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SAT and Combinatorial Solving

Impressive progress in SAT solving over last couple of decades [BHvMW21]
Also big successes in more expressive paradigms:

▶ Constraint programming
▶ Satisfiability modulo theories (SMT)
▶ Mixed integer linear programming (MILP)

However, solvers are sometimes wrong (even best commercial ones)
[CGS17, AGJ+18, GSD19, GCS23, BBN+23, Tin24]

Most successful solution: certifying algorithms with proof logging
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Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging for SAT Solving and Beyond

Proof logging for SAT: big success story [HHW13, WHH14, CHH+17, BCH21]
Great performance:

▶ Small constant overhead for proof generation (⪅ 10% of solving time)
▶ Efficient proof checking (⪅ 10× solving time)

More expressive paradigms: VeriPB proof logging
▶ MaxSAT solving [VDB22, BBN+23, IOT+24, BBN+24]
▶ Subgraph solving [GMN20, GMM+20, GMM+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
▶ Automated planning [DHN+25]
▶ and more ...

But much worse performance:
▶ Proof logging overhead: sometimes ×10 or worse
▶ Proof checking overhead: sometimes ×1000 or worse
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Our Contribution

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization
Covers all techniques in state-of-the-art solvers RoundingSat and Sat4j
Including formally verified proof checking backend

Performance close to expectations for SAT solving:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible logging for combinatorial optimization beyond SAT
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Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 = false or 1 = true

Objective
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3
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Approaches for Pseudo-Boolean Optimization

Two main approaches:
▶ Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Generalize conflict-driven search to pseudo-Boolean inequalities (our focus)

New challenges and techniques compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]
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Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, learned clauses are checked using reverse unit propagation (RUP)
▶ In PB, explicit reasoning steps are needed

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Challenges for efficient proof logging:
▶ Logging unit constraints (saying that a variable must take some fixed value)
▶ Logging constraint simplifications (e.g. simplifying away fixed values)
▶ Logging and checking solutions
▶ Formally verified proof checking
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Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
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Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d
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Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch: If α satisfies F but falsifies C, then α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every D ∈ (F ∪ {C})↾ω

should follow from F ∪ {¬C} either
1 “obviously” or
2 by explicitly presented derivation
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Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0
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Farkas Certificates
The constraints

C1
.= x1 + x2 + x3 ≥ 2

C2
.= 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= −2x1 − 2x2 − x3 ≥ −1

are unsatisfiable even over the reals.

Farkas certificate: positive linear combination of constraints (and literal axioms, e.g.
x4 ≥ 0 .= −x4 ≥ −1) proving this:

C1 + C2 + 2C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 0 ≥ 2

is a contradiction.

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 +
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Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d
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Advanced Cut Generation

Cut generation with mixed integer rounding (MIR) rule [MW01, DGN21] more challenging
Reasoning uses integer slack variables (not supported by VeriPB)
Proof logging instead uses proof by contradiction
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Empirical Results: Proof Logging Overhead

Usually ⩽ 10%
Decision instances:
worst-case 20%
Optimization instances:
worst-case 50%
Overheads gets smaller
for larger solving times
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Empirical Results: Proof Checking Overhead

Usually ⩽ ×6

Decision instances:
worst-case ×10

Optimization instances:
worst-case ×20
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Empirical Results: Proof Logging Overhead Sat4j

Usually ⩽ 10%

Worst-case 60%

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sat4j without proof logging (s)
ad

d
it
io
n
a
l
ti
m
e
fo
r
p
ro
of

lo
gg
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 18/21



Empirical Results: Proof Checking Overhead Sat4j

Usually ⩽ ×2

Worst-case ×4
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Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...
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Conclusion

Efficient proof logging for pseudo-Boolean optimization using VeriPB
First example of practically feasible certified solving beyond SAT
Future directions:

▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?
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