
Lessons Learnt from Developing &
Maintaining the
World’s Largest* CP Model
Using MiniZinc

Presented by Erik Cervin-Edin

Content

• Quick background on Ericsson and RAN networks

• Using combinatorial optimization in product configuration

• Developing, executing & maintaining very large CP models

Erik @ Ericsson

Me

●Erik Cervin Edin

●Software Developer @ Ericsson

●Computer Science, Uppsala University

●Ericsson since Feb 2023

https://github.com/CervEdin

https://linkedin.com/in/erikcervinedin

https://github.com/CervEdin
https://linkedin.com/in/erikcervinedin

Ericsson key offerings

5G Radio
Access Network

Mission Critical
Communications

Network Automation
and AI

Managed
Services

Business and Operations
Support Systems

Cloud Communications
and Network APIs

Wireless
WAN

Network
Services

5G
Transport

Private
Networks

5G
Core

Offerings addressing our customers’ needs

Electromagnetic spectrum

Spectrum allocation

Coverage

Bandwidth

2600MHz

3900MHz
Mid-band
TDD

Hi3G (100MHz)

Net4Mobility (100MHz)

Telia (120MHz)

The network plan

More internet here!

Output of Planning Activity

3500MHz 3620MHz

Slice of spectrum
(120MHz)

Option-1
- Full 120MHz for LTE (4G)

Option-2
- Full 120MHz for NR (5G)

Option-3
- Mix of 4G & 5G
o 60MHz for each
o 40MHz for LTE & 80MHz for NR
o And so on.....

80MHz for 5G 40MHz for 4G

Carrier for 5G with 80MHz of Bandwidth

Carrier for 4G with 40MHz of Bandwidth

Radio ?? (3450-3800MHz)

Radio ?? (3410-3800MHz)

Radio ?? (3500-3700MHz)

Number of Sites

Product Configuration @ Ericsson

● Aid sales & support

● Configuration engines customize products to meet needs
– like buying a couch

Radio Access Network (RAN) Overview

I

I

I I Internet foo.com

Radio Baseband Core network

Radio Access Network (RAN) Overview

I

I

I I Internet foo.com

Radio Baseband Core network

Product configuration – The requirements

● Site 1

- GSM carrier

- 3G carrier

- 2 x 5G carrier

● Site 2

– 2 x 4G carrier

– 5G carrier

● Site 3

– GSM carrier

– LTE carrier

● …

Product configuration – The site
1+ radio solutions

● Antenna System: responsible for transmitting and receiving radio signals. It includes components like
antennas, cables, and connectors.

● Carrier: range of frequencies allocated for transmitting and receiving signals on a wireless network,
typically defined by its center frequency and bandwidth. (ephemeral)

● RF Port: interface that connects radio to antennas, split RX /TX traffic.

● Radio: wireless communication component that transmits and receives radio signals.

● CPRI Ports: interface that connects radio to baseband, traffic.

● Baseband: network that handles the lower frequency signals, after they have been converted from
radio frequencies (RF) by an antenna and receiver. It performs tasks such as switching, traffic
management, timing, baseband processing, and radio interfacing.

● RAN Compute: This refers to the computing resources required to support the Radio Access Network
(RAN), such as baseband units or virtualized RAN functions.

● Enclosure: physical housing that protects the radio equipment

● Power Supply: provides the electrical power to operate the radio solution

● …

Product configuration – The site
1+ radio solutions

● Antenna System: responsible for transmitting and receiving radio signals. It includes components like
antennas, cables, and connectors.

● Carrier: range of frequencies allocated for transmitting and receiving signals on a wireless network,
typically defined by its center frequency and bandwidth. (ephemeral)

● RF Port: interface that connects radio to antennas, split RX /TX traffic.

● Radio: wireless communication component that transmits and receives radio signals.

● CPRI Ports: interface that connects radio to baseband, traffic.

● Baseband: network that handles the lower frequency signals, after they have been converted from
radio frequencies (RF) by an antenna and receiver. It performs tasks such as switching, traffic
management, timing, baseband processing, and radio interfacing.

● RAN Compute: This refers to the computing resources required to support the Radio Access Network
(RAN), such as baseband units or virtualized RAN functions.

● Enclosure: physical housing that protects the radio equipment

● Power Supply: provides the electrical power to operate the radio solution

● …

Product configuration – Which is best?
Lexicographic Optimization

● Minimize radio equipment

– number of radios

– …

● Optimize

– Output power

– Weight

– Size

– Other customer desires?

● The objective function is subjective!

Product configuration – Radio solution
Resource allocation -a combinatorial optimization problem

• Radio Solution:

• Carriers ⇆Radios Basebands

• Challenge:

• CSP: Allocating components

• COP: Minimize waste

• Solution:

• Bin-packing (e.g. connecting cables)

• ~50 table constraints

• channeling/side-constraints
(e.g. HW specific capabilities)

• Linear constraints (capacities)

Structuring a large CP model

Modularizing a MiniZinc model
The core

● Declarations

– Variables

● Constraints

– Improving constraints

– Search annotations

– Sanity checks (assertions)

● Easier to debug!

● Easier to maintain!

Modular configurations
The default configuration

● All files included in model.mzn

● Modularized input

– multiple input formats possible!

● Modularized objective

● Modularized output

minizinc default.mpc instance.dzn

● Other configurations can derive from this!

Using sub-configurations
Dedicated configuration for EC2 service

● The gateway input file is a “function” to the
default input file

● Can activate additional flags (Json output)

● Allows non-breaking input updates!

minizinc default.mpc gateway.mpc instance.dzn

input/gateway.mzn input/default.mzn

Decision Variables

● 109 decision variable declarations

● Categorized by RAN component

Constraints — Core

● 83 constraints

– Table is the most common global constraint

● Categorized according to RAN

A typical constraint
2 out of 83

● Constraints are annotated (flatzinc, findMus)

● Multiply with bool var, avoids reification

Constrains — Improving

● 24 improving constraints

● Mainly implied/symmetry breaking

– Fixing dummy values etc.

Optimization Function

● Lexicographic Optimization

● Different Optimization Scenarios

– Prioritize less weight, power etc.

Executing our CP model

From data to user

ETL — The Data Pipeline

● ~8K python LOC

● Largest enum, 118 chars

● Largest table, ~20k rows

● Challenges:

– Enums are in the global namespace

– Special characters in unquoted enums

– Creating “Null” enums

– Serializing complex DZN types

Packaging — The model artifact

● Simple TAR archive (*.mzn + *.dzn)

● Tagged in Git with SemVer

● Name = model/Semver

● Regression/Integration tested

– Uploaded to AWS S3 for distribution

Execution — The runtime

● Continuous delivery

– SemVer (always get newest)

– Tiered environments (dev, test, prod)

● Scalability

– Job queue

– Parallel processing (K8 cluster)

Maintaining our CP model

Ever increasing complexity
2x over the last 2 years

● +4K LoC *.py

● +4K LoC *.mzn

● +7K LoC *.rst

● +60K LoC *.dzn

● 30 testcases

● +8K LoC *.py

● +8K LoC * .mzn

● +10K LoC *.rst

● +120K LoC *.dzn

● ~140 testcases

● New products

● New rules

● New language features

All constraints & decision variables

All constraints & decision variables

How do we deal with this complexity?

More test
Better test coverage, less regressions & bugs

● Testing both SAT/UNSAT

● New rules
new test

● New bug/regression
new test

Stronger types
Records instead of 2d array of int

● Explicit declaration (no documentation rot)

● No accidental column mismatch

● No accidental type coercions

Records for input/output
Safe & robust object serialization

Exterminating bugs!

● Compiler errors

– Stronger types (enums, records etc.)

● Consistency errors

– Automatic test coverage (~120 testcases) + git bisect

– Oracle model (SAP SSC)

● Interface errors

– Strong contracts (types/SemVer)

– Integration testing

● Solver bugs

– Compare solvers

● Compiler bugs

– Segfault/Strange behavior

● Divide & conquer

Improving performance
Experimenting with other solvers

Challenges – Pre-filtering
Less code, more constraints

● Large models, ~8k+ LoC of MiniZinc

– 1/4th is constraints

– A substantial part is “pre-filtering” or “massaging”

● Challenging in a DSL

● Better data-types (caching, indexing etc.)

● Less complexity, better debugging

Challenges – Explainability

● Users want explanations, not just no

– Explanations also help debugging

● Soft constraints

– Challenging for CP

– Suited for preferences, not explaining

● FindMUS

– Expensive

– Cryptic

– Can be MANY

Challenges – Debugging

● Conditional debug output

● trace_exp

– Prints an expression and value

● Black box

– Poke the box and see what happens!

● Manual assignments

● Manually bisect constraints
(delete/comment)
until UNSAT becomes SAT

Challenges – Testing

● Hard to test specific parts of the model

– Need to test the whole model

– Test using partial assignments

– Test both for SAT/UNSAT

– Indirect tests

● Rigorous testing

– Automated testing (CI/CD/MLOPS)

– Improving coverage (removing constraint should fail)

– Large changes difficult (testcase might be symmetrical)

Challenges – Benchmarking Performance

● Small impact, hard to measure

● Parallel solving → high variance

– Times are normally distributed

– Benchmark ~5 times

– Compare flatzinc statistics

● Instance dependent variance

– Benchmark several different instances

Conclusion
How to build a large CP model & live to tell the tale

● Test, test & test

● Stronger types

● Make incremental changes

● Flexibility & reliability before performance

– It’s easier to make a correct program fast than a fast program correct.

● Have fun!

Q&A

Acknowledgements

● Mats Carlsson

● Co-Workers

– Fredrik, Sverker, Marko, Samuel, Marko,
Zdravko, José, Mariia, Nils, Olle, Danyal

● MiniZinc team (Jip, Guido, Jason, Peter &
friends)

● OR-Tools team (Laurent & friends)

● GeCode (Christian, Guido again, Mikael)

● Uppsala Optimization group (Mats, Pierre,
Justin, Maria, Ramiz & friends)

Imagine Possible

ericsson.com/careers

	Intro
	Slide 1
	Slide 2: Content

	Background
	Slide 3: Erik @ Ericsson
	Slide 4: Offerings addressing our customers’ needs
	Slide 5: Electromagnetic spectrum
	Slide 6: Spectrum allocation
	Slide 7: The network plan
	Slide 8: Output of Planning Activity

	Solution Configuration
	Slide 9
	Slide 10: Product Configuration @ Ericsson
	Slide 11: Radio Access Network (RAN) Overview
	Slide 12: Radio Access Network (RAN) Overview
	Slide 13: Product configuration – The requirements
	Slide 14: Product configuration – The site 1+ radio solutions
	Slide 15: Product configuration – The site 1+ radio solutions
	Slide 16: Product configuration – Which is best? Lexicographic Optimization
	Slide 17: Product configuration – Radio solution Resource allocation - a combinatorial optimization problem

	Developing
	Slide 18: Structuring a large CP model
	Slide 19: Modularizing a MiniZinc model The core
	Slide 20: Modular configurations The default configuration
	Slide 21: Using sub-configurations Dedicated configuration for EC2 service
	Slide 22: Decision Variables
	Slide 23: Constraints — Core
	Slide 24: A typical constraint 2 out of 83
	Slide 25: Constrains — Improving
	Slide 26: Optimization Function

	Executing
	Slide 27: Executing our CP model
	Slide 28: From data to user
	Slide 29: ETL — The Data Pipeline
	Slide 30: Packaging — The model artifact
	Slide 31: Execution — The runtime

	Maintaining
	Slide 32: Maintaining our CP model
	Slide 33: Ever increasing complexity 2x over the last 2 years
	Slide 34: All constraints & decision variables
	Slide 35: All constraints & decision variables
	Slide 36: How do we deal with this complexity?
	Slide 37: More test Better test coverage, less regressions & bugs👏👏👏
	Slide 38: Stronger types Records instead of 2d array of int👏👏👏
	Slide 39: Records for input/output Safe & robust object serialization 👏👏👏
	Slide 40: Exterminating bugs! 🐛🐞🦗
	Slide 41: Improving performance 🚀 Experimenting with other solvers

	Challenges
	Slide 42: Challenges – Pre-filtering Less code, more constraints
	Slide 43: Challenges – Explainability
	Slide 44: Challenges – Debugging
	Slide 45: Challenges – Testing
	Slide 46: Challenges – Benchmarking Performance

	Conclusion
	Slide 47: Conclusion How to build a large CP model & live to tell the tale
	Slide 48: Q&A

	Outro
	Slide 49: Acknowledgements
	Slide 50

