Synthesising
High-Level Constructs
for Set-Based Local Search

Magnus Agren, Pierre Flener, Justin Pearson
Information Technology, Uppsala University

{agren,pierref, justin}@it.uu.se

SweConsNet'06 — March 15, 2006

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Motivation (1)

We introduced set variables and set constraints in local search.
(See our CPAIOR 2005 paper.)

Examples:

o SCT
e AllDisjoint({S1,...,Sn})
o MaxIntersect({S1,...,5n},a)

e Already addressed in constructive search: Gervet, Puget, Muller and Miiller.

e Modelling and solving benefits.

SweConsNet'06 — March 15, 2006 1

Synthesising High-Level Constructs for Set-Based Local Search

Motivation (2)

Magnus Agren, Pierre Flener, and Justin Pearson

e Limited number of implemented set constraints.

e A new (set) constraint in local search requires one (at least):

— to define penalty and conflict functions for the constraint.
— to implement incremental maintenance algorithms for penalties and conflicts.

e A time-consuming and error-prone task!

SweConsNet'06 — March 15, 2006

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Idea

e A modelling language for set constraints.

— Extend the idea of combinators [Van Hentenryck, Michel & Liu 2004] to
quantifiers and set variables.

— Penalty and conflict functions need only be defined once.

— Incremental maintenance algorithms need only be implemented once.

e Existential Second-Order Logic (3SOL).

— Small and simple, yet expressive language.
— Captures at least the complexity class NP.

SweConsNet'06 — March 15, 2006 3

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Local Search

e Start from a complete assignment (configuration) and iteratively move to
promising neighbouring configurations until a (good enough) solution is found.
e Constraints are used to cuicle the <earch in the right direction.

Example: ({zx € {1,2,3,4},y € {1,2,3}},{z < y})

x < y is queried

SweConsNet'06 — March 15, 2006 4

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Set Variables

e The domain Dg of a set variable S is a power-set of values, i.e., Dg = 2Ys.

e Ug is called the universe of S.

Examples:

Us, =Us, ={1,2,3}, Us, = {7,12,193}

k(51) ={2,3}, k(S2) =0, k(S3) = {7}

SweConsNet'06 — March 15, 2006 5

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of a Constraint

Definition 1. A penalty function of a constraint ¢ is a function
penalty(c) : K — N s.t. penalty(c)(k) = 0 if and only if
c is satisfied w.r.t. k.

Examples:

o penalty(x < y)(k) = max(k(x) — k(y),0)

o penalty(AllDifferent(X))(k) = “Number of repeated values in X w.r.t. k”

SweConsNet'06 — March 15, 2006 6

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of S C T

1, if k(T) C k(S)

0, otherwise

penalty(S C T)(k) = [k(S) \ k(T)| + {

Examples:
k1(S) = k1(T) = {a} gives penalty(S C T)(ky) =1
ko(S) = {a}, ko(T) = 0 gives penalty(S C T)(k2)
k3(S) =0, k3(T) = {a} gives penalty(S C T)(k3)

2
0

SweConsNet'06 — March 15, 2006 7

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Existential Second-Order Logic (with Counting)

BNF grammar of 3SOL™

(Constraint) = (3 (S))* (Formula)
(Formula) ::= ({(Formula))
| (| 3)(x) {Formula)
| (Formula) (A | V) (Formula)
| (Literal)
| (Formula) (|— | < |<) (Formula)
| = (Formula)
(Literal) == (x) (€| &) (S)
| () (K12 T=1Z121>) (y)
IS SlT=1£1212>) (a)

3SOL*

e A sequence of J-quantified set

variables constrained by a logical
formula.

e All set variables share the same
universe Y.

e Negation as well as implications
removed.

SweConsNet'06 — March 15, 2006

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Existential Second-Order Logic (with Counting)

BNF grammar of 3SOL™

(Constraint) = (3 (S))* (Formula)
(Formula) ::= ({(Formula))
| (Y | 3)(x) (Formula)

| (Formula) (A | V) (Formula)

| (Literal)

| (Formula) (|— | < |<) (Formula)
| = (Formula)

(Literal) == (x) (€| &) (S)
| (@) KIS =1#£121>)(y)
| SIS T=1Z121>)

S c T in3SOL™

ScCT
=
ASAT((Ve(x ¢ SV € T))A
(Fx(xeT Nx ¢ S)))

Quantification over the whole U/.

SweConsNet'06 — March 15, 2006

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Inductive Definition: Penalty of an 3SOL™ Formula

penalty(3Sy - - - 3Sn¢) (k) = penalty(¢) (k)

penalty(Vx o) (k) = %penalty(qb)(k U{x — u})

penalty(Ix) (k) = min{penalty(d)(k U {x — u} | u € U})
penalty (¢ A) (k) = penalty(¢)(k) + penalty(¥) (k)

penalty (¢ V) (k) = min{penalty(¢)(k), penalty () (k) }

(0, if [k(S)| < ¢
| |k(S)| — ¢, otherwise
(0, if k(z) € k(S)

penalty(|S| < ¢)(k)

enalty(x € S)(k — ¢
g 4)(F) \1, otherwise
N
0, if k£ <k
penalty(z < y)(k) — if k(z) < k(y)
1, otherwise

SweConsNet'06 — March 15, 2006 9

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

SweConsNet’'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

1. p(F)(k) = p(F1)(k) + p(F2) (k)

SweConsNet’'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

1. p(F)(k) = p(F1)(k) + p(F2) (k)
2.p(F1)(k) = pla € SVaeT)(k)+
p(bg SVbeT)(k)

SweConsNet’'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =35I ((Ve(e ¢ SVa e T A(Fe@ e T Az ¢ 5)))
3 F>

U= {a,b}, k(S)={a},k(T)=1

L. p(F)(k) = p(F1)(k) + p(F2)(k)
2. p(F1)(K) = pla & SV a € T)(k)+
pbg SVvbeT)(k)
3.plagd SVaeT)(k) =
min(p(a & 5)(k), p(a € T)(k)) =
min(1,1) =1

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

Fo
L[:{a,b}, k():{a}ak():(D

1. p(F)(k) = p(F1)(k) + p(F2) (k)
2. p(F1)(k) =pla & SVaeT)(k)+
pbé& SVvbeT)(k)
3.pla€ SVaeT)(k)=
min(p(a ¢ S)(k),p(a € T)(k)) =
min(1,1) =1
4. pbeg SVvbeT)(k) =
min(p(b & S)(k),p(b e T)(k)) =
min(0,1) = 0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

%
U = {a,b}, K(S) = {a}, K(T) = 0

1. p(F)(k) = p(F1)(k) + p(F2) (k) 5. p(F2)(k) = min(p(a € T Aa & S)(k),
2. p(F1)(k) =pla &€ SVaeT)(k)+ p(b €T ANb ¢ S)(k))

pb& SVvbeT)(k)
3.pla€ SVaeT)(k)=
min(p(a ¢ S)(k),p(a € T)(k)) =
min(1,1) =1
4. pbg SvbeT)(k) =
min(p(b & S)(k),p(b € T)(k)) =
min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

47
U = {a,b}, K(S) = {a}, K(T) = 0
1. p(F)(k) = p(F1)(k) + p(F2) (k) 5. p(F2)(k) = min(p(a € T'Aa & S)(k),
2. p(F1)(k) =pla &€ SVaeT)(k)+ p(b €T Nb ¢ S)(k))
pb& SVvbeT)(k) 6. p(a € T Naé&S)(k)=
3.p(ag€ SVaeT)k) = pla € T)(k)+pla & S)(k) =
min(p(a ¢ S)(k),p(a € T)(k)) = 14+1=2

min(1,1) =1

4 pbg SvbeT)(k) =
min(p(b ¢ S)(k),p(b € T)(k)) =
min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

F2
U ={a,b}, k(S) = {a},k() =10
L p(F)(k) = p(F1)(k) + p(F2)(F) 5. p(F2)(k) = min(p(a € T' A a ¢ S)(k),
2.p(F1)(k) =pla g SVaeT)(k)+ p(be T Nb & S)(k))
pbg SVvbeT)(k) 6. p(a € TANa & S)(k) =
3.p(a g SVaeT)(k)= p(a € T)(k) + pla & S)(k) =
min(p(a ¢ S)(k),pla € T)(R) = 1+1=2
min(1,1) =1 7.pbeT Nb¢g S)(k)=
4 pb& SVvbeT)(k)= pbeT)(k)+pb&S)(k)=
min(p(b & S)(k),p(b e T)(k)) = 1+0=1

min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

47
U = {a,b}, K(S) = {a}, K(T) = 0
1. p(F)(k) = p(F1)(k) + p(F2) (k) 5. p(F2)(k) = min(p(a € T Na & S)(k),
2. p(F1)(k) =pla &€ SVaeT)(k)+ 1)
pb& SVvbeT)(k) 6. p(a € TNhNaé&S)(k)=

3.p(a¢ SVaeT)(k)= pla € T)(k)+pla & S)(k) =

min(p(a ¢ S)(k),p(a € T)(k)) = 14+1=2

min(1,1) =1 7.pbeT ANb¢g S)(k)=1

4.p(b¢ SVbeT)(k)=

min(p(b & S)(k),p(b € T)(k)) =
min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

s
U = {a,b}, K(S) = {a}, K(T) = 0
L p(F)(k) = p(F1)(k) + p(F2) (k) 5. p(F2)(k) = min(2,1)
2.p(F1)(k) =plag& SVaeT)k)+ 6.p(aceT Naé&bS)(k)=2
pbg SVvbeT)(k) 7.pbeT Nbg S)(k)=1

3.pla€ SVaeT)(k)=
min(p(a ¢ S)(k),p(a € T)(k)) =
min(1,1) =1

4. pbg SvbeT)(k) =
min(p(b & S)(k),p(b € T)(k)) =
min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F =353T((v (géS\/a:ET)) Azx(zeTAx g S5)))

s
U = {a,b}, K(S) = {a}, K(T) = 0
L. p(F)(k) =p(F1)(k)+ 1 5. p(Fz)(k) = min(2,1) = 1
2.p(F1)(k)=plagd SVaeT)(k)+ 6.plaecT Naé&S)(k)=2
pbg SVvbeT)(k) 7.pbeT Nbg S)(k)=1

3.pla€ SVaeT)(k)=
min(p(a ¢ S)(k),p(a € T)(k)) =
min(1,1) =1

4. pbg SvbeT)(k) =
min(p(b & S)(k),p(b € T)(k)) =
min(0,1) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F = 353T((¥ (e,zsva;eT)) (e eT Az ¢S)))

2
U = {a,b}, k(S) = {a}, K(T) = 0
1 p(F)(k) = p(F1)(E) + 1 5. p(F2)(k) = min(2,1) = 1
2.p(F1)(k) =plag& SVaeT)(k)+ 6.placT Naé&S)(k)=2
0 I.pbeT Nb¢g S)(k)=1

3.plaé SVacT)(k)=
min(p(a ¢ S)(k),p(a € T)(k)) =
min(1,1) =1

4. p(b ¢ SVbET)(k) =0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F = 353T((¥ (e,zsva;eT)) (e eT Az ¢S)))

Fo
U = {0, b}, K(S) = {a}, K(T) = ¢
L. p(F)(k) = p(F1)(k) + 1 5. p(F2)(k) = min(2,1) =1
2. p(F1)(k) =140 6.p(a €T Aa¢ S)(k)=2
3.p(a g SVacT)(k) =1 7.p(beTAbE S)(k) =1

4.p(bg SVbeT)(k)=0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F = 353T((¥ (¢S\/J;€T)) (e eT Az ¢S)))

s
U=1a,b}, k(S) = {a}, kK(T)=10
Lp(F)k)=1+1 5. p(F2)(k) = min(2,1) = 1
2.p(Fi)(k) =1+0=1 6. p(a € T ANa ¢ S)(k) =2
3.plag¢ SVaeT)(k)=1 7.pbeT Ab¢ S)(k)=1

4.p(bg SVbeT)(k)=0

SweConsNet'06 — March 15, 2006 10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty of the S C T' Formula

F = 353T((¥ (e,zsva;eT)) (e eT Az ¢S)))

s
U=1a,b}, k(S) = {a}, kK(T)=10
Lp(F)(k)=1+1=2 5. p(F2)(k) = min(2,1) = 1
2.p(F1)(k) =1+0=1 6. p(a € T ANa ¢ S)(k) =2
3.plag¢ SVaeT)(k)=1 7.pbeT Ab¢ S)(k)=1

4.p(bg SVbeT)(k)=0

Indeed, exactly two values must be changed in k(S) and/or k(T) to satisfy

k(S) C k(T).

SweConsNet'06 — March 15, 2006

10

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Efficiency Issues

e The number of different configurations to explore in a real-life problem may
be as large as 500,000,000, if not larger.

e Recalculating from scratch the value of penalty(c)(k’) for a constraint ¢ for
each neighbouring configuration k' of k is impractical.

e The penalty functions must be defined incrementally.

e Two parts of each function penalty(c):

— penaltyiq(c) (k)
— penaltygenq(c)(k'), where k' = k 4+ 9 and penalty(c)(k) is known.
(Hence § is the difference between k and k'.)

SweConsNet'06 — March 15, 2006 11

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incremental Penalty Maintenance Using Penalty Trees

Idea Syntax Tree of S C T
e Build a syntax tree of an ISOL™ Gs3r)
formula.
(A
e Populate the syntax tree with \)
information to obtain a penalty vz S
tree.
Qv S,
x &S rxeT

SweConsNet'06 — March 15, 2006 12

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incremental Penalty Maintenance Using Penalty Trees

Idea Penalty Tree of S C T

e Build a syntax tree of an ISOL™
formula.

e Populate the syntax tree with
information to obtain a penalty
tree.

SweConsNet'06 — March 15, 2006 12

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Initialising the Penalty Tree of S C T

U = {a,b}, k(S) = {a}, K(T) =0

(3531 {() v 2}

) {0 = 2}
{0 = 1} (V2 Jz) {0 — 1}

{(a) — 1,(b) — 0} (Vv A {(a) — 2, (b) — 1}

{(a) — 1,(b) — 0} {(a)+—1,(b) — 1}

SweConsNet'06 — March 15, 2006

13

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

GSITO{() = 2) e Only affected paths need

updating.
A {0 — 23 P 5

e Start from affected leaves and

— 1} (Vx dx — 1
0= =4 update paths to the root node.
{(a) — 1,(b) — 0} C\><D {(a) —2,(b) — 1}
x Q S zeT

{(a) = 1,(b) = 0} {(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

GsIr0(0 =2 e Only affected paths need

updating.

(A {0 — 2} P 5

e Start from affected leaves and
{0~ 1} (Va) {()— 1}
update paths to the root node.
{(a) — 1, (b) — O} V A {(a) — 2, (b) — 1}
x &S xeT

{(a) = 0,(b) = 0} {(a) — 0,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

GSITO{() = 2) e Only affected paths need

updating.
(A {0 — 23 P 5

e Start from affected leaves and

— 1} Vax dx — 1
0= =4 update paths to the root node.
{(a) — 0, (b) — 0} V A {(a) — 0,(b) — 1}
x ¢S xeT

{(a) = 0,(b) = 0} {(a) — 0,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

@{0 —2) e Only affected paths need
dating.
| S updating

e Start from affected leaves and

— 0} Vx dx — 0
o= o) update paths to the root node.
{(a) — 0,(b) — 0} V A {(a) — 0,(b) — 1}
x ¢S xeT

{(a) = 0,(b) = 0} {(a) — 0,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

3S3T {() — 2}

e Only affected paths need

updating.
A {() — 0} P &
. . e Start from affected leaves and
— 0 x x — 0
0=y o) update paths to the root node.
{(a) — 0, (b) — O} vV 7\ {(a) — 0, (b) — 1}
x ¢S xeT

{(a) = 0,(b) = 0} {(a) — 0,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Incrementally Updating the Penalty Tree of S C T

Change: Move a from S to T'.
New state: U = {a,b}, K'(S) =0,k'(T) = {a}

3537 {() — 0}

e Only affected paths need

updating.
A {() — 0} P &
. . e Start from affected leaves and
— 0 x x — 0
0=y o) update paths to the root node.
{(a) — 0, (b) — O} vV A {(a) — 0, (b) — 1}
x ¢S xeT

{(a) = 0,(b) = 0} {(a) — 0,(b) — 1}

SweConsNet'06 — March 15, 2006 14

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflicting Variables

e A possible neighbourhood (1):
“Move each value in any set
to any other set”

e Impractical in reality!
e Focus on conflicting variables.

e A possible neighbourhood (2):
“Move each value in S to any
other set” where S has the
maximum conflict.

SweConsNet'06 — March 15, 2006 15

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflicting Variables

Splitting the Search Space

e A possible neighbourhood (1):
“Move each value in any set
to any other set”

Maximum Conflict

e Impractical in reality!
e Focus on conflicting variables.

e A possible neighbourhood (2):
“Move each value in S to any
other set” where S has the
maximum conflict.

SweConsNet'06 — March 15, 2006 15

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflict of a Variable

Definition 2. Let P = (X, D,C) be a CSP. A conflict function of ¢ € C is a
function conflict(c) : X x K — N s.t. if conflict(c)(x, k) =0
then V¢ € N, (k) : penalty(c)(k) < penalty(c)(£).

N (k) is the set of configurations reachable from & by only changing k(x).

Examples:

conflict(z < y)(z, k) = {maX(k(:U) — k(y),0), if z=xzo0rz=y

0, otherwise
1,ifreX & Jy#ax € X :k(x) =k(y)

0, otherwise

conflict(AllDifferent(X))(x, k) = {

SweConsNet'06 — March 15, 2006 16

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Conflict with respect to S C T

Examples:

SweConsNet'06 — March 15, 2006 17

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Inductive Definition: Conflict w.r.t. an 3SOL™ Formula

conflict(3Sy - - - S) (S, k) = conflict(¢)(S, k)
conflict(Nx) (S, k) = > conflict(d)(S, kU {x — u})

conﬂz’ct(ﬂxqﬁ)(s, k) =
max{0} U {penalty(3x¢)(k) — (penalty(¢)(k U{x — u})—
conflict(¢)(S,kU{x — u})) | v e U}
conflict(¢p N ¥)(S, k) = > _{conflict(y)(S, k) | v € {&, ¥} NS € vars(y)}
conflict(¢p V) (S, k) =
max{0} U {penalty (¢ V 1)(k) — (penalty(y)(k) — conflict(v)(S, k)) |

v €4, Y} AS € vars(y)}
conflict(|S| < ¢)(S, k) = penalty(|S| < ¢)(k)
conflict(x € S)(S, k) = penalty(x € S)(k)

SweConsNet'06 — March 15, 2006 18

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T
U = {a,b}, k(S) = {a}, k(T) =0
GSITO{() = 2}
A0~ 2}
{01} (e) {0~ 1}

{(a) — 1,(b) — 0} (V A {(a) — 2, (b) — 1}

/’{;\H L(b) — 0} {(a) = 1,(b) = 1}

S:{(a) — 1,(b) — 0}

SweConsNet'06 — March 15, 2006

19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T

U ={a,b}, k(S) ={a}, K(T)=10
(353710 — 2}
{0 — 2}
(0~ 1} (Va 2 {0 1)

{(a) — 1,(b) — 0} (V A {(a) — 2, (b) — 1}

/’{;\H L) 0} {(a) 1,(bm

S:{(a) = 1,(b) — 0} T:{(a) = 1,(b) — 1}

SweConsNet'06 — March 15, 2006 19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T
U ={a,b}, k(S) ={a}, K(T)=10

(3531 {() v 2)

CA) {0 = 2}

— 1} (Vax Jx — 1
{0 } {0 t S :{(a) — 1,(b) — 0}

T: {(a) — 1, (b) — 1}

{(a) — 1, (b) — 0} (V A {(a) — 2, (b) — 1}

/’{;\H L(®) 0} {(a) 1,(bm

S:{(a) — 1,(b) — 0} T:{(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006

19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T

U ={a,b}, k(S) ={a}, K(T)=10

(3531 {() — 2)

CA) {0 = 2}

{01} (Vz 3z) {() 1}
S :{(a) — 1,(b) — 0} S {(a) = 1, (b) > 0}
T :{(a) — 1, (b) — 0} ,/—“ T:{(a) — 1,(b) — 1}

{(a) — 1, (b) — 0} (V A {(a) — 2, (b) — 1}

/’{;\H L) 0} {(a)— 1,(bm

S:{(a) — 1,(b) — 0} T:{(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006 19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T

U = {a,b}, k(S) = {a}, K(T) =1

(3531 {() — 2)

CA) {0 = 2}

{0 =1} (Ve Jz) {() — 1}
S :{(a) — 1,(b) — 0} S :{(a) — 1,(b) — 0}
T - i) = 1, (08) 1= 0] '/—\ T:{(a) 1, (b) — 1}

{(a) — 1, (b) — 0} (V

/’{;\H L®) =0} {(a) 1,(bm

S:{(a) — 1,(b) — 0} T:{(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006 19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T

U = {a,b}, k(S) = {a}, K(T) =1

(3531 {() — 2)

1}
1} CA) {0 = 2}

{0 =1} (Ve Jz) {() — 1}
S :{(a) — 1,(b) — 0} S :{(a) — 1,(b) — 0}
T - i) = 1, (08) 1= 0] '/—\ T:{(a) 1, (b) — 1}

{(a) — 1, (b) — 0} (V

/’{;\H L(®) =0} {(a) 1,(bm

S:{(a) — 1,(b) — 0} T:{(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006 19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Penalty and Conflict Tree of S C T

U = {a,b}, k(S) = {a}, k(T) =

)/,\
— 2 S:{() — 1}
Gs3T{0 ~ 2) s: 40— 1)
S {() — 1}
T:{) — 1} W {0 — 2} S: {() — 0}
// T:{()~ 1}
{0 — 1} (Ve 3z) {() — 1}

S:{(a) — 1,(b) — 0} S:{(a) — 1,(b) — 0}
T : {(a) — 1, (b) — 0} '/—\ T :{(a) — 1, (b) — 1}

{(a) — 1,(b) — 0} (V

/’{;\H L) 0} {(a) 1,(bm

S:{(a) — 1,(b) — 0} T:{(a) — 1,(b) — 1}

SweConsNet'06 — March 15, 2006 19

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Abstract Conflict of a Variable

Let P = (X,D,C) be a CSP, let ¢ € C, and let k be a configuration for X

Informally: The abstract conflict of a variable with respect to ¢ and k is the
maximum possible penalty decrease of ¢ by only changing k(x).

Formally: The abstract conflict function of ¢ is a function
ac(c) : X x K — N such that:

ac(c)(x, k) = max{penalty(c)(k) — penalty(c)(£) | £ € N (k)}

where N, (k) is the set of configurations reachable from & by only
changing k(x).

SweConsNet'06 — March 15, 2006 20

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Properties of conflict(F)

Proposition 1. Let ¢ be a constraint. Then ac(c) is a conflict function.

Proposition 2. Let F € I3SOLT, let k be a configuration for vars(F), and
let S € vars(F). Then ac(F)(S, k) < conflict(F)(S, k).

Proposition 3. Let F € ISOL™, let k be a configuration for vars(F), and

let S € vars(F). Then conflict(F)(S, k) < penalty(F)(k).

Corollary. Let F € ISOL™. conflict(F) is a conflict function.

SweConsNet'06 — March 15, 2006

21

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Progressive Party Problem

Period 1
Period 2

Model:

P: party periods, H: host boats, G: guest crews

H(h p): set of guest boats on host boat A in period p
Y

size(g): size of guest crew g

capacity(h): spare capacity of host boat h

(c1):Vpe P: Partition({H(h) | h € H}, G)
(c9):VhEH:Vpe P:
MamWeightedSum(H(h p)’ size, capacity(h))

(c3) :Vh € H : AllDisjoint({H(h p) | p € P})
(cq) : Max]ntersect({H(h) |he H & pe P},1)

Constraints:

(c1) : Each guest crew shall party in each period,
(c9) : the capacity of the host boats is not exceeded,
(c3) : a guest crew visits a host boat at most once,
(cq) : two different guest crews meet at most once.

Neighbourhood: Move a guest crew from a host boat h to
another host boat A/ in the same period:

Periods

-
!

Hhy,p1) H(hy,pe) H(hq,p3)

H(h2>p1) H(hQ’p2) H(h2>p3)
H(ng,p1) H(hg,pe) H(hg,p3)

Hosts

SweConsNet'06 — March 15, 2006

22

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Progressive Party Problem

Period 1
Period 2

Model:

P: party periods, H: host boats, G: guest crews

H(h p): set of guest boats on host boat A in period p
b

size(g): size of guest crew g
capacity(h): spare capacity of host boat h

: ; - ;
(c9):VhEH:Vpe P:

MamWeightedSum(H(h p)’ size, capacity(h))
(c3) :Vh € H : AllDisjoint({H(h p) | p € P})
(cq) : Max]ntersect({H(h) |he H & pe P},1)

Constraints:

(c1) : Each guest crew shall party in each period,
(c9) : the capacity of the host boats is not exceeded,
(c3) : a guest crew visits a host boat at most once,
(cq) : two different guest crews meet at most once.

Neighbourhood: Move a guest crew from a host boat h to
another host boat A/ in the same period:

Periods

-
!

Hhy,p1) H(hy,pe) H(hq,p3)

H(h2>p1) H(hQ’p2) H(h2>p3)
H(ng,p1) H(hg,pe) H(hg,p3)

Hosts

SweConsNet'06 — March 15, 2006

22

Magnus Agren, Pierre Flener, and Justin Pearson Synthesising High-Level Constructs for Set-Based Local Search

Results

Results with modelled AllDisjoint constraint.

H /periods (fails) 6 7 8 9 10
1-12,16 1.3 3.5 42.0
1-13 16.5 239.3

1,3-13,19 18.9 273.2 (3)
3-13,25,26 365 4055 (16)
1-11,19,21 19.8 186.7

1-9,16-19 32.2 320.0 (12)

Results with built-in AllDisjoint constraint.

H /periods (fails) 6 7 8 9 10
1-12,16 1.2 2.3 21.0
1-13 7.0 90.5

1,3-13,19 72 1284 (4)
3-13,25,26 13.9 170.0 (17)
1-11,19,21 103 830 (1)

1-9,16-19 18.2 160.6 (22)

SweConsNet'06 — March 15, 2006 23

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

e \We use existential second-order
logic with counting (3SOL™) for
user-defined set constraints.

e We introduced penalty and
conflict definitions for constraints
modelled in ISOLT.

e \We developed algorithms for
incrementally maintaining the

penalty and conflicts of a formula
in 3SOL™.

SweConsNet'06 — March 15, 2006

24

Magnus Agren, Pierre Flener, and Justin Pearson

Synthesising High-Level Constructs for Set-Based Local Search

Conclusion

Contributions

e \We use existential second-order
logic with counting (3SOL™) for
user-defined set constraints.

e We introduced penalty and
conflict definitions for constraints
modelled in ISOLT.

e \We developed algorithms for
incrementally maintaining the

penalty and conflicts of a formula
in 3SOL™.

Future Work

Revising the current local search
system:

e More built-in set constraints.

e Constraints on set and
integer variables, e.g., |S| = x.

e More efficient incremental
algorithms.

e Bounded quantification in ISOLT,
such as V(z € S)¢(x)

SweConsNet'06 — March 15, 2006

24

