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The network plan

More internet here!



Output of Planning Activity

3500MHz 3620MHz

Slice of spectrum
(120MHz)

Option-1
- Full 120MHz for LTE (4G)

Option-2
- Full 120MHz for NR (5G)

Option-3
- Mix of 4G & 5G 
o 60MHz for each
o 40MHz for LTE & 80MHz for NR
o And so on.....

80MHz for 5G 40MHz for 4G

Carrier for 5G with 80MHz of Bandwidth

Carrier for 4G with 40MHz of Bandwidth

Radio ?? (3450-3800MHz)

Radio ?? (3410-3800MHz)

Radio ?? (3500-3700MHz)

Number of Sites





Product Configuration @ Ericsson

● Aid sales & support

● Configuration engines customize products to meet needs 
– like buying a couch



Radio Access Network (RAN) Overview
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Product configuration – The requirements

● Site 1

- GSM carrier

- 3G carrier

- 2 x 5G carrier

● Site 2

– 2 x 4G carrier

– 5G carrier

● Site 3

– GSM carrier

– LTE carrier

● …



Product configuration – The site
1+ radio solutions

● Antenna System: responsible for transmitting and receiving radio signals. It includes components like 
antennas, cables, and connectors.

● Carrier: range of frequencies allocated for transmitting and receiving signals on a wireless network, 
typically defined by its center frequency and bandwidth. (ephemeral)

● RF Port: interface that connects radio to antennas, split RX /TX traffic.

● Radio: wireless communication component that transmits and receives radio signals.

● CPRI Ports: interface that connects radio to baseband, traffic.

● Baseband: network that handles the lower frequency signals, after they have been converted from 
radio frequencies (RF) by an antenna and receiver. It performs tasks such as switching, traffic 
management, timing, baseband processing, and radio interfacing.

● RAN Compute: This refers to the computing resources required to support the Radio Access Network 
(RAN), such as baseband units or virtualized RAN functions.

● Enclosure: physical housing that protects the radio equipment

● Power Supply: provides the electrical power to operate the radio solution

● …
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Product configuration – Which is best?
Lexicographic  Optimization

● Minimize radio equipment

– number of radios

– …

● Optimize

– Output power

– Weight

– Size

– Other customer desires?

● The objective function is subjective!



Product configuration – Radio solution
Resource allocation -a combinatorial optimization problem

• Radio Solution:

• Carriers ⇆Radios Basebands

• Challenge:

• CSP: Allocating components

• COP: Minimize waste

• Solution:

• Bin-packing (e.g. connecting cables)

• ~50 table constraints

• channeling/side-constraints
(e.g. HW specific capabilities)

• Linear constraints (capacities)



Structuring a large CP model



Modularizing a MiniZinc model
The core

● Declarations

– Variables

● Constraints

– Improving constraints

– Search annotations

– Sanity checks (assertions)

● Easier to debug!

● Easier to maintain!



Modular configurations
The default configuration

● All files included in model.mzn

● Modularized input

– multiple input formats possible!

● Modularized objective

● Modularized output

minizinc default.mpc instance.dzn

● Other configurations can derive from this!



Using sub-configurations
Dedicated configuration for EC2 service

● The gateway input file is a “function” to the 
default input file

● Can activate additional flags (Json output)

● Allows non-breaking input updates!

minizinc default.mpc gateway.mpc instance.dzn

input/gateway.mzn input/default.mzn



Decision Variables

● 109 decision variable declarations

● Categorized by RAN component



Constraints — Core

● 83 constraints

– Table is the most common global constraint

● Categorized according to RAN



A typical constraint
2 out of 83

● Constraints are annotated (flatzinc, findMus)

● Multiply with bool var, avoids reification



Constrains — Improving

● 24 improving constraints

● Mainly implied/symmetry breaking

– Fixing dummy values etc.



Optimization Function

● Lexicographic Optimization

● Different Optimization Scenarios

– Prioritize less weight, power etc.



Executing our CP model



From data to user



ETL — The Data Pipeline

● ~8K python LOC

● Largest enum, 118 chars

● Largest table, ~20k rows

● Challenges:

– Enums are in the global namespace

– Special characters in unquoted enums

– Creating “Null” enums

– Serializing complex DZN types



Packaging — The model artifact

● Simple TAR archive (*.mzn + *.dzn)

● Tagged in Git with SemVer

● Name = model/Semver

● Regression/Integration tested

– Uploaded to AWS S3 for distribution



Execution — The runtime

● Continuous delivery

– SemVer (always get newest)

– Tiered environments (dev, test, prod)

● Scalability

– Job queue

– Parallel processing (K8 cluster)



Maintaining our CP model



Ever increasing complexity
2x over the last 2 years

● +4K LoC *.py

● +4K LoC *.mzn

● +7K LoC *.rst

● +60K LoC *.dzn

● 30 testcases

● +8K LoC *.py

● +8K LoC  * .mzn

● +10K LoC *.rst

● +120K LoC *.dzn

● ~140 testcases

● New products

● New rules

● New language features



All constraints & decision variables



All constraints & decision variables



How do we deal with this complexity?



More test
Better test coverage, less regressions & bugs

● Testing both SAT/UNSAT

● New rules 
new test

● New bug/regression
new test



Stronger types
Records instead of 2d array of int

● Explicit declaration (no documentation rot)

● No accidental column mismatch

● No accidental type coercions



Records for input/output
Safe & robust object serialization 



Exterminating bugs!

● Compiler errors

– Stronger types (enums, records etc.)

● Consistency errors

– Automatic test coverage (~120 testcases) + git bisect

– Oracle model (SAP SSC)

● Interface errors

– Strong contracts (types/SemVer)

– Integration testing

● Solver bugs

– Compare solvers

● Compiler bugs

– Segfault/Strange behavior

● Divide & conquer



Improving performance 
Experimenting with other solvers



Challenges – Pre-filtering
Less code, more constraints

● Large models, ~8k+ LoC of MiniZinc

– 1/4th is constraints

– A substantial part is “pre-filtering” or “massaging”

● Challenging in a DSL

● Better data-types (caching, indexing etc.)

● Less complexity, better debugging



Challenges – Explainability

● Users want explanations, not just no

– Explanations also help debugging

● Soft constraints

– Challenging for CP

– Suited for preferences, not explaining

● FindMUS

– Expensive

– Cryptic

– Can be MANY



Challenges – Debugging

● Conditional debug output

● trace_exp

– Prints an expression and value

● Black box

– Poke the box and see what happens!

● Manual assignments

● Manually bisect constraints 
(delete/comment)
until UNSAT becomes SAT



Challenges – Testing

● Hard to test specific parts of the model

– Need to test the whole model

– Test using partial assignments

– Test both for SAT/UNSAT

– Indirect tests

● Rigorous testing

– Automated testing (CI/CD/MLOPS)

– Improving coverage (removing constraint should fail)

– Large changes difficult (testcase might be symmetrical)



Challenges – Benchmarking Performance

● Small impact, hard to measure

● Parallel solving → high variance

– Times are normally distributed

– Benchmark ~5 times

– Compare flatzinc statistics

● Instance dependent variance

– Benchmark several different instances



Conclusion
How to build a large CP model & live to tell the tale

● Test, test & test

● Stronger types 

● Make incremental changes

● Flexibility & reliability before performance

– It’s easier to make a correct program fast than a fast program correct.

● Have fun!



Q&A
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Imagine Possible
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