Lessons Learnt from Developing &
Maintaining the
World'’s Largest* CP Model

U/ng MiniZi

w ¢

Content

* Quick background on Ericsson and RAN networks
» Using combinatorial optimization in product configuration

» Developing, executing & maintaining very large CP models

)\

Erik @ Ericsson

* Erik Cervin Edin

 Software Developer @ Ericsson

» Computer Science, Uppsala University
* Ericsson since Feb 2023

https://qithub.com/CervEdin
https://linkedin.com/in/erikcervinedin

\\

https://github.com/CervEdin
https://linkedin.com/in/erikcervinedin

‘_J

/ iy

), \
5)\ V)

2

5G 5G RGdIO‘

Core Access Network

:

P :

Business-and Opero S ~ Cloud Com
~Support Sys and /Networ

Ericsson kéy offer| ngs x'

.,
Transport

Managed Mission Critical “Network Private Wireless
Services Communications ‘wee o =GHE Services Networks WAN

-

Electromagnetic spectrum

Radio Window Optical
Window

106 (Hertz) 102Hz 105 Hz

Radio Waves —IMM!_ . —mm— Ultravio

102 (meters) 10'm 10'm 102m 103m 10“4m 10°m 10:°m 107m
(1cm) (1m)
- a Ao
Wavelength = Wavelength = Wavelength =
length of a football field width of a baseball thickness of paper

'__‘,' od
» radiate_heﬁt

\\

Spectrum allocation

Bandwidth
'

3900MHz

2600MHz

Telia (120MHz)

\\

[5G & 8eyond | AN] Access [News |
Sweden completes spectrum auction in one day

Annie Turner

Net4Mobility (100MHz)

Hi3G (100MHz)

Coverage

[
»

Licences were up for grabs in the 900MHz, 2.1GHz and 2.6GHz

frequency ranges

Sweden’s Post and Telecom Authority (PTS) announced the conclusion of its latest spectrum auction which

kicked off on Wednesday.

Nordic telecom companies Tele2, Telenor Sweden and Telia Co have all acquired licences in the latest
Swedish spectrum auction. They collectively invested SEK3.03 billion (€254.68 million) for spectrum
allocations in the 900MHz, 2.1GHz and 2.6GHz auction.

Who got what

In a statement, PTS noted all 320 MHz at 3.5 GHz was assigned. Full allocations are as follows:

« Telia secured 120MHz (3500-3620 MHz) for SEK760.25 million SEK (€75 million)

« Net4Mobility (the joint venture between Tele2 and Telenor Sweden) won 100MH} (3620-3720MHz) for
SEK665.5 million (€65 million)

¢ Hi3G secured 100MHz (3400-3500 MHz) at SEK491.25 million (€48 million)

« Teracom Group, which took over Net1 in 2019, won all the 80MHz on offer in the 2.3 GHz band for a total

of SEK400 million (€40 million)

The four 3.5 GHz licences will be valid for a period of 25 years, from 20 January, 2021 to 31 December, 2045.

The network plan

More internet here!

\\

Output of Planning Activity

Slice of spectrum
(120MHz)

A

-

80MHz for 5G

40MHz for 4G

»la
L

|<
|

J

3500MHz

3620MHz

» Carrier for 4G with 40MHz of Bandwidth

Option-1
- Full 120MHz for LTE (4G)

Option-2
- Full 120MHz for NR (5G)

Option-3
- Mix of 4G & 5G
o 60MHz for each

o 40MHz for LTE & 80MHz for NR

o Andsoon...

\ 4

Carrier for 5G with 86MHz of Bandwidth

Number of Sites

(cllm. (tl|h)
0a%eleq -
mr,).......

{(I|I)) (tl|h)

\\

Radio 7?7 (3500-3700MHz)

Radio ?? (3410-3800MHz)

-——__I

Radio 7?7 (3450-3800MHz)

Product Configuration @ Ericsson

* Aid sales & support

» Configuration engines customize products to meet needs
— like buying a couch

Skapa en ny
design

\\

Radio Access Network (RAN) Overview

— @H foo.com

Radio Baseband Core network

\\

Radio Access Network (RAN) Overview

Radio Baseband

\\

o>
>

Product configuration — The requirements

Site 1

- GSM carrier

- 3G carrier

- 2 x5G carrier
Site 2

— 2 x 4G carrier

— 5G carrier
Site 3
— GSM carrier

— LTE carrier

\\

Product configuration — The site

1+ radio solutions

* Antenna System: responsible for transmitting and receiving radio signals. It includes components like
antennas, cables, and connectors.

» Carrier: range of frequencies allocated for transmitting and receiving signals on a wireless network,
typically defined by its center frequency and bandwidth. (ephemeral)

« RF Port: interface that connects radio to antennas, split RX3/TXT traffic.
* Radio: wireless communication component that transmits and receives radio signals.
« CPRI Ports: interface that connects radio to baseband, 41 traffic.

» Baseband: network that handles the lower frequency signals, after they have been converted from
radio frequencies (RF) by an antenna and receiver. It performs tasks such as switching, traffic
management, timing, baseband processing, and radio interfacing.

* RAN Compute: This refers to the computing resources required to support the Radio Access Network
(RAN), such as baseband units or virtualized RAN functions.

* Enclosure: physical housing that protects the radio equipment

» Power Supply: provides the electrical power to operate the radio solution

Product configuration — The site

1+ radio solutions

» Carrier: range of frequencies allocated for transmitting and receiving signals on a wireless network, \
typically defined by its center frequency and bandwidth. (ephemeral)

« RF Port: interface that connects radio to antennas, split RX3/TXT traffic.

* Radio: wireless communication component that transmits and receives radio signals.

« CPRI Ports: interface that connects radio to baseband, 41 traffic.

» Baseband: network that handles the lower frequency signals, after they have been converted from
radio frequencies (RF) by an antenna and receiver. It performs tasks such as switching, traffic
management, timing, baseband processing, and radio interfacing.

\\

Product configuration — Which is best?

Lexicographic Optimization

« Minimize radio equipment ==
— number of radios N[/ s
* Optimize \
— Output power -
— Weight
— Size L4 &Y
— Other customer desires? — / 7
» The objective function is subjective! {

\\

\\

Product configuration — Radio solution

Resource allocation - a combinatorial optimization problem

* Radio Solution:

 (Carriers $ Radios <~ Basebands

e Challenge: Cartier1 &

» (CSP: Allocating components

+ COP: Minimize waste |

* Solution:

* Bin-packing (e.g. connecting cables)

« ~50 table constraints

« channeling/side-constraints

(e'g' HW SpeCIfIC cd p0b|l|t|e5) Given a set C' of carriers, select a set R of radio units and map every carrier ¢ € C to a
radio » € R such that » meets all demands of ¢ mapped to r and the capacities of r are not
exceeded.

* Linear constraints (capacities)

Structuring a large CP model

Z"—-—#m‘ "
TR
ﬁ‘.':.:lu
l'.. |
bt
TS ? P |
.'m.‘.:i f oo & ey P C "unl::“
. = s IS S = i
= - . ‘ I :‘\'. . 3 = :Emmﬂ
v - L i 5 o) .‘
g . : |uum|.
! T

Modularizing a MiniZinc model

The core

include
include
include
include
include

include

include
include

include
include

include

"model/types.mzn"
"model/enums.mzn"
"model/data_tables.mzn"
"model/problem.mzn"
"model/utils.mzn"

"model/decision_vars.mzn"

"model/constraints_core.mzn"
"model/constraints_special.mzn"

"model/constraints_improving.mzn"

"model/search.mzn"

"model/verify_input.mzn"

Declarations
— Variables
* Constraints
— Improving constraints
— Search annotations
— Sanity checks (assertions)
Easier to debug!

Easier to maintain!

\\

Modular configurations
The default configuration

"solver": "or-tools",

"free-search": true,

"model": [
"model.mzn",
"model/input/default.mzn",
"model/objective/default.mzn",
"model/output/json.mzn",
"model/solve/minimize.mzn",
"aux_tables.mzn",
"sets.mzn"

]r

"data": [
"data_ept.dzn",
"data_static.dzn",
"data_tables_ept.dzn",
"enums.dzn",
"enums_static.dzn"

All files included in model.mzn

Modularized input

— multiple input formats possible!

Modularized objective

Modularized output

minizinc default.mpc instance.dzn

» Other configurations can derive from this!

\\

Using sub-configurations

Dedicated configuration for EC2 service

"model": [
"model/input/gateway.mzn"

1,

"intermediate":
"Json-stream":
"statistics":

» The gateway input file is a “function” to the
default input file

input/gateway.mzn input/default.mzn

» Can activate additional flags (Json output)
» Allows non-breaking input updates!

minizinc default.mpc gateway.mpc instance.dzn

\\

Decision Variables

e 109 decision variable declarations
» Categorized by RAN component

\\

Constraints — Core

e 83 constraints

include "all_different.mzn"
include "all_equal.mzn"

include "decreasing.mzn" — Table is the most common glObGl constraint

include "nvalue_fn.mzn"

include "table.mzn" » Categorized according to RAN

include "value_precede_chain.mzn"

\\

A typical constraint
2 out of 83

* Constraints are annotated (flatzinc, findMus)
» Multiply with bool var, avoids reification

constraint :: "BAND-LIMIT-CLASSIC"
forall(r in Radios, p in Ports, fb in FreguencyBands

sum(b in TxBranches where bandO0fBranch(b
cb_radio[b] = r) % (cb_r_port[b] =
* freqBwOfBranch(b

< freqBwDL(fb

/\

sum(b in RxBranches where bandOfBranch(b) = fb
cb_radio[b] = r) * (cb_r_port[b] = p
* freqBwOfBranch(b

< fregBwUL(fb

constraint :: "BAND-LIMIT-AAS"
forall(r in Radios, fb in FreguencyBands
sum(i in AasIndex, c¢ = AasCarriers[i] where c.frequency_band = fb
aas_radio[i] = r
% c.fg_bandwidth
< freqBwDL(fb

=

\\

Constrains — Improving

« 24 improving constraints
* Mainly implied/symmetry breaking

— Fixing dummy values etc.

include

include
include
include

"all_equal.mzn"
"decreasing.mzn"
"increasing.mzn"
"value_precede_chain.mzn"

\\

Optimization Function

Sl oF |

a? af a8 =%

s? &%

cost
540360
561976
562322

062336
062336

606300

Radio hardware:
(freg_ranges:
(freg_ranges:
(freg_ranges:

(freg_ranges:
(freg_ranges:

(freg_ranges:

T XXXXXXXXXXXXX

T XXXXXXXXXXXXX,
T XXXXXXXXXXXXX
T XXXXXXXXXXXXX
T XXXXXXXXXXXXX

T XXXXXXXXXXXXX

» Lexicographic Optimization

 Different Optimization Scenarios

— Prioritize less weight, power etc.

num_rf_ports:

num_rf_ports:
num_rf_ports:
num_rf_ports:
num_rf_ports:

num_rf_ports:

: 0, volume: 9, weight: 84)

: 16, volume: 108, weight: 500)
: 2, volume: 5, weight: 48)

: 16, volume: 17, weight: 170)
: 16, volume: 17, weight: 170)

: 60, volume: 43, weight: 440)

\\

Executing our CP model

From data to user

\\

ETL — The Data Pipeline

« ~8K python LOC
e Largestenum, 118 chars

» Largest table, ~20k rows
» Challenges:

— Enums are in the global namespace

— Special characters in unquoted enums

— Creating “"Null” enums
v — Serializing complex DZN types

~20k rows
| v p—

\\

Packaging — The model artifact

aaaaaaa

Simple TAR archive (*.mzn + *.dzn)
Tagged in Git with SemVer

Name = model/Semver
Regression/Integration tested

— Uploaded to AWS S3 for distribution

\\

Execution — The runtime

S3 Standard

.)
Ll h
Amazon EC2
ob server (Java)
output.json|

J

» Continuous delivery

— SemVer (always get newest)

— Tiered environments (dev, test, prod)
» Scalability

— Job queue

— Parallel processing (K8 cluster)

\\

Maintaining our CP model

Ever increasing complexity
2x over the last 2 years

o +4K LoC *.py
e +4K LoC *.mzn
o +7K LoC *.rst
« +60K LoC *.dzn
« 30 testcases

+8K LoC *.py
+8K LoC *.mzn
+10K LoC *.rst
+120K LoC *.dzn
~140 testcases

New products
New rules

New language features

\\

All constraints & decision variables

\\

All constraints & decision variables

\\

How do we deal with this complexity?

\\

More test

Bettertest coverage, less regressions &bugs € T €

INFO

INFO

INFO

INFO

INFO:

INFO

INFO

INFO

ISFIABLE, expected UNSATISFIABLE INFO:

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO:

5 n UNSAT ected UNSATISFIABLE INFO
./testcases/11. INFO:
./testcases/17 INFO:
INFO

ted UNSATISFIABLE INFO:

INFO

INFO

INFO:

INFO

INFO

teases/4l. INFO
./testcases/4é. UNSATISFIABLE, expected UNSATISFIABLE INFO
INFO

INFO

INFO:

INFO

INFO:

INFO:

INFO:

INFO:

INFO:

INFO

5 INFO
. /testcases/s7. INFO:

./testcases/B5.

0 « Testing both SAT/UNSAT

UNSATISFIABLE
UNSATISFIABLE
UNSATISFIABLE

UNSATISFIABLE, expected UNSATISFIABLE

 New rules
EJ new test

* New bug/regression
EJ new test

UNSATISFIABLE, ed UNSATISFIABLE

testcases/4
. /testea

.dzn UNSATISFIABLE, expected UNSATISFIABLE
.dzn

UNSATISFIABLE, expected U TISFIABLE . [testc
./testca

./teste

/testc.
. /testc

TENSNNSRRONEEER RN EEEEEEEEEEEEEEEEEEEE RN EEEREEEEm
TENSNNNRRRNEEERE RN EEEEEEEEEEEEEREEEEEEE R EEEREREEEmE
TENSNNNRRRNREEREEREEEEEEEEREEEEEEEEEEEEEEEEEEEEREEREENm

Stronger types

Recordsinstead of 2d array of int - ¢ ¢

constraint :: "NODE-01" constraint ::

forall (n in NodeSet forall (n
table([node_config_type[n] nct :

, hode_bbtype[n] bbt :

, hode_sw_rev_bbcomb[n] swt :

, hode_ds_bbcomb[n]] dst :
, NodeConfigTypeBbTypeSubTabWithNull in Nod

» Explicit declaration (no documentation rot)
* No accidental column mismatch

* No accidental type coercions

"NODE-0B1"

in NodeSet

node_config_type[n]

node bbtype[n]
node_sw_rev_bbcomb[n]

node ds bbcomb[n]
eConfigTypeBbTypeSubTabWithNull

\\

Records for input/output

Safe & robust object seridlization € T €

var SolutionRadioId: radio_id,
var RfPortNameOrNull: rf_port_name,
var FrontHaulPortGroupOrNull: fh_port_group,

"AasSegment": [1,

output :: "gateway_json"
- "CarrierBranch": [
{ "branch_id": 1,
array[BranchSet] of cb_ot: carrier_branches = "cal‘r‘ier* id" . _{ ueu c |1c1|1]_
[— L L '
branch_id: cb, "fh_port_group": { "e": "FHPG_UNIT" },
type_of: if cb in TxBranchSet then TX else RX endif, . c . .
carrier_id: to_enum(CarrierId, Carriers[c].carrier_id), " l‘adlD_ld" . '{ "9" . "Rj-"]':
radio_id: to_enum Solutic.mRadiOId,cb radio[cb]), n Pf_pDPt_name": .{ nat. "RFPURT_C" }_;
rf_port_name: rp_name[cb_radio[cb], cb_r_port[cbll, " n " " "
fh_port_group: rbb_p_fhpg[c_rbb[c] , cb_rbb_port[cb] 1, typB_O'F c ‘{ Elas TX }'
| cb in BranchSet, c=carrierId0fBranch(cb)]

\"CarrierBranch\": " +
if empty(carrier_branches) then "[]"
else "[\n" + join(",\n", [
" " ++ showJSON(cb) | cb in carrier_branches]) + "\n" +

!Ex:erminqting bugs!

Compiler errors

— Stronger types (enums, records etc.)
Consistency errors

— Automatic test coverage (~120 testcases) + git bisect
— Oracle model (SAP SSC)

Interface errors

— Strong contracts (types/SemVer)

— Integration testing

Solver bugs

— Compare solvers

Compiler bugs

— Segfault/Strange behavior

* Divide & conquer

check

.check

$(MODEL_FILES) testcases/test*.mzn
minizinc --model-check-only default.mpc
touch $@

test

MZN_ARGS="$(MZN_ARGS)" ../scripts/test-minizinc.sh $(TESTOPTS) $(MODEL) $(TESTCASES)

4 ! I @ Build @ IntegrationTest @ Deploy
| | 1 job completed 27s 1 job completed 1m 16s 1 job completed

MAJOR Minor patch B 1artifact

(© Suspected presolver bug in fzn-cp-sat 9.10.4067 | Bug
#4392 - by matsc-at-sics-se wa Oct 4 EC!EdeP v9.12

(© Concatenation of records sometimes gives strange results, depending on property names ' bug

resolved

\\

26s

Improving performance g
Experimenting with other solvers

& £

-
o]

Solved instances

12 4

No pre-selected radios (flattening + solve time)

[¥¥]
(=]
I

[¥¥]
L=
|

]
s
1

=
o
I

7 Configuration

—=— Huub
CP SAT 1
—— CP SAT 8

T
101

Time (seconds)

T
102

T
103

\\

o>
>

px Spx #ccc).gbrtl .gbm{-mogz-b

Challenges — Pre-filtering

Less code, more constraints

* Large models, ~8k+ LoC of MiniZinc

— 1/4tis constraints “oeidisplay:block;position:abso)
— A substantial part is “pre-filtering” or “massaging” ~ g 'ittopi-2px;*left:-Spu,
o 'x.-tpx\O/;left:-pr\o
e Challenging in a DSL he-box;di

 Better data-types (caching, indexing etc.)
» Less complexity, better debugging

Challenges — Explainability

» Users want explanations, not just no

— Explanations also help debugging
 Soft constraints

— Challenging for CP

— Suited for preferences, not explaining
e FindMUS

— Expensive

— Cryptic

— Can be MANY

\\

Challenges — Debugging

» Conditional debug output
* trace_exp
— Prints an expression and value
* Black box
— Poke the box and see what happens!
* Manual assignments

* Manually bisect constraints
(delete/comment)
until UNSAT becomes SAT

1 ~/r/c/s/m/trace_exp
arraylint] of int: X = [x*2 | x in 1..10]
2 int: z = trace_exp(sum(X

S ON | model.mzn

/home/erik/repos/cervedin/scratch/minizinc/trace_exp/model.mzn:2.10-26:
sum(X) (=385)

\\

Challenges — Testing

» Hard to test specific parts of the model
— Need to test the whole model
— Test using partial assignments
— Test both for SAT/UNSAT
— Indirect tests
» Rigorous testing
— Automated testing (CI/CD/MLOPS)
— Improving coverage (removing constraint should fail)
— Large changes difficult (testcase might be symmetrical)

\\

Pipeline pass rate

Runs:

B84.47% azx% 161

/\/—v

@) Test_carrierToRadio stage has the highest failure
rate with 96.15% of its failures caused by task -
Test MiniZinc model carrierToRadio

View full report >

Challenges — Benchmarking Performance

b SmG” impC]Ct, hard to measure Violin Plot of Total Times per Run

 Parallel solving = high variance
— Times are normally distributed

Total Time
-~
-l
o

— Benchmark ~5 times

— Compare flatzinc statistics

» Instance dependent variance
— Benchmark several different instances

\\

Q-Q Plot for Total Times per Run

- Mean: 764.52 *

Theoretical quantiles

\\

Conclusion
How to build a large CP model & live to tell the tale

Test, test & test
Stronger types

Make incremental changes

Flexibility & reliability before performance
— It's easier to make a correct program fast than a fast program correct.

Have fun!

Q&A

\\

Acknowledgements

e Mats Carlsson @
o Co-Workers

— Fredrik, Sverker, Marko, Samuel, Marko,
Zdravko, José, Mariia, Nils, Olle, Danyal

e MiniZinc team (Jip, Guido, Jason, Peter &
friends)

e OR-Tools team (Laurent & friends)
» GeCode (Christian, Guido again, Mikael)

» Uppsala Optimization group (Mats, Pierre,

Justin, Maria, Ramiz & friends)

o>
>

	Intro
	Slide 1
	Slide 2: Content

	Background
	Slide 3: Erik @ Ericsson
	Slide 4: Offerings addressing our customers’ needs
	Slide 5: Electromagnetic spectrum
	Slide 6: Spectrum allocation
	Slide 7: The network plan
	Slide 8: Output of Planning Activity

	Solution Configuration
	Slide 9
	Slide 10: Product Configuration @ Ericsson
	Slide 11: Radio Access Network (RAN) Overview
	Slide 12: Radio Access Network (RAN) Overview
	Slide 13: Product configuration – The requirements
	Slide 14: Product configuration – The site 1+ radio solutions
	Slide 15: Product configuration – The site 1+ radio solutions
	Slide 16: Product configuration – Which is best? Lexicographic Optimization
	Slide 17: Product configuration – Radio solution Resource allocation - a combinatorial optimization problem

	Developing
	Slide 18: Structuring a large CP model
	Slide 19: Modularizing a MiniZinc model The core
	Slide 20: Modular configurations The default configuration
	Slide 21: Using sub-configurations Dedicated configuration for EC2 service
	Slide 22: Decision Variables
	Slide 23: Constraints — Core
	Slide 24: A typical constraint 2 out of 83
	Slide 25: Constrains — Improving
	Slide 26: Optimization Function

	Executing
	Slide 27: Executing our CP model
	Slide 28: From data to user
	Slide 29: ETL — The Data Pipeline
	Slide 30: Packaging — The model artifact
	Slide 31: Execution — The runtime

	Maintaining
	Slide 32: Maintaining our CP model
	Slide 33: Ever increasing complexity 2x over the last 2 years
	Slide 34: All constraints & decision variables
	Slide 35: All constraints & decision variables
	Slide 36: How do we deal with this complexity?
	Slide 37: More test Better test coverage, less regressions & bugs👏👏👏
	Slide 38: Stronger types Records instead of 2d array of int👏👏👏
	Slide 39: Records for input/output Safe & robust object serialization 👏👏👏
	Slide 40: Exterminating bugs! 🐛🐞🦗
	Slide 41: Improving performance 🚀 Experimenting with other solvers

	Challenges
	Slide 42: Challenges – Pre-filtering Less code, more constraints
	Slide 43: Challenges – Explainability
	Slide 44: Challenges – Debugging
	Slide 45: Challenges – Testing
	Slide 46: Challenges – Benchmarking Performance

	Conclusion
	Slide 47: Conclusion How to build a large CP model & live to tell the tale
	Slide 48: Q&A

	Outro
	Slide 49: Acknowledgements
	Slide 50

