
Optischedule NordConsNet 2025 Uppsala

The Work Task Variation Problem

Mikael Zayenz Lagerkvist – Optischedule / sambanova
Magnus Rattfeldt – Optischedule / Jeppesen

Implementing a solver for a single problem

Shift plan for one person

W T S W T S W T S W T S W T S W

S S S S S T T T T T W W W W W W

S S T T T W W W W W W S S S T T

Shift plan for store

S S T T T W W W W W W S S S
T T S S S T T W W W W W W T T T …

W W W W W W S S S T T T S S S …
W W W W W S S S T T T T S S S …

T T T W W W W S S S S T T …
S S S T T T S S S S T T T …

W W W W W S S S S S …

Shift plan for store

S S T T T W W W W W W S S S
T T S S S T T W W W W W W T T T …

W W W W W W S S S T T T S S S …
W W W W W S S S T T T T S S S …

T T T W W W W S S S S T T …
S S S T T T S S S S T T T …

W W W W W S S S S S …

Shift plan for store

W
W
T
T
S
S
W

Requirements for time slot

• 3 people on Warehouse tasks

• 2 people at Tills

• 2 people in Store

S
T
W
W
W
T
S

✅

W
T
W
S
W
T
S

✅

T
T
W
S
W
T
S

❌

Planning context

Business
Data

Employee
Schedules

Planning
System

Planner

Schedule

Adjustments

Planning context

Business
Data

Employee
Schedules

Planning
System

Planner

Schedule

Adjustments

WTV

Improved
Schedule

Cost

Cost curve example

0

25

50

75

100

1 2 3 4 5 6 7 8

Real world infrastructure
What to do first

•Reading input

•Data model

•Plotting

•Logging

•Producing output

•…
It 's a dangerous business , Frodo , going out your door.

You step onto the road, and i f you don 't keep your
feet , there 's no knowing where you ' l l be swept of f to .

RosterLogic Variation
A CBLS inspired solver

•Small and compact data-structures

•Runs are invariants, moves evaluated using simulation

•Moves preserve hard constraints - no need for violations

•Simple moves of blocks and groups of blocks

•Pattern moves for structure

•All the standard searches

RosterLogic Variation
Pattern swaps

Search for potential patterns in row, swapping in from other rows.
Here, pattern is SSSTT

RosterLogic Variation
Local search algorithm configuration

• Parallel restarts

• Parallel portfolio

• Steepest ascent

• Simulated annealing

• Tabu search (x3)

• Scrambled steepest ascent

• Base algorithm

• Swap Till <-> Store

• Base algorithm

• Swap Warehouse <-> Till/Store

• Repeat twice

• Steepest ascent, Till <-> Store

• Steepest ascent, Patterns swaps

Base algorithm Usage

RosterLogic Variation
Pragmatics

• Mostly developed during 2019

• Java and Kotlin

• Development on Mac and Linux,

• Deployment as Windows CLI binary

• Deployment for demo as AWS Lamba

• CSV (schedule) and Json (cost) as input formats

• Plotting invaluable

Building a Custom Solver for one problem?
Experience guides design

•We know what we are doing (hopefully)

•Customization critically important

•Example: Filtering moves for custom rules

•Feedback using progress logging

•Fast iteration, full control

•Full IP rights, few dependencies

Is RosterLogic Variation good?
Comparing with MiniZinc model

•Full MiniZinc model in paper

•MiniZinc Challenge 2025 model

•RosterLogic Variation used in practice

•Speed usable

•Results usable

•RosterLogic Variation from 2019, comparison to 2025 solvers

WTV Instances
Customer data is secret 😢

• 8 to 16 workers

• 10 to 16 hours store opening hours

• 5 or 15 minutes block length

Looks similar to real data
Generated WTV Instances to the rescue 😀

• Three tasks to optimise

• One task is most constrained

• Includes lunch, breaks, …

https://github.com/optischedule/work-task-variation-instances

CP-SAT
15 minute block size

CP-SAT
5 minute block size

The Work Task Variation Problem
What have we learned?

• CP technology has improved rapidly

• Still, lots to do for plug-and-play usability

• Writing you own solver is fun, and sometimes useful

• Full control and customisation key features

• WTV useful problem for better work-days

• Should be more common in planning systems

• Fun new benchmark to play with

MiniZinc Model
Specifying and Solving using Constraint Programming

•Full model in paper

•Planning block structure gives nice matrix schedule

•Requirements are global cardinality constraints

•Cost based on runs of is kind of messy

•Testing different systems over time

Gecode
15 minute block size

Gecode
5 minute block size

MiniZinc Challenge Results

• OR Tools wins

• Both LCG and LS!

• Chuffed does well

• Gecode ok

• Many solvers crashed 🤔

• Atlantis, CBC, CP Optimizer,
CPLEX, Gurobi, HiGHS, Huub,
iZPlus, Pumpkin, Scip, yuck

Score area ranking

MiniZinc Model
Data model

enum Resources;

enum Activities;

enum ActivitiesOrNone = A(Activities) ++ { None };

int: slots;

set of int: Slots = 1..slots;

set of int: SlotsAndZero = 0..slots;

array[Activities, Slots] of 0..card(Resources): requirements;

array[Resources, Slots] of opt ActivitiesOrNone: fixed;

array[Activities, SlotsAndZero] of int: activity_run_cost;

array[Activities, SlotsAndZero] of int: activity_frequency_cost;

MiniZinc Model
Variables

% The actual schedule, what activities are done when for each resource

array[Resources, Slots] of var ActivitiesOrNone: schedule;

% Markers for when runs end

array[Resources, Slots] of var bool: run_end;

% Length for each run at the current slot from the currents runs start

array[Resources, Slots] of var SlotsAndZero: run_length;

% Cost for each run at the end of a run with zero cost in the middle of runs

array[Resources, Slots] of var int: run_cost;

% Cost for number of runs of each activity per resource

array[Resources, Activities] of var int: frequency_cost;

% The total cost of runs

var int: cost = sum(run_cost) + sum(frequency_cost);

MiniZinc Model
Requirement constraints

% All shifts are only Activities (that is, not None) and surrounded with None

constraint forall (r in Resources) (

 regular(schedule[r, ..], "None* [^None]* None*")

);

% Always respect the requirements for each slot (column in the schedule)

constraint forall (s in Slots) (

 global_cardinality(schedule[.., s], ActivitiesOrNone, extended_requirements[.., s])

);

% Always respect the fixed requirements

constraint forall (r in Resources, s in Slots where occurs(fixed[r, s])) (

 schedule[r, s] = deopt(fixed[r, s])

);

MiniZinc Model
Cost constraints

% Mark when runs end

constraint forall (r in Resources, s in Slots) (

 if s = slots then

 run_end[r, s] = true

 else

 run_end[r, s] = (schedule[r, s] != schedule[r, s+1])

 endif

);

% Count length of runs

constraint forall (r in Resources, s in Slots) (

 if s = 1 \/ run_end[r, s-1] then

 run_length[r, s] = 1

 else

 run_length[r, s] = run_length[r, s-1] + 1

 endif

);

MiniZinc Model
Run length constraints

% Mark when runs end

constraint forall (r in Resources, s in Slots) (

 if s = slots then

 run_end[r, s] = true

 else

 run_end[r, s] = (schedule[r, s] != schedule[r, s+1])

 endif

);

% Count length of runs

constraint forall (r in Resources, s in Slots) (

 if s = 1 \/ run_end[r, s-1] then

 run_length[r, s] = 1

 else

 run_length[r, s] = run_length[r, s-1] + 1

 endif

);

MiniZinc Model
Cost computation% Count run costs

constraint forall (r in Resources, s in Slots) (

 if run_end[r, s] then

 run_cost[r, s] = extended_activity_run_cost[schedule[r, s], run_length[r, s]]

 else

 run_cost[r, s] = 0

 endif

);

%Count frequency costs

constraint forall (r in Resources, a in Activities) (

 let {

 var int: activity_run_count = count(s in Slots) (

 run_end[r, s] /\ schedule[r, s] = A(a)

)

 } in

 frequency_cost[r, a] = activity_frequency_cost[a, activity_run_count]

);

RosterLogic Variation
Plot

