Unit Types for MiniZinc

Jip J. Dekker, Jason Nguyen,
Peter J. Stuckey, and Guido Tack

https://doi.org/10.4230/LIPIcs.CP.2025.10

MONASH 238 OPTiMA =

o) ***‘ &o. | . ‘
@' University regee’

https://doi.org/10.4230/LIPIcs.CP.2025.10

Introduction

Consider this Knapsack problem

int: k; % number of products to choose
int: limit; % avallable weight Llimit

enum PRODUCT; % set of products available
array[PRODUCT] of int: weight;
array[PRODUCT] of int: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;

constraint sum(p in PRODUCT) (chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Introduction

Type checks correctly, runs, but gives nonsense solutions

int: k; % number of products to choose
int: limit; % avallable weight Llimit

enum PRODUCT; % set of products available
array[PRODUCT] of int: weight;
array[PRODUCT] of int: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;

constraint sum(p in PRODUCT) (chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Introduction

Type checks correctly, runs, but gives nonsense solutions

int: k; % number of products to choose

int: limit; % avallable weight Llimit

enum PRODUCT; % set of products available

array[PRODUCT] of int: weight; N
array[PRODUCT] of int: profit; _ '
array[PRODUCT] of var 0..infinity: chosen; Should be weight

constraint sum(chosen) = k; ‘(/
constraint sum(p in PRODUCT) (chosen[p]*[g¥ERa[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Introduction

* Model contains a unit error (but not a type error)

- Comparing two integers with different meanings
* weight (kg) vs profit ($)

21 August 2025 Unit Types for MiniZinc

Introduction

* Model contains a unit error (but not a type error)
- Comparing two integers with different meanings
* weight (kg) vs profit ($)
* Debugging models is difficult, so the more errors we can detect
during compilation, the better

21 August 2025 Unit Types for MiniZinc

Introduction

Model contains a unit error (but not a type error)
- Comparing two integers with different meanings
* weight (kg) vs profit ($)
Debugging models is difficult, so the more errors we can detect
during compilation, the better

But we don't want to sacrifice runtime (solve time) performance,
instead we must perform checking statically

21 August 2025 Unit Types for MiniZinc

Introduction

Model contains a unit error (but not a type error)

- Comparing two integers with different meanings

* weight (kg) vs profit ($)
Debugging models is difficult, so the more errors we can detect
during compilation, the better

But we don't want to sacrifice runtime (solve time) performance,
instead we must perform checking statically

We also want to keep the system compatible with existing models

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* Adimension is a kind of measurement
- distance, time, mass, worth, etc

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* Adimension is a kind of measurement
- distance, time, mass, worth, etc

unit type distance;

unit type time;

% Can also create derived dimensions
unit type velocity = distance / time;

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* A basic unit has a particular dimension
- km (distance), sec (time), kg (weight), dollars (worth)

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* A basic unit has a particular dimension
- km (distance), sec (time), kg (weight), dollars (worth)

unit distance: m;
unit distance: km = 1000 @ m; % derived unit

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* A basic unit has a particular dimension
- km (distance), sec (time), kg (weight), dollars (worth)

unit distance: m;
unit distance: km = 1000 @ m; % derived unit

unit time: sec;
unit time: minute = 60 @ sec; % derived unit
unit time: hour = 60 @ minute; % derived unit

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* A basic unit has a particular dimension
- km (distance), sec (time), kg (weight), dollars (worth)

[unit distance: m;

unit distance: km 1000 @ m; % derived unit

unit time: sec;
unit time: minute = 60 @ sec; % derived unit
\ynit time: hour = 60 @ minute; % derived unit

-

unit velocity: kmh = km / hour; % derived unit

N

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* Basic units form graphs

160934

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* Basic units form graphs

160934

* To downcast from mile to mm, we need to multiply by 160934 x 10
- d(mile, mm)=160934 x 10

21 August 2025 Unit Types for MiniZinc

Dimensions and Units

* Basic units form graphs

160934

* To downcast from mile to mm, we need to multiply by 160934 x 10
- d(mile, mm)=160934 x 10

* The most general common unit of km and mile is cm
= M(km, mile) =cm

21 August 2025 Unit Types for MiniZinc

The Unit Type System
* Numeric values are assigned complex units
w = byIbL by
where b; is a basic unit of dimension i

- A complex unit can only contain one basic unit of each dimension

- Basic units with an exponent of zero may be omitted for brevity

21 August 2025 Unit Types for MiniZinc

The Unit Type System

Numeric values are assigned complex units
p— nipna ... htm
w= bl b
where b; is a basic unit of dimension i

- A complex unit can only contain one basic unit of each dimension
- Basic units with an exponent of zero may be omitted for brevity

We can extend the downcasting { and meet N operators to these
complex units

- 1 fails if any basic unit downcast fails
- M fails if the exponents do not match, or if any basic unit meet fails

21 August 2025 Unit Types for MiniZinc 7126

The Unit Type System

* We can multiply complex units u ® v

* Theinverse of a unit 1/ u is found by negating its exponents

21 August 2025 Unit Types for MiniZinc

The Unit Type System

* We can multiply complex units u ® v
* Theinverse of a unit 1 /uis found by negating its exponents

* The (most important) typing rules:

- type(k @u) = u

- type(e; + ez) = N(type(e:), type(ez))

- type(e; x e;) = type(ez) ® type(e,)

- type(e; div e;) = type(e;) ® type(1/ e,)

21 August 2025 Unit Types for MiniZinc

Coercions

var int@kg: Xx;
var int@gram: y
var int@kg: z =

= X + 55@gram; % automatic coercion
X y, % not allowed

* Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

21 August 2025 Unit Types for MiniZinc

Coercions

var int@kg: Xx;
var int@gram: y
var int@kg: z =

= X + 55@gram; % automatic coercion
X y, % not allowed

* Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

* If we simply coerce all values to the finest unit, variable
domains could end up very large, so we must be careful

21 August 2025 Unit Types for MiniZinc

Coercions

var int@kg: Xx;
var int@gram: y
var int@kg: z =

= X + 55@gram; % automatic coercion
X +Y; % not allowed

Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

If we simply coerce all values to the finest unit, variable
domains could end up very large, so we must be careful

Automatic upcasts for integer variables are not allowed as they
would require rounding

21 August 2025 Unit Types for MiniZinc

Fixing the Knapsack Problem
Applying unit types

int: k; % number of products to choose
int@kg: limit; % avallable weight Llimit

enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;

constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Fixing the Knapsack Problem

Now the compiler can detect the error!

int: k; % number of products to choose
int@kg: limit,; % avallable weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight; | , ,
array[PRODUCT] of int@dollar: profit; ngﬂphaSLnanoHar
array[PRODUCT] of var 0..infinity: chosen; limit has unit kg

Error found by compiler!

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*[g¥Ra[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

But we can do more!
(there are still plain, error-prone integers here)

21 August 2025 Unit Types for MiniZinc

Counting Types

Consider the correct model

int: k; % number of products to choose
int@kg: limit; % avallable weight limit

enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT) (chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Counting Types

Consider the correct model

int: k; % number of products to choose
int@kg: limit; % avallable weight limit

enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT) (chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

k and chosen are actually counts of PRODUCT

21 August 2025 Unit Types for MiniZinc

Counting Types

Enums are extended to create their own counting unit

1nt@PRODUCT: k; % number of products to choose
int@kg: limit; % available weight Llimit

enum PRODUCT; % set of products available
array[PRODUCT] of int@(kg/PRODUCT): weight;
array[PRODUCT] of int@(dollar/PRODUCT): profit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT) (chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Counting Types

Enums are extended to create their own counting unit

1nt@PRODUCT: k; % number of products to choose

int@kg: limit; % available weight Llimit

enum PRODUCT; % set of products available

array[PRODUCT] of int@(kg/PRODUCT): weight; Now even safer!

array[PRODUCT] of int@(dollar/PRODUCT): profit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT) (chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

This model is unit correct

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of 1nt@RESOURCE: 1limit,;
array[PRODUCT] of var (0..1infinity)@PRODUCT: chosen;
constraint
forall(r in RESOURCE, p1, p2 in PRODUCT where pl < p2)
(usage[r,pl]*chosen[pl] + usage[r,p2]*chosen[pl] <= limit[r]);

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

This model is unit correct

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of 1nt@RESOURCE: 1limit,;
array[PRODUCT] of var (0..1infinity)@PRODUCT: chosen;
constraint
forall(r in RESOURCE, p1, p2 in PRODUCT where pl < p2)
(usage[r,pl]*chosen[pl] + usage[r,p2]*chosen[pl] <= limit[r]);

But it contains a mistake!

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

This model is unit correct

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of int@RESOURCE: limit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;
constraint
forall(r in RESOURCE, p1, p2 in PRODUCT where pl < p2)
(usage[r,pl]*chosen[pl] + usage[r,p2]*chosen[[ff] <= limit[r]);

™ \

Sl e 12

But it contains a mistake!

21 August 2025 Unit Types for MiniZinc 14726

Fine Counting Types

What if we give each array element its own unit?

usage[r,pl]*chosen[pl]

+ usage[r,p2]*chosen[pl]

<= limit[r]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

~ Cost/Apple

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

~ Cost/Apple X | Apple

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

~ Cost/Apple X | Apple

+ usage[Cost,Banana]*chosen[Apple]

' Cost/ Banana

<= limit[Cost]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

~ Cost/Apple X | Apple

+ usage[Cost,Banana]*chosen[Apple]

' Cost/Banana | X | Apple

<= limit[Cost]

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

~ Cost/Apple X | Apple

+ usage[Cost,Banana]*chosen[Apple]

' Cost/Banana | X | Apple

<= limit[Cost]
| Cost |

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

| Cost |

+ usage[Cost,Banana]*chosen[Apple]

' Cost/Banana | X | Apple

<= limit[Cost]
| Cost |

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

What if we give each array element its own unit?

usage[Cost,Apple]*chosen[Apple]

| Cost |

+ usage[Cost,Banana]*chosen[Apple]

| Cost X Apple / Banana |

<= limit[Cost]
| Cost |

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

So we introduce fine counting types

enum RESOURCE;
enum PRODUCT,
array[r of RESOURCE, p of PRODUCT] of int@(r/p): usage;
array[r of RESOURCE] of int@r: limit;
array[p of PRODUCT] of var (0..infinity)@p: chosen;
constraint
forall(r in RESOURCE, p1, p2 in PRODUCT where pl < p2)
(usage[r,pl]*chosen[pl] + usage[r,p2]*chosen[[f] <= limit[r]);

21 August 2025 Unit Types for MiniZinc

Fine Counting Types

So we introduce fine counting types

enum RESOURCE;
enum PRODUCT,
array[r of RESOURCE, p of PRODUCT] of int@(r/p): usage;
array[r of RESOURCE] of int@r: limit;
array[p of PRODUCT] of var (0..infinity)@p: chosen;
constraint
forall(r in RESOURCE, p1, p2 in PRODUCT where pl < p2)
(usage[r,pl]*chosen[pl] + usage[r,p2]*chosen[[f] <= limit[r]);

Now we can detect the error!

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Consider this excerpt of a scheduling problem

enum TASK;

array[TASK] of var int@minute: start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Consider this excerpt of a scheduling problem

enum TASK;

array[TASK] of var int@minute: start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

N

Arguments are flipped around |

It's type correct, unit correct, and runs, but is wrong!

21 August 2025 Unit Types for MiniZinc

Coordinate Types

* Most numeric values in MiniZinc (and programming languages in
general) are differences

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Most numeric values in MiniZinc (and programming languages in
general) are differences

We want to distinguish between delta (difference) unit types and
absolute coordinate unit types

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Most numeric values in MiniZinc (and programming languages in
general) are differences

We want to distinguish between delta (difference) unit types and
absolute coordinate unit types

* E.g.25°C-20°C=5°Cdifference, but 25°C + 20°C makes no sense

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Most numeric values in MiniZinc (and programming languages in
general) are differences

We want to distinguish between delta (difference) unit types and
absolute coordinate unit types

E.g. 25°C - 20°C = 5°C difference, but 25°C + 20°C makes no sense

We introduce coordinate unit types such that
coord(x) + x = coord(x)
coord(x) - x = coord(x)
coord(x) - coord(x) = x
And other arithmetic operations on coord(x) are not allowed

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Now using coordinate types

enum TASK;

array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive ([s[sig:isNely

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Now using coordinate types

enum TASK;

array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive ([N gl iR E:-IgS];

N
Disjunctive now requires a coordinate
unit as the first arument

21 August 2025 Unit Types for MiniZinc

Coordinate Types

Now using coordinate types

enum TASK;

array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive ([N gl iR E:-IgS];

N
Disjunctive now requires a coordinate
unit as the first arument

Now we can detect the error!

21 August 2025 Unit Types for MiniZinc

Global Constraints

* Inorder for units to catch more problems, we need to extend the global
constraints to use them

21 August 2025 Unit Types for MiniZinc

Global Constraints

In order for units to catch more problems, we need to extend the global
constraints to use them

We allow unit type parameters to appear in function parameters
(and the return type)

- $u stands in for any unit
- $$E stands in for any enum type

21 August 2025 Unit Types for MiniZinc

Global Constraints

In order for units to catch more problems, we need to extend the global
constraints to use them

We allow unit type parameters to appear in function parameters
(and the return type)

- $u stands in for any unit
- $$E stands in for any enum type

predicate disjunctive(
array[$$TASK] of var int@coord($time): start,
array[$$TASK] of var int@$time: duration

);

21 August 2025 Unit Types for MiniZinc

Global Constraints

predicate cumulative(
array[$$TASK] of var int@coord($time): start,
array[$$TASK] of var int@$time: duration,
array[$$TASK] of var int@$resource: usage,
int@$resource: capacity

-

\);

-

predicate span(
var opt int@coord($time) starto,
var int@time: duration®,
array[$$TASK] of var opt int@coord($time): start,
array[$$TASK] of var int@$time: duration

\);

21 August 2025 Unit Types for MiniZinc

Global Constraints

-

predicate sliding_sum(
int@%u: low,
int@su: up,
int@$$E: seq,
array [$$E] of var int@$u: vs

\);

function var int@$$E: among(
array [$X] of var $$E: X,
set of $$E: v

)

function array[t of $$T] of var int@t: global_cardinality(
array[$X] of var $$T: X
)

21 August 2025 Unit Types for MiniZinc

Global Constraints

fpredicate knapsack (

array [$$ITEM] of int@($WEIGHT/$$ITEM): weight,
array [$$ITEM] of int@($PROFIT/$SITEM): profit,
array [$$ITEM] of var int@$$SITEM: chosen,

var 1Int@$WEIGHT: total_weight,

var 1nt@$PROFIT: total_profit

\)7

(predicate knapsack (

array [i of $$ITEM] of int@(SWEIGHT/i): weight,
array [1 of $$ITEM] of int@($PROFIT/i): profit,
array [1 of $$ITEM] of var int@i: chosen,

var 1Int@$WEIGHT: total_weight,

var 1nt@$PROFIT: total_profit

)7

21 August 2025 Unit Types for MiniZinc

Evaluation

* We examined the applicability of unit types to past
MiniZinc Challenge problems (2021 - 2024)

Mean size increase Benchmarks using the unit type feature
Year Units applicable | Chars Bytes | Count Fine Coord Global
2021 13/18 9.2% 3.2% 6 3 5 4
2022 19/20 8.0% 3.6% 8 3 3 9
2023 13/18 4.7% 1.4% 4 4 3
2024 11/15 6.9% 5.5% 1 0 3

Overall 56/71 7.1% 3.3% 19 10 19

21 August 2025 Unit Types for MiniZinc

Evaluation

* We examined the applicability of unit types to past
MiniZinc Challenge problems (2021 - 2024)

* Unit types can be applied to most MiniZinc problems

Mean size increase Benchmarks using the unit type feature
Year Units applicable | Chars Bytes | Count Fine Coord Global
2021 13/18 9.2% 3.2% 6 3 5 4
2022 19/20 8.0% 3.6% 8 3 3 9
2023 13/18 4.7% 1.4% 4 4 3
2024 11/15 6.9% 5.5% 1 0 3

Overall 56/71 7.1% 3.3% 19 10 19

21 August 2025 Unit Types for MiniZinc

Evaluation

We examined the applicability of unit types to past
MiniZinc Challenge problems (2021 - 2024)

Unit types can be applied to most MiniZinc problems

Unit types have no runtime performance impact

Mean size increase Benchmarks using the unit type feature
Year Units applicable | Chars Bytes | Count Fine Coord Global
2021 13/18 9.2% 3.2% 6 3 5 4
2022 19/20 8.0% 3.6% 8 3 3 9
2023 13/18 4.7% 1.4% 4 4 3
2024 11/15 6.9% 5.5% 1 0 3

Overall 56/71 7.1% 3.3% 19 10 19

21 August 2025 Unit Types for MiniZinc

Evaluation

We examined the applicability of unit types to past
MiniZinc Challenge problems (2021 - 2024)

Unit types can be applied to most MiniZinc problems

Unit types have no runtime performance impact
Written program size increase is minimal

Mean size increase Benchmarks using the unit type feature
Year Units applicable | Chars Bytes | Count Fine Coord Global
2021 13/18 9.2% 3.2% 6 3 5 4
2022 19/20 8.0% 3.6% 8 3 3 9
2023 13/18 4.7% 1.4% 4 4 3
2024 11/15 6.9% 5.5% 1 0 3

Overall 56/71 7.1% 3.3% 19 10 19

21 August 2025 Unit Types for MiniZinc

Conclusion

* Unit types provide more safety than strong typing alone

21 August 2025 Unit Types for MiniZinc

Conclusion

* Unit types provide more safety than strong typing alone

* The overhead of using unit types in other languages makes them less
attractive

21 August 2025 Unit Types for MiniZinc

Conclusion

Unit types provide more safety than strong typing alone

The overhead of using unit types in other languages makes them less
attractive

There is a strong case for them in modelling languages as debugging is

much more difficult

21 August 2025 Unit Types for MiniZinc

Conclusion

Unit types provide more safety than strong typing alone

The overhead of using unit types in other languages makes them less
attractive

There is a strong case for them in modelling languages as debugging is

much more difficult

Some units, such as counting types are specific to discrete optimisation

21 August 2025 Unit Types for MiniZinc

Conclusion

Unit types provide more safety than strong typing alone

The overhead of using unit types in other languages makes them less
attractive

There is a strong case for them in modelling languages as debugging is
much more difficult

Some units, such as counting types are specific to discrete optimisation

The MiniZinc implementation of unit types provides extra safety with no
runtime cost and minimal code overhead, while ensuring existing models
continue to work

21 August 2025 Unit Types for MiniZinc

Try the prototype at
https://www.minizinc.org/unit-types

E..-.E

i

=]

21 August 2025 Unit Types for MiniZinc

https://www.minizinc.org/unit-types

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 15 (5)
	Slide: 15 (6)
	Slide: 15 (7)
	Slide: 15 (8)
	Slide: 15 (9)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 26

