervet, Puget, Müller and Müller.
- Modelling and solving benefits.

Motivation (2)

- Limited number of implemented set constraints.
- A new (set) constraint in local search requires one (at least):
 - to define penalty and conflict functions for the constraint.
 - to implement incremental maintenance algorithms for penalties and conflicts.
- A time-consuming and error-prone task!

Idea

- A modelling language for set constraints.
 - Extend the idea of combinators [Van Hentenryck, Michel & Liu 2004] to quantifiers and set variables.
 - Penalty and conflict functions need only be defined once.
 - Incremental maintenance algorithms need only be implemented once.
- Existential Second-Order Logic (\exists SOL).
 - Small and simple, yet expressive language.
 - Captures at least the complexity class NP.

Local Search

- Start from a complete assignment (configuration) and iteratively move to promising neighbouring configurations until a (good enough) solution is found.
- Constraints are used to guide the search in the right direction.

Example: $\langle \{x \in \{1, 2, 3, 4\}, y \in \{1, 2, 3\}\}, \{x < y\} \rangle$

Set Variables

- The domain D_S of a set variable S is a power-set of values, i.e., $D_S = 2^{\mathcal{U}_S}$.
- \mathcal{U}_S is called the universe of S.

$$\mathcal{U}_{S_1} = \mathcal{U}_{S_2} = \{1, 2, 3\}, \, \mathcal{U}_{S_3} = \{7, 12, 193\}$$

$$k(S_1) = \{2, 3\}, \ k(S_2) = \emptyset, \ k(S_3) = \{7\}$$

Penalty of a Constraint

Definition 1. A penalty function of a constraint c is a function $penalty(c) : \mathcal{K} \to \mathbb{N}$ s.t. penalty(c)(k) = 0 if and only if c is satisfied w.r.t. k.

- $penalty(x \le y)(k) = \max(k(x) k(y), 0)$
- $penalty(AllDifferent(\mathcal{X}))(k) =$ "Number of repeated values in \mathcal{X} w.r.t. k"

Penalty of $S \subset T$

$$penalty(S \subset T)(k) = |k(S) \setminus k(T)| + \begin{cases} 1, \text{ if } k(T) \subseteq k(S) \\ 0, \text{ otherwise} \end{cases}$$

$$k_1(S) = k_1(T) = \{a\} \text{ gives } penalty(S \subset T)(k_1) = 1$$
$$k_2(S) = \{a\}, k_2(T) = \emptyset \text{ gives } penalty(S \subset T)(k_2) = 2$$
$$k_3(S) = \emptyset, k_3(T) = \{a\} \text{ gives } penalty(S \subset T)(k_3) = 0$$

Existential Second-Order Logic (with Counting)

BNF grammar of $\exists \mathrm{SOL}^+$

- $\exists SOL^+$
- A sequence of ∃-quantified set variables constrained by a logical formula.
- All set variables share the same universe \mathcal{U} .
- Negation as well as implications removed.

Magnus Ågren, Pierre Flener, and Justin Pearson

BNF grammar of $\exists \mathrm{SOL}^+$

$$\underline{S \subset T \text{ in } \exists \text{SOL}^+}$$

$$S \subset T$$

$$\Leftrightarrow$$

$$\exists S \exists T ((\forall x (x \notin S \lor x \in T)) \land$$

$$(\exists x (x \in T \land x \notin S)))$$

Quantification over the whole \mathcal{U} .

Inductive Definition: Penalty of an $\exists SOL^+$ Formula

$penalty(\exists S_1 \cdots \exists S_n \phi)(k)$	$= penalty(\phi)(k)$	
$penalty(orall x \phi)(k)$	$= \sum_{u \in \mathcal{U}} penalty(\phi)(k \cup \{x \mapsto u\})$	
$penalty(\exists x\phi)(k)$	$= \min\{penalty(\phi)(k \cup \{x \mapsto u\} \mid u \in \mathcal{U}\})$	$\mathcal{U}\})$
$penalty(\phi \wedge \psi)(k)$	$= penalty(\phi)(k) + penalty(\psi)(k)$	
$penalty(\phi \lor \psi)(k)$	$= \min\{penalty(\phi)(k), penalty(\psi)(k)\}$	
$penalty(S \le c)(k)$	$=\begin{cases} 0, \text{ if } k(S) \leq c \\ k(S) - c, \text{ otherwise} \\ 0, \text{ if } k(x) \in k(S) \\ 1, \text{ otherwise} \end{cases}$	
$penalty(x \in S)(k)$	$=\begin{cases} 0, \text{ if } k(x) \in k(S) \\ 1, \text{ otherwise} \end{cases}$	
$penalty(x \le y)(k)$	$=\begin{cases} 0, \text{ if } k(x) \leq k(y) \\ 1, \text{ otherwise} \end{cases}$	

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1. $p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1. $p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$ 2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(1, 1) = 1$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(1, 1) = 1$
4. $p(b \notin S \lor b \in T)(k) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(0, 1) = 0$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(1, 1) = 1$
4. $p(b \notin S \lor b \in T)(k) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(0, 1) = 0$
5. $p(\mathcal{F}_2)(k) = \min(p(a \in T \land a \notin S)(k), p(b \in T)(k)) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(p(a \notin S)(k), p(b \in T)(k)) = \min(p(a \notin S)(k), p(b \in T)(k)) = \min(p(a \notin S)(k), p(b \in T)(k)) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(p(a \notin S)(k)) = \min(p(a \notin S)(k)) = \min(p(a \notin S)(k)) = \min(p(a \notin$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(p(a \notin S)(k), p(a \in T)(k)) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(0, 1) = 0$
5. $p(\mathcal{F}_2)(k) = \min(p(a \in T \land a \notin S)(k), p(b \in T)(k)) = p(a \in T \land a \notin S)(k) = p(a \in T)(k) + p(a \notin S)(k) = 1 + 1 = 2$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_{1})(k) + p(\mathcal{F}_{2})(k)$$

2. $p(\mathcal{F}_{1})(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = p(a \notin S)(k), p(a \in T)(k)) = p(a \notin S)(k) + p(a \notin S)(k) = p(a \notin T)(k) + p(a \notin S)(k) = 1 + 1 = 2$
 $\min(1, 1) = 1$
4. $p(b \notin S \lor b \in T)(k) = \min(p(b \notin S)(k), p(b \in T)(k)) = \min(0, 1) = 0$
5. $p(\mathcal{F}_{2})(k) = \min(p(a \notin T \land a \notin S)(k) = 1)$
6. $p(a \notin T \land a \notin S)(k) = p(a \notin T)(k) = 1 + 1 = 2$
 $p(a \notin T)(k) = 1 + 1 = 2$
 $p(b \notin S \lor b \notin T)(k) = \min(p(b \notin S)(k), p(b \notin T)(k)) = \min(p(b \notin S)(k), p(b \# T)(k)) = \min(p(b \# S)(k), p(b \# T)(k))$

2 1

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + p(\mathcal{F}_2)(k)$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = p(a \notin S)(k), p(a \in T)(k)) = p(b \notin S \lor b \in T)(k) = p(b \notin S)(k), p(b \in T)(k)) = p(b \notin S)(k), p(b \in T)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k) = p(b \notin S)(k), p(b \notin S)(k) = p(b \# S$

= 1

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) + p(b \notin S \lor b \in T)(k)$
3. $p(a \notin S \lor a \in T)(k) = p(a \notin S)(k), p(a \in T)(k)) = p(b \notin S \lor b \in T)(k) = p(b \# S \lor b \in T)(k) =$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1$$

2. $p(\mathcal{F}_1)(k) = p(a \notin S \lor a \in T)(k) +$
0
3. $p(a \notin S \lor a \in T)(k) =$
 $\min(p(a \notin S)(k), p(a \in T)(k)) =$
 $\min(1, 1) = 1$
4. $p(b \notin S \lor b \in T)(k) = 0$
5. $p(\mathcal{F}_2)(k) =$
6. $p(a \in T) =$
7. $p(b \in T) =$
 $p(b \notin S \lor b \in T)(k) =$
6. $p(a \in T) =$
7. $p(b \in T) =$
 $p(b \notin S \lor b \in T)(k) =$

5.
$$p(\mathcal{F}_2)(k) = \min(2, 1) = 1$$

6. $p(a \in T \land a \notin S)(k) = 2$
7. $p(b \in T \land b \notin S)(k) = 1$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = p(\mathcal{F}_1)(k) + 1$$

2. $p(\mathcal{F}_1)(k) = \mathbf{1} + 0$
3. $p(a \notin S \lor a \in T)(k) = \mathbf{1}$
4. $p(b \notin S \lor b \in T)(k) = 0$

5.
$$p(\mathcal{F}_2)(k) = \min(2, 1) = 1$$

6. $p(a \in T \land a \notin S)(k) = 2$
7. $p(b \in T \land b \notin S)(k) = 1$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = 1 + 1$$

2. $p(\mathcal{F}_1)(k) = 1 + 0 = 1$
3. $p(a \notin S \lor a \in T)(k) = 1$
4. $p(b \notin S \lor b \in T)(k) = 0$

5.
$$p(\mathcal{F}_2)(k) = \min(2, 1) = 1$$

6. $p(a \in T \land a \notin S)(k) = 2$
7. $p(b \in T \land b \notin S)(k) = 1$

$$\mathcal{F} = \exists S \exists T(\underbrace{(\forall x (x \notin S \lor x \in T))}_{\mathcal{F}_1} \land \underbrace{(\exists x (x \in T \land x \notin S))}_{\mathcal{F}_2})$$
$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

1.
$$p(\mathcal{F})(k) = 1 + 1 = 2$$

2. $p(\mathcal{F}_1)(k) = 1 + 0 = 1$
3. $p(a \notin S \lor a \in T)(k) = 1$
4. $p(b \notin S \lor b \in T)(k) = 0$

5.
$$p(\mathcal{F}_2)(k) = \min(2, 1) = 1$$

6. $p(a \in T \land a \notin S)(k) = 2$
7. $p(b \in T \land b \notin S)(k) = 1$

Indeed, exactly two values must be changed in k(S) and/or k(T) to satisfy $k(S) \subset k(T).$

Efficiency Issues

- The number of different configurations to explore in a real-life problem may be as large as 500,000,000, if not larger.
- Recalculating from scratch the value of penalty(c)(k') for a constraint c for each neighbouring configuration k' of k is impractical.
- The penalty functions must be defined incrementally.
- Two parts of each function penalty(c):
 - $penalty_{init}(c)(k)$
 - $penalty_{delta}(c)(k')$, where $k' = k + \delta$ and penalty(c)(k) is known. (Hence δ is the difference between k and k'.)

Incremental Penalty Maintenance Using Penalty Trees

<u>Idea</u>

- Build a syntax tree of an ∃SOL⁺ formula.
- Populate the syntax tree with information to obtain a penalty tree.

Incremental Penalty Maintenance Using Penalty Trees

<u>Idea</u>

- Build a syntax tree of an ∃SOL⁺ formula.
- Populate the syntax tree with information to obtain a penalty tree.

Initialising the Penalty Tree of $S \subset T$

 $\mathcal{U}=\{a,b\}\text{, }k(S)=\{a\}\text{, }k(T)=\emptyset$

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

- Only affected paths need updating.
- Start from affected leaves and update paths to the root node.

Conflicting Variables

- A possible neighbourhood (1): "Move each value in any set to any other set"
- Impractical in reality!
- Focus on conflicting variables.
- A possible neighbourhood (2): *"Move each value in S to any other set"* where *S* has the maximum conflict.

Conflicting Variables

- A possible neighbourhood (1): "Move each value in any set to any other set"
- Impractical in reality!
- Focus on conflicting variables.
- A possible neighbourhood (2): *"Move each value in S to any other set"* where *S* has the maximum conflict.

Conflict of a Variable

Definition 2. Let $P = \langle \mathcal{X}, \mathcal{D}, \mathcal{C} \rangle$ be a CSP. A conflict function of $c \in \mathcal{C}$ is a function $conflict(c) : \mathcal{X} \times \mathcal{K} \to \mathbb{N}$ s.t. if conflict(c)(x,k) = 0 then $\forall \ell \in \mathcal{N}_x(k) : penalty(c)(k) \leq penalty(c)(\ell)$.

 $\mathcal{N}_x(k)$ is the set of configurations reachable from k by only changing k(x).

Examples:

$$conflict(x \le y)(z, k) = \begin{cases} \max(k(x) - k(y), 0), \text{ if } z = x \text{ or } z = y \\ 0, \text{ otherwise} \end{cases}$$
$$conflict(AllDifferent(\mathcal{X}))(x, k) = \begin{cases} 1, \text{ if } x \in \mathcal{X} \& \exists y \neq x \in \mathcal{X} : k(x) = k(y) \\ 0, \text{ otherwise} \end{cases}$$

Conflict with respect to $S \subset T$

$$conflict(S \subset T)(Q, k) = \begin{cases} 1, \text{ if } Q = T \text{ and } k(T) \subseteq k(S) \\ 1, \text{ if } Q = S \text{ and } k(S) \neq \emptyset \text{ and } k(T) \subseteq k(S) \\ 0, \text{ otherwise} \end{cases}$$

Examples:

Recall: $k_2(S) = \{a\}, k_2(T) = \emptyset$, $penalty(S \subset T)(k_2) = 2$ **Then** $conflict(S \subset T)(S, k_2) = 1$ and $conflict(S \subset T)(T, k_2) = 2$

Recall: $k_3(S) = \emptyset, k_3(T) = \{a\}, penalty(S \subset T)(k_3) = 0$ **Then** $conflict(S \subset T)(S, k) = 0$ and $conflict(S \subset T)(T, k) = 0$

Inductive Definition: Conflict w.r.t. an $\exists \mathrm{SOL}^+$ Formula

$$\begin{aligned} \operatorname{conflict}(\exists S_1 \cdots \exists S_n \phi)(S, k) &= \operatorname{conflict}(\phi)(S, k) \\ \operatorname{conflict}(\forall x \phi)(S, k) &= \sum_{u \in \mathcal{U}} \operatorname{conflict}(\phi)(S, k \cup \{x \mapsto u\}) \\ \operatorname{conflict}(\exists x \phi)(S, k) &= \max\{0\} \cup \{\operatorname{penalty}(\exists x \phi)(k) - (\operatorname{penalty}(\phi)(k \cup \{x \mapsto u\})) \mid u \in \mathcal{U}\} \\ \operatorname{conflict}(\phi \land \psi)(S, k) &= \sum \{\operatorname{conflict}(\gamma)(S, k) \mid \gamma \in \{\phi, \psi\} \land S \in \operatorname{vars}(\gamma)\} \\ \operatorname{conflict}(\phi \lor \psi)(S, k) &= \max\{0\} \cup \{\operatorname{penalty}(\phi \lor \psi)(k) - (\operatorname{penalty}(\gamma)(k) - \operatorname{conflict}(\gamma)(S, k)) \mid \gamma \in \{\phi, \psi\} \land S \in \operatorname{vars}(\gamma)\} \\ \operatorname{conflict}(|S| \leq c)(S, k) &= \operatorname{penalty}(|S| \leq c)(k) \\ \operatorname{conflict}(x \in S)(S, k) &= \operatorname{penalty}(x \in S)(k) \end{aligned}$$

 $\mathcal{U}=\{a,b\}\text{, }k(S)=\{a\}\text{, }k(T)=\emptyset$

 $\mathcal{U}=\{a,b\}\text{, }k(S)=\{a\}\text{, }k(T)=\emptyset$

$$\mathcal{U}=\{a,b\}\text{, }k(S)=\{a\}\text{, }k(T)=\emptyset$$

$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

$$\mathcal{U}=\{a,b\}\text{, }k(S)=\{a\}\text{, }k(T)=\emptyset$$

$$\mathcal{U} = \{a, b\}, \ k(S) = \{a\}, \ k(T) = \emptyset$$

Abstract Conflict of a Variable

Let $P = \langle \mathcal{X}, \mathcal{D}, \mathcal{C} \rangle$ be a CSP, let $c \in \mathcal{C}$, and let k be a configuration for \mathcal{X}

Informally: The abstract conflict of a variable x with respect to c and k is the maximum possible penalty decrease of c by only changing k(x).

Formally: The abstract conflict function of c is a function $ac(c) : \mathcal{X} \times \mathcal{K} \to \mathbb{N}$ such that:

 $ac(c)(x,k) = \max\{penalty(c)(k) - penalty(c)(\ell) \mid \ell \in \mathcal{N}_x(k)\}$

where $\mathcal{N}_x(k)$ is the set of configurations reachable from k by only changing k(x).

Properties of $conflict(\mathcal{F})$

Proposition 1. Let c be a constraint. Then ac(c) is a conflict function.

Proposition 2. Let $\mathcal{F} \in \exists SOL^+$, let k be a configuration for $vars(\mathcal{F})$, and let $S \in vars(\mathcal{F})$. Then $ac(\mathcal{F})(S,k) \leq conflict(\mathcal{F})(S,k)$.

Proposition 3. Let $\mathcal{F} \in \exists SOL^+$, let k be a configuration for $vars(\mathcal{F})$, and let $S \in vars(\mathcal{F})$. Then $conflict(\mathcal{F})(S,k) \leq penalty(\mathcal{F})(k)$.

Corollary. Let $\mathcal{F} \in \exists SOL^+$. $conflict(\mathcal{F})$ is a conflict function.

Progressive Party Problem

Constraints:

- (c_1) : Each guest crew shall party in each period,
- $\left(c_{2}\right)$: the capacity of the host boats is not exceeded,
- (c_3) : a guest crew visits a host boat at most once,
- (c_4) : two different guest crews meet at most once.

Model:

P: party periods, H: host boats, G: guest crews $H_{(h,p)}$: set of guest boats on host boat h in period psize(g): size of guest crew gcapacity(h): spare capacity of host boat h

 $\begin{aligned} &(c_1): \forall p \in P: Partition(\{H_{(h,p)} \mid h \in H\}, G) \\ &(c_2): \forall h \in H: \forall p \in P: \\ & MaxWeightedSum(H_{(h,p)}, size, capacity(h)) \\ &(c_3): \forall h \in H: AllDisjoint(\{H_{(h,p)} \mid p \in P\}) \\ &(c_4): MaxIntersect(\{H_{(h,p)} \mid h \in H \& p \in P\}, 1) \end{aligned}$

Neighbourhood: Move a guest crew from a host boat h to another host boat h' in the same period:

SweConsNet'06 – March 15, 2006

Progressive Party Problem

Constraints:

- (c_1) : Each guest crew shall party in each period,
- $\left(c_{2}\right)$: the capacity of the host boats is not exceeded,
- (c_3) : a guest crew visits a host boat at most once,
- (c_4) : two different guest crews meet at most once.

Model:

P: party periods, H: host boats, G: guest crews $H_{(h,p)}$: set of guest boats on host boat h in period psize(g): size of guest crew gcapacity(h): spare capacity of host boat h

$$\begin{split} & (c_1) : \forall p \in P : Partition(\{H_{(h,p)} \mid h \in H\}, G) \\ & (c_2) : \forall h \in H : \forall p \in P : \\ & MaxWeightedSum(H_{(h,p)}, size, capacity(h)) \\ & (c_3) : \forall h \in H : AllDisjoint(\{H_{(h,p)} \mid p \in P\}) \\ & (c_4) : MaxIntersect(\{H_{(h,p)} \mid h \in H \& p \in P\}, 1) \end{split}$$

Neighbourhood: Move a guest crew from a host boat h to another host boat h' in the same period:

SweConsNet'06 – March 15, 2006

Results

	when h	liouenee		Join		anne.	
$H/{\sf periods}$ (fails)	6	7		8	9		10
1-12,16				1.3	3.5		42.0
1-13				16.5	239.3		
1,3-13,19				18.9	273.2	(3)	
3-13,25,26				36.5	405.5	(16)	
1-11,19,21	19.8	186.7					
1-9,16-19	32.2	320.0	(12)				

Results with modelled *AllDisjoint* constraint.

Results with built-in *AllDisjoint* constraint.

$H/{\sf periods}$ (fails)	6	7		8	9		10
1-12,16				1.2	2.3		21.0
1-13				7.0	90.5		
1,3-13,19				7.2	128.4	(4)	
3-13,25,26				13.9	170.0	(17)	
1-11,19,21	10.3	83.0	(1)				
1-9,16-19	18.2	160.6	(22)				

Conclusion

Contributions

- We use existential second-order logic with counting (∃SOL⁺) for user-defined set constraints.
- We introduced penalty and conflict definitions for constraints modelled in ∃SOL⁺.
- We developed algorithms for incrementally maintaining the penalty and conflicts of a formula in ∃SOL⁺.

Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

- We use existential second-order logic with counting (∃SOL⁺) for user-defined set constraints.
- We introduced penalty and conflict definitions for constraints modelled in ∃SOL⁺.
- We developed algorithms for incrementally maintaining the penalty and conflicts of a formula in ∃SOL⁺.

Revising the current local search system:

Future Work

- More built-in set constraints.
- Constraints on set and integer variables, e.g., |S| = x.
- More efficient incremental algorithms.
- Bounded quantification in $\exists SOL^+$, such as $\forall (x \in S)\phi(x)$