The Work Task Variation Problem

Implementing a solver for a single problem

Mikael Zayenz Lagerkvist — Optischedule / sambanova
Magnus Rattfeldt - Optischedule / Jeppesen

- - Optischedule NordConsNet 2025 Uppsala

-
G

"N

L} P.h'
o

- —y——

LS -

e s s

. —y — e G b

T p——

R

T e T o

R

e s a A ta e et

Shift plan for one person

A L A L B | B L S |

LB L A |

3

W

Shift plan for store

Shift plan for store

Shift plan for store

Requirements for time slot

e 3 people on Warehouse tasks
e 2 people at Tills

e 2 people in Store

EREEREE
EEEEEEE
EEEEERE
EEETERE

N
y

Planning context

Business
Data

Planning Schedule

System

Employee Planner
Schedules

Adjustments

Planning context

Cost

WTV

Business
Data

Schedule Improved
Schedule

Planning
System

-mployee Planner
Schedules

Adjustments

Cost curve example

100

75

Real world infrastructure
What to do first

e Reading input
e Data model

e Plotting

e LOgging
e Producing output

iesaa afangerous T 116! oty O UL

“d ‘. s

;- : '.-oi' e
®... You step onto the road, and you don’t ﬁeey Yyour

feet, there’s no ﬁnowing where you’[f be swept off to.

RosterLogic Variation
A CBLS inspired solver

e SMall and compact data-structures
e Runs are invariants, moves evaluated using simulation
e Moves preserve hard constraints - no need for violations
e Simple moves of blocks and groups of blocks
e Pattern moves for structure

e All the standard searches

RosterLogic Variation

Pattern swaps

Search for potential patterns in row, swapping in from other rows.
Here, pattern is SSSTT

Slot
Shitt O

Slot
Shift 0

Shift 2
ohiftt 3 T T T

Shift 2
Shift 3

1 2 3 1 2 5
S T S S S T
Shitt 1 S S T Shift 1 S S T
T S S T T S
T T T S

(a) Initial Schedule. (b) Schedule After Pattern Swaps.

RosterLogic Variation

Local search algorithm configuration

Base algorithm Usage

e Parallel restarts e Base algorithm

e Parallel portfolio e Swap Till < Store

Base algorithm
o Steepest ascent ’ 9

. . e Swap Warehouse <> Till/Store
e Simulated annealing
e Repeat twice

e Tabu search (x3
(X3) o Steepest ascent, Till <> Store

e Scrambled steepest ascent e Steepest ascent, Patterns swaps

RosterLogic Variation

Pragmatics

e Mostly developed during 2019
e Java and Kotlin
e Development on Mac and Linux,

e Deployment as Windows CLI binary

e Deployment for demo as AWS Lamba
e CSV (schedule) and Json (cost) as input formats

e Plotting invaluable

Building a Custom Solver for one problem?

Experience guides design

e \We know what we are doing (hopefully)
e Customization critically important
e Example: Filtering moves for custom rules
e Feedback using progress logging
e Fast iteration, full control

e Full IP rights, few dependencies

Is RosterLogic Variation good?

Comparing with MiniZinc model

o Full MiniZinc model In paper
e MiniZinc Challenge 2025 model

e RosterLogic Variation used in practice
e Speed usable
e Results usable

e RosterLogic Variation from 2019, comparison to 2025 solvers

WTV Instances

Customer data is secret ®

Generated WTV Instances to the rescue @
Looks similar to real data

e 8 to 16 workers e Three tasks to optimise
e 10 to 16 hours store opening hours e One task is most constrained

e 5 or 15 minutes block length e |[ncludes lunch, breaks, ...

https://github.com/optischedule/work-task-variation-instances

CP-SAT

15 minute block size

CP-SAT 9.12 10t CP-SAT 9.3 10t

n
7 :
= O
) 0
wn —
\>./ o —
= >
: 3
- S
2 =
Q
Z. o

Z.

Norm. Time (vs CBLS) Norm. Time (VS CBLS)

CP-SAT

5 minute block size

CP-SAT 9.12 10t CP-SAT 9.3 10t

2)
7 -
]
oa @)
) W
> >
[>
s -
< <
: .
5 =
Z S

Z.

Norm. Time (vs CBLS) Norm. Time (vs CBLS)

The Work Task Variation Problem

What have we learned?

e CP technology has improved rapidly
e Still, lots to do for plug-and-play usability

e Writing you own solver is fun, and sometimes useful
e Full control and customisation key features

e WTV useful problem for better work-days

e Should be more common in planning systems

e Fun new benchmark to play with

MiniZinc Model

Specifying and Solving using Constraint Programming

e Full model In paper

e Planning block structure gives nice matrix schedule

e Requirements are global cardinality constraints
e Cost based on runs of is kind of messy

e Testing different systems over time

Gecode

15 minute block size

Gecode 10t Gecode-R 10t

w O
DN &

[—
)

n
—
as
O
0
2
>
y
=
-
C
z
»
O
Z.

2 4 8 16 32 . 4 8 16 32
Norm. Time (vs CBLS) Norm. Time (vs CBLS)

Gecode

5 minute block size

Gecode 10t Gecode-R 10t

) 2
—] —
e M
& &
] 2
> P
Z z
& ®
=)
< <
z :
o o
'Z. Z.

4 8 16 . 2 4 8 16 32
Norm. Time (vs CBLS) Norm. Time (vs CBLS)

MiniZinc Challenge Results

Score area ranking

O R TO O I S Wi n S Solver Score Incomplete Score Area

TOTAL 313 27773483.299

® BOth I—CG and LS! or-tools_cp-sat-par 43.50 395191.68

or-tools_cp-sat_ls-par 39.00 1985256.15

Chuffed does waell

chuffed-free 35.50 229994469

GeCOd e Ok or-tools_cp-sat_Is-free 34.50 2344757.53

gecode-par 33.50 2646583.75

Many solvers crashed 6 jacop-free 29.50 3019617.32

fzn_picat_sat-free 34.00 3037304.39

® Atlantis, CBCI CP Optimizer, choco-solver__cp-sat_-par 22.00 3433271.94
CPLEX, Gurobi, HIGHS, Huub,
1IZPlus, Pumpkin, Scip, yuck

choco-solver__cp_-par 16.00 4287235.58

sicstus_prolog-free 25.00 4324320.27

MiniZinc Model

Data model

enum Resources;
enum Activities;

enum ActivitiesOrNone = A(Activities) ++ { None };

int: slots;

set of int: Slots = 1..slots;

set of int: SlotsAndZero = 0..slots:

array[Activities, Slots] of O0..card(Resources): requirements;

array[Resources, Slots] of opt ActivitiesOrNone: fixed;

array[Activities, SlotsAndZero] of int: activity_run_cost;
array[Activities, SlotsAndZero] of int: activity_frequency_cost;

MiniZinc Model

Variables

% The actual schedule, what activities are done when for each resource
array[Resources, Slots] of var ActivitiesOrNone: schedule;

% Markers for when runs end
array[Resources, Slots] of var bool: run_end,;

% Length for each run at the current slot from the currents runs start
array[Resources, Slots] of var SlotsAndZero: run_length;

% Cost for each run at the end of a run with zero cost in the middle of runs
array[Resources, Slots] of var int: run_cost;

% Cost for number of runs of each activity per resource
array[Resources, Activities] of var int: frequency_cost;

% The total cost of runs
var int: cost = sum(run_cost) + sum(frequency_cost);

MiniZinc Model

Requirement constraints

% All shifts are only Activities (that is, not None) and surrounded with None

constraint forall (r in Resources) (
regular(schedulelr, ..], "None* [*None]* None™")

);

% Always respect the requirements for each slot (column in the schedule)

constraint forall (s in Slots) (
global_cardinality(schedulel.., s], ActivitiesOrNone, extended_requirements|.., s])

);

% Always respect the fixed requirements
constraint forall (r in Resources, s in Slots where occurs(fixed|r, s])) (

schedule]r, s] = deopt(fixed|r, s])

);

MiniZinc Model

Cost constraints

% Mark when runs end
constraint forall (r in Resources, s in Slots) (
If s = slots then
run_end|r, s] = true
else
run_end|r, s] = (schedule]r, s] = schedule|r, s+1])
endif

);

% Count length of runs
constraint forall (r in Resources, s in Slots) (
if s =1V run_end]r, s-1] then
run_lengthlr, s] = 1
else
run_lengthlr, s] = run_lengthlr, s-1] + 1
endif

);

MiniZinc Model

Run length constraints

% Mark when runs end
constraint forall (r in Resources, s in Slots) (
If s = slots then
run_end|r, s] = true
else
run_end|r, s] = (schedule]r, s] = schedule|r, s+1])
endif

);

% Count length of runs
constraint forall (r in Resources, s in Slots) (
if s =1V run_end]r, s-1] then
run_lengthlr, s] = 1
else
run_lengthlr, s] = run_lengthlr, s-1] + 1
endif

);

MiniZinc Model

% Count run costs Cost computation

constraint forall (r in Resources, s in Slots) (
If run_end]r, s] then
run_cost|r, s] = extended_activity_run_cost[schedulelr, s], run_length[r, s]]
else
run_cost|r, s] =0
endif

);

% Count frequency costs
constraint forall (r in Resources, a in Activities) (

let {
var int: activity_run_count = count(s in Slots) (

run_end]r, s] /\ schedule|r, s] = A(a)
)
}in
frequency_cost|r, a] = activity_frequency_cost|a, activity_run_count]

);

RosterLogic Variation
Plot

- Day improvement plol (cr day U

HEEEEEEE

O 05 0 G G Gy G G G G % Y Yo Yo, <o, % <o Yo Yo o % BRI BRI EEEEES
b Yy 9 T G B T Gy Ty U5 U G U B U 8y Y Uy U Gy s Y T Gy E 3 ' s T Yy ' " 8 Y U5 I 6y Y

|

. % % % %. . %. % % Yo Yo Yo. Y. . Yo Yo. . . o 0.0
o Vp P "Gy 'Pa g Wa TGy o Np T Gy Pa Vg e Gy o p

-

