
Unit Types for MiniZinc
Jip J. Dekker, Jason Nguyen,

Peter J. Stuckey, and Guido Tack

https://doi.org/10.4230/LIPIcs.CP.2025.10

https://doi.org/10.4230/LIPIcs.CP.2025.10

21 August 2025 Unit Types for MiniZinc

Consider this Knapsack problem

int: k; % number of products to choose
int: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int: weight;
array[PRODUCT] of int: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Introduction

2 / 26

21 August 2025 Unit Types for MiniZinc

Type checks correctly, runs, but gives nonsense solutions

int: k; % number of products to choose
int: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int: weight;
array[PRODUCT] of int: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Introduction

2 / 26

21 August 2025 Unit Types for MiniZinc

int: k; % number of products to choose
int: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int: weight;
array[PRODUCT] of int: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Type checks correctly, runs, but gives nonsense solutions

Introduction

Should be weight
⚠️

2 / 26

21 August 2025 Unit Types for MiniZinc

Introduction
● Model contains a unit error (but not a type error)

– Comparing two integers with different meanings
● weight (kg) vs profit ($)

3 / 26

21 August 2025 Unit Types for MiniZinc

Introduction
● Model contains a unit error (but not a type error)

– Comparing two integers with different meanings
● weight (kg) vs profit ($)

● Debugging models is difficult, so the more errors we can detect
during compilation, the better

3 / 26

21 August 2025 Unit Types for MiniZinc

Introduction
● Model contains a unit error (but not a type error)

– Comparing two integers with different meanings
● weight (kg) vs profit ($)

● Debugging models is difficult, so the more errors we can detect
during compilation, the better

● But we don’t want to sacrifice runtime (solve time) performance,
instead we must perform checking statically

3 / 26

21 August 2025 Unit Types for MiniZinc

Introduction
● Model contains a unit error (but not a type error)

– Comparing two integers with different meanings
● weight (kg) vs profit ($)

● Debugging models is difficult, so the more errors we can detect
during compilation, the better

● But we don’t want to sacrifice runtime (solve time) performance,
instead we must perform checking statically

● We also want to keep the system compatible with existing models

3 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A dimension is a kind of measurement

– distance, time, mass, worth, etc

4 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A dimension is a kind of measurement

– distance, time, mass, worth, etc

unit type distance;
unit type time;
% Can also create derived dimensions
unit type velocity = distance / time;

4 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A basic unit has a particular dimension

– km (distance), sec (time), kg (weight), dollars (worth)

5 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A basic unit has a particular dimension

– km (distance), sec (time), kg (weight), dollars (worth)
unit distance: m;
unit distance: km = 1000 @ m; % derived unit

5 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A basic unit has a particular dimension

– km (distance), sec (time), kg (weight), dollars (worth)
unit distance: m;
unit distance: km = 1000 @ m; % derived unit

unit time: sec;
unit time: minute = 60 @ sec; % derived unit
unit time: hour = 60 @ minute; % derived unit

5 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● A basic unit has a particular dimension

– km (distance), sec (time), kg (weight), dollars (worth)
unit distance: m;
unit distance: km = 1000 @ m; % derived unit

unit time: sec;
unit time: minute = 60 @ sec; % derived unit
unit time: hour = 60 @ minute; % derived unit

unit velocity: kmh = km / hour; % derived unit

5 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● Basic units form graphs

km m1000

cm

100

mm10

mile
160934

6 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● Basic units form graphs

● To downcast from mile to mm, we need to multiply by 160934 × 10
– ↓(mile, mm) = 160934 × 10

km m1000

cm

100

mm10

mile
160934

6 / 26

21 August 2025 Unit Types for MiniZinc

Dimensions and Units
● Basic units form graphs

● To downcast from mile to mm, we need to multiply by 160934 × 10
– ↓(mile, mm) = 160934 × 10

● The most general common unit of km and mile is cm
– ⊓(km, mile) = cm

km m1000

cm

100

mm10

mile
160934

6 / 26

21 August 2025 Unit Types for MiniZinc

The Unit Type System
● Numeric values are assigned complex units

where bi is a basic unit of dimension i
– A complex unit can only contain one basic unit of each dimension
– Basic units with an exponent of zero may be omitted for brevity

7 / 26

21 August 2025 Unit Types for MiniZinc

The Unit Type System
● Numeric values are assigned complex units

where bi is a basic unit of dimension i
– A complex unit can only contain one basic unit of each dimension
– Basic units with an exponent of zero may be omitted for brevity

● We can extend the downcasting and meet operators to these↓ ⊓
complex units
– ↓ fails if any basic unit downcast fails
– ⊓ fails if the exponents do not match, or if any basic unit meet fails

7 / 26

21 August 2025 Unit Types for MiniZinc

The Unit Type System
● We can multiply complex units u ⊗ v
● The inverse of a unit 1 / u is found by negating its exponents

8 / 26

21 August 2025 Unit Types for MiniZinc

The Unit Type System
● We can multiply complex units u ⊗ v
● The inverse of a unit 1 / u is found by negating its exponents
● The (most important) typing rules:

– type(k @ u) = u
– type(e1 + e2) = (⊓ type(e1), type(e2))
– type(e1 × e2) = type(e2) ⊗ type(e2)
– type(e1 div e2) = type(e1) ⊗ type(1 / e2)

8 / 26

21 August 2025 Unit Types for MiniZinc

Coercions

● Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

var int@kg: x;
var int@gram: y = x + 55@gram; % automatic coercion
var int@kg: z = x + y; % not allowed

9 / 26

21 August 2025 Unit Types for MiniZinc

Coercions

● Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

● If we simply coerce all values to the finest unit, variable
domains could end up very large, so we must be careful

var int@kg: x;
var int@gram: y = x + 55@gram; % automatic coercion
var int@kg: z = x + y; % not allowed

9 / 26

21 August 2025 Unit Types for MiniZinc

Coercions

● Automatic downcasting between units of a given dimension is
possible as there is no loss of precision

● If we simply coerce all values to the finest unit, variable
domains could end up very large, so we must be careful

● Automatic upcasts for integer variables are not allowed as they
would require rounding

var int@kg: x;
var int@gram: y = x + 55@gram; % automatic coercion
var int@kg: z = x + y; % not allowed

9 / 26

21 August 2025 Unit Types for MiniZinc

Applying unit types

Fixing the Knapsack Problem

int: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

10 / 26

21 August 2025 Unit Types for MiniZinc

int: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*profit[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Now the compiler can detect the error!

Fixing the Knapsack Problem

profit has unit dollar
limit has unit kg

Error found by compiler!

10 / 26

21 August 2025 Unit Types for MiniZinc

But we can do more!
(there are still plain, error-prone integers here)

11 / 26

21 August 2025 Unit Types for MiniZinc

Counting Types

int: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Consider the correct model

12 / 26

21 August 2025 Unit Types for MiniZinc

Counting Types

k and chosen are actually counts of PRODUCT

int: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@kg: weight;
array[PRODUCT] of int@dollar: profit;
array[PRODUCT] of var 0..infinity: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Consider the correct model

12 / 26

21 August 2025 Unit Types for MiniZinc

int@PRODUCT: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@(kg/PRODUCT): weight;
array[PRODUCT] of int@(dollar/PRODUCT): profit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Enums are extended to create their own counting unit

Counting Types

13 / 26

21 August 2025 Unit Types for MiniZinc

int@PRODUCT: k; % number of products to choose
int@kg: limit; % available weight limit
enum PRODUCT; % set of products available
array[PRODUCT] of int@(kg/PRODUCT): weight;
array[PRODUCT] of int@(dollar/PRODUCT): profit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;

constraint sum(chosen) = k;
constraint sum(p in PRODUCT)(chosen[p]*weight[p]) <= limit;
solve maximize sum(p in PRODUCT)(chosen[p]*profit[p]);

Enums are extended to create their own counting unit

Counting Types

Now even safer!

13 / 26

21 August 2025 Unit Types for MiniZinc

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of int@RESOURCE: limit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;
constraint
 forall(r in RESOURCE, p1, p2 in PRODUCT where p1 < p2)
 (usage[r,p1]*chosen[p1] + usage[r,p2]*chosen[p1] <= limit[r]);

Fine Counting Types
This model is unit correct

14 / 26

21 August 2025 Unit Types for MiniZinc

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of int@RESOURCE: limit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;
constraint
 forall(r in RESOURCE, p1, p2 in PRODUCT where p1 < p2)
 (usage[r,p1]*chosen[p1] + usage[r,p2]*chosen[p1] <= limit[r]);

But it contains a mistake!

Fine Counting Types
This model is unit correct

14 / 26

21 August 2025 Unit Types for MiniZinc

enum RESOURCE;
enum PRODUCT;
array[RESOURCE, PRODUCT] of int@(RESOURCE/PRODUCT): usage;
array[RESOURCE] of int@RESOURCE: limit;
array[PRODUCT] of var (0..infinity)@PRODUCT: chosen;
constraint
 forall(r in RESOURCE, p1, p2 in PRODUCT where p1 < p2)
 (usage[r,p1]*chosen[p1] + usage[r,p2]*chosen[p1] <= limit[r]);

But it contains a mistake!

Fine Counting Types
This model is unit correct

Should be p2
⚠️

14 / 26

21 August 2025 Unit Types for MiniZinc

 usage[r,p1]*chosen[p1]

+ usage[r,p2]*chosen[p1]

<= limit[r]

Fine Counting Types
What if we give each array element its own unit?

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

Cost / Apple

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

Cost / Apple Apple×

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

Cost / Apple Apple

Cost / Banana

×

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

Cost / Apple Apple

Cost / Banana Apple

×

×

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Fine Counting Types
What if we give each array element its own unit?

Cost / Apple Apple

Cost / Banana Apple

Cost

×

×

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Cost

Fine Counting Types
What if we give each array element its own unit?

Cost / Banana Apple

Cost

×

15 / 26

21 August 2025 Unit Types for MiniZinc

 usage[Cost,Apple]*chosen[Apple]

+ usage[Cost,Banana]*chosen[Apple]

<= limit[Cost]

Cost

Cost × Apple / Banana

Fine Counting Types
What if we give each array element its own unit?

Cost

15 / 26

21 August 2025 Unit Types for MiniZinc

Fine Counting Types
So we introduce fine counting types

enum RESOURCE;
enum PRODUCT;
array[r of RESOURCE, p of PRODUCT] of int@(r/p): usage;
array[r of RESOURCE] of int@r: limit;
array[p of PRODUCT] of var (0..infinity)@p: chosen;
constraint
 forall(r in RESOURCE, p1, p2 in PRODUCT where p1 < p2)
 (usage[r,p1]*chosen[p1] + usage[r,p2]*chosen[p1] <= limit[r]);

16 / 26

21 August 2025 Unit Types for MiniZinc

Fine Counting Types
So we introduce fine counting types

enum RESOURCE;
enum PRODUCT;
array[r of RESOURCE, p of PRODUCT] of int@(r/p): usage;
array[r of RESOURCE] of int@r: limit;
array[p of PRODUCT] of var (0..infinity)@p: chosen;
constraint
 forall(r in RESOURCE, p1, p2 in PRODUCT where p1 < p2)
 (usage[r,p1]*chosen[p1] + usage[r,p2]*chosen[p1] <= limit[r]);

Now we can detect the error!

16 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
Consider this excerpt of a scheduling problem
enum TASK;
array[TASK] of var int@minute: start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

17 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
Consider this excerpt of a scheduling problem
enum TASK;
array[TASK] of var int@minute: start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

It’s type correct, unit correct, and runs, but is wrong!

Arguments are flipped around
⚠️

17 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
● Most numeric values in MiniZinc (and programming languages in

general) are differences

18 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
● Most numeric values in MiniZinc (and programming languages in

general) are differences
● We want to distinguish between delta (difference) unit types and

absolute coordinate unit types

18 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
● Most numeric values in MiniZinc (and programming languages in

general) are differences
● We want to distinguish between delta (difference) unit types and

absolute coordinate unit types
● E.g. 25°C – 20°C = 5°C difference, but 25°C + 20°C makes no sense

18 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
● Most numeric values in MiniZinc (and programming languages in

general) are differences
● We want to distinguish between delta (difference) unit types and

absolute coordinate unit types
● E.g. 25°C – 20°C = 5°C difference, but 25°C + 20°C makes no sense
● We introduce coordinate unit types such that

– coord(x) + x = coord(x)
– coord(x) – x = coord(x)
– coord(x) – coord(x) = x
– And other arithmetic operations on coord(x) are not allowed

18 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
Now using coordinate types
enum TASK;
array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

19 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
Now using coordinate types
enum TASK;
array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

Disjunctive now requires a coordinate
unit as the first arument

⚠️

19 / 26

21 August 2025 Unit Types for MiniZinc

Coordinate Types
Now using coordinate types
enum TASK;
array[TASK] of var int@coord(minute): start;
array[TASK] of int@minute: duration;
constraint disjunctive(duration, start);

Now we can detect the error!

Disjunctive now requires a coordinate
unit as the first arument

⚠️

19 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
● In order for units to catch more problems, we need to extend the global

constraints to use them

20 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
● In order for units to catch more problems, we need to extend the global

constraints to use them
● We allow unit type parameters to appear in function parameters

(and the return type)
– $u stands in for any unit
– $$E stands in for any enum type

20 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
● In order for units to catch more problems, we need to extend the global

constraints to use them
● We allow unit type parameters to appear in function parameters

(and the return type)
– $u stands in for any unit
– $$E stands in for any enum type

predicate disjunctive(
 array[$$TASK] of var int@coord($time): start,
 array[$$TASK] of var int@$time: duration
);

20 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
predicate cumulative(
 array[$$TASK] of var int@coord($time): start,
 array[$$TASK] of var int@$time: duration,
 array[$$TASK] of var int@$resource: usage,
 int@$resource: capacity
);

predicate span(
 var opt int@coord($time) start0,
 var int@time: duration0,
 array[$$TASK] of var opt int@coord($time): start,
 array[$$TASK] of var int@$time: duration
);

21 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
predicate sliding_sum(
 int@$u: low,
 int@$u: up,
 int@$$E: seq,
 array [$$E] of var int@$u: vs
);

function var int@$$E: among(
 array [$X] of var $$E: x,
 set of $$E: v
);

function array[t of $$T] of var int@t: global_cardinality(
 array[$X] of var $$T: x
);

22 / 26

21 August 2025 Unit Types for MiniZinc

Global Constraints
predicate knapsack(
 array [$$ITEM] of int@($WEIGHT/$$ITEM): weight,
 array [$$ITEM] of int@($PROFIT/$$ITEM): profit,
 array [$$ITEM] of var int@$$ITEM: chosen,
 var int@$WEIGHT: total_weight,
 var int@$PROFIT: total_profit
);

predicate knapsack(
 array [i of $$ITEM] of int@($WEIGHT/i): weight,
 array [i of $$ITEM] of int@($PROFIT/i): profit,
 array [i of $$ITEM] of var int@i: chosen,
 var int@$WEIGHT: total_weight,
 var int@$PROFIT: total_profit
);

23 / 26

21 August 2025 Unit Types for MiniZinc

Evaluation
● We examined the applicability of unit types to past

MiniZinc Challenge problems (2021 – 2024)

24 / 26

21 August 2025 Unit Types for MiniZinc

Evaluation
● We examined the applicability of unit types to past

MiniZinc Challenge problems (2021 – 2024)
● Unit types can be applied to most MiniZinc problems

24 / 26

21 August 2025 Unit Types for MiniZinc

Evaluation
● We examined the applicability of unit types to past

MiniZinc Challenge problems (2021 – 2024)
● Unit types can be applied to most MiniZinc problems
● Unit types have no runtime performance impact

24 / 26

21 August 2025 Unit Types for MiniZinc

Evaluation
● We examined the applicability of unit types to past

MiniZinc Challenge problems (2021 – 2024)
● Unit types can be applied to most MiniZinc problems
● Unit types have no runtime performance impact
● Written program size increase is minimal

24 / 26

21 August 2025 Unit Types for MiniZinc

Conclusion
● Unit types provide more safety than strong typing alone

25 / 26

21 August 2025 Unit Types for MiniZinc

Conclusion
● Unit types provide more safety than strong typing alone
● The overhead of using unit types in other languages makes them less

attractive

25 / 26

21 August 2025 Unit Types for MiniZinc

Conclusion
● Unit types provide more safety than strong typing alone
● The overhead of using unit types in other languages makes them less

attractive
● There is a strong case for them in modelling languages as debugging is

much more difficult

25 / 26

21 August 2025 Unit Types for MiniZinc

Conclusion
● Unit types provide more safety than strong typing alone
● The overhead of using unit types in other languages makes them less

attractive
● There is a strong case for them in modelling languages as debugging is

much more difficult
● Some units, such as counting types are specific to discrete optimisation

25 / 26

21 August 2025 Unit Types for MiniZinc

Conclusion
● Unit types provide more safety than strong typing alone
● The overhead of using unit types in other languages makes them less

attractive
● There is a strong case for them in modelling languages as debugging is

much more difficult
● Some units, such as counting types are specific to discrete optimisation
● The MiniZinc implementation of unit types provides extra safety with no

runtime cost and minimal code overhead, while ensuring existing models
continue to work

25 / 26

21 August 2025 Unit Types for MiniZinc

Try the prototype at
https://www.minizinc.org/unit-types

26 / 26

https://www.minizinc.org/unit-types

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 15 (5)
	Slide: 15 (6)
	Slide: 15 (7)
	Slide: 15 (8)
	Slide: 15 (9)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 21
	Slide: 22
	Slide: 23
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 26

