
Practically Feasible Proof Logging for Pseudo-Boolean Optimization

Wietze Koops

Lund University and University of Copenhagen

NordConsNet workshop, Uppsala, Sweden
August 21, 2025

Joint work with Daniel Le Berre, Magnus O. Myreen,
Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc Vinyals

Published in CP ’25

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 1/21



SAT and Combinatorial Solving

Impressive progress in SAT solving over last couple of decades [BHvMW21]
Also big successes in more expressive paradigms:

▶ Constraint programming
▶ Satisfiability modulo theories (SMT)
▶ Mixed integer linear programming (MILP)

However, solvers are sometimes wrong (even best commercial ones)
[CGS17, AGJ+18, GSD19, GCS23, BBN+23, Tin24]

Most successful solution: certifying algorithms with proof logging

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 2/21



SAT and Combinatorial Solving

Impressive progress in SAT solving over last couple of decades [BHvMW21]
Also big successes in more expressive paradigms:

▶ Constraint programming
▶ Satisfiability modulo theories (SMT)
▶ Mixed integer linear programming (MILP)

However, solvers are sometimes wrong (even best commercial ones)
[CGS17, AGJ+18, GSD19, GCS23, BBN+23, Tin24]

Most successful solution: certifying algorithms with proof logging

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 2/21



SAT and Combinatorial Solving

Impressive progress in SAT solving over last couple of decades [BHvMW21]
Also big successes in more expressive paradigms:

▶ Constraint programming
▶ Satisfiability modulo theories (SMT)
▶ Mixed integer linear programming (MILP)

However, solvers are sometimes wrong (even best commercial ones)
[CGS17, AGJ+18, GSD19, GCS23, BBN+23, Tin24]

Most successful solution: certifying algorithms with proof logging

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 2/21



Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 3/21



Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 3/21



Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 3/21



Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run solver on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 3/21



Proof Logging for SAT Solving and Beyond

Proof logging for SAT: big success story [HHW13, WHH14, CHH+17, BCH21]
Great performance:

▶ Small constant overhead for proof generation (⪅ 10% of solving time)
▶ Efficient proof checking (⪅ 10× solving time)

More expressive paradigms: VeriPB proof logging
▶ MaxSAT solving [VDB22, BBN+23, IOT+24, BBN+24]
▶ Subgraph solving [GMN20, GMM+20, GMM+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
▶ Automated planning [DHN+25]
▶ and more ...

But much worse performance:
▶ Proof logging overhead: sometimes ×10 or worse
▶ Proof checking overhead: sometimes ×1000 or worse

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 4/21



Proof Logging for SAT Solving and Beyond

Proof logging for SAT: big success story [HHW13, WHH14, CHH+17, BCH21]
Great performance:

▶ Small constant overhead for proof generation (⪅ 10% of solving time)
▶ Efficient proof checking (⪅ 10× solving time)

More expressive paradigms: VeriPB proof logging
▶ MaxSAT solving [VDB22, BBN+23, IOT+24, BBN+24]
▶ Subgraph solving [GMN20, GMM+20, GMM+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
▶ Automated planning [DHN+25]
▶ and more ...

But much worse performance:
▶ Proof logging overhead: sometimes ×10 or worse
▶ Proof checking overhead: sometimes ×1000 or worse

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 4/21



Proof Logging for SAT Solving and Beyond

Proof logging for SAT: big success story [HHW13, WHH14, CHH+17, BCH21]
Great performance:

▶ Small constant overhead for proof generation (⪅ 10% of solving time)
▶ Efficient proof checking (⪅ 10× solving time)

More expressive paradigms: VeriPB proof logging
▶ MaxSAT solving [VDB22, BBN+23, IOT+24, BBN+24]
▶ Subgraph solving [GMN20, GMM+20, GMM+24]
▶ Constraint programming [EGMN20, GMN22, MM23, MMN24, MM25]
▶ Automated planning [DHN+25]
▶ and more ...

But much worse performance:
▶ Proof logging overhead: sometimes ×10 or worse
▶ Proof checking overhead: sometimes ×1000 or worse

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 4/21



Our Contribution

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization
Covers all techniques in state-of-the-art solvers RoundingSat and Sat4j
Including formally verified proof checking backend

Performance close to expectations for SAT solving:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible logging for combinatorial optimization beyond SAT

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 5/21



Our Contribution

Efficient VeriPB proof logging and checking for pseudo-Boolean optimization
Covers all techniques in state-of-the-art solvers RoundingSat and Sat4j
Including formally verified proof checking backend

Performance close to expectations for SAT solving:
▶ Proof logging overhead usually ⩽ 10% (worst-case 50%)
▶ Checking overhead usually ⩽ ×6 (worst-case ×20)

First time practically feasible logging for combinatorial optimization beyond SAT

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 5/21



Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 = false or 1 = true

Objective
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 6/21



Pseudo-Boolean Optimization

Operates on 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i
aiℓi ≥ A

▶ ai, A ∈ Z
▶ literals ℓi: xi or xi (where xi + xi = 1)
▶ variables xi take values 0 = false or 1 = true

Objective
∑

i wiℓi to be minimized (for maximization, negate objective)

Examples of pseudo-Boolean constraints:
▶ Clauses: x1 ∨ x2 ∨ x3 ⇐⇒ x1 + x2 + x3 ≥ 1
▶ Cardinality constraints: x1 + x2 + x3 ≥ 2
▶ General constraints: 3x1 + 2x2 + x3 + x4 ≥ 3

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 6/21



Approaches for Pseudo-Boolean Optimization

Two main approaches:
▶ Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Generalize conflict-driven search to pseudo-Boolean inequalities (our focus)

New challenges and techniques compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 7/21



Approaches for Pseudo-Boolean Optimization

Two main approaches:
▶ Translate to CNF and run conflict-driven clause learning (CDCL)
▶ Generalize conflict-driven search to pseudo-Boolean inequalities (our focus)

New challenges and techniques compared to SAT:
▶ Efficient propagation [Dev20, NORZ24]
▶ Linear programming (LP) integration [DGN21]
▶ Optimization techniques, e.g. solution-improving search, core-guided search [DGD+21]

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 7/21



Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, learned clauses are checked using reverse unit propagation (RUP)
▶ In PB, explicit reasoning steps are needed

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Challenges for efficient proof logging:
▶ Logging unit constraints (saying that a variable must take some fixed value)
▶ Logging constraint simplifications (e.g. simplifying away fixed values)
▶ Logging and checking solutions
▶ Formally verified proof checking

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 8/21



Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, learned clauses are checked using reverse unit propagation (RUP)
▶ In PB, explicit reasoning steps are needed

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Challenges for efficient proof logging:
▶ Logging unit constraints (saying that a variable must take some fixed value)
▶ Logging constraint simplifications (e.g. simplifying away fixed values)
▶ Logging and checking solutions
▶ Formally verified proof checking

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 8/21



Proof Logging for Pseudo-Boolean Optimization

Conflict analysis:
▶ In SAT, learned clauses are checked using reverse unit propagation (RUP)
▶ In PB, explicit reasoning steps are needed

Other techniques pose further challenges:
▶ Objective rewriting in core-guided search
▶ Linear programming (LP) integration (Farkas certificates, cut generation, ...)

Challenges for efficient proof logging:
▶ Logging unit constraints (saying that a variable must take some fixed value)
▶ Logging constraint simplifications (e.g. simplifying away fixed values)
▶ Logging and checking solutions
▶ Formally verified proof checking

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 8/21



Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 9/21



Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 9/21



Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 9/21



Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 9/21



Pseudo-Boolean Proof Logging Basics

Pseudo-Boolean proof logging based on cutting planes proof system [CCT87]

Input axioms From the input

Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 9/21



Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 2 1

3

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint @C1 .= w + 2x + y ≥ 2
Constraint @C2 .= w + 2x + 4y + 2z ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol @C1 2 * @C2 + ∼z 2 * + 3 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 10/21



Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch: If α satisfies F but falsifies C, then α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every D ∈ (F ∪ {C})↾ω

should follow from F ∪ {¬C} either
1 “obviously” or
2 by explicitly presented derivation

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 11/21



Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch: If α satisfies F but falsifies C, then α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every D ∈ (F ∪ {C})↾ω

should follow from F ∪ {¬C} either
1 “obviously” or
2 by explicitly presented derivation

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 11/21



Advanced Pseudo-Boolean Proof Logging

We need a rule for deriving non-implied constraints (e.g. introducing new variables)

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12], simplified)
F and F ∪ {C} are equisatisfiable if there is a substitution ω (mapping variables to truth
values or literals), called a witness, for which

F ∪ {¬C} |= (F ∪ {C})↾ω

Proof sketch: If α satisfies F but falsifies C, then α ◦ ω satisfies F ∪ {C}
In a proof, the implication needs to be efficiently verifiable — every D ∈ (F ∪ {C})↾ω

should follow from F ∪ {¬C} either
1 “obviously” or
2 by explicitly presented derivation

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 11/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Redundance Rule: Example from Logging Core-Guided Search
Suppose we know D

.= x1 + x2 + x3 ≥ 2.
Want to introduce variable y3 such that

x1 + x2 + x3 = 2 + y3, i.e.
{

C1
.= x1 + x2 + x3 ≤ 2 + y3

C2
.= x1 + x2 + x3 ≥ 2 + y3

using condition F ∪ {¬C} |= (F ∪ {C})↾ω.

F ∪ {¬C1} |= (F ∪ {C1})↾ω

Choose ω = {y3 7→ 1} — F untouched; new constraint C1 trivially satisfied

F ∪ {C1} ∪ {¬C2} |= (F ∪ {C1} ∪ {C2})↾ω

Choose ω = {y3 7→ 0} — F untouched; new constraint C2 follows from D
¬C2

.= x1 + x2 + x3 ≤ 1 + y3 implies C1↾ω
.= x1 + x2 + x3 ≤ 2

VeriPB: red +1 x1 +1 x2 +1 x3 -1 y3 <= 2; y3 -> 1
red +1 x1 +1 x2 +1 x3 -1 y3 >= 2; y3 -> 0

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 12/21



Farkas Certificates
The constraints

C1
.= x1 + x2 + x3 ≥ 2

C2
.= 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= −2x1 − 2x2 − x3 ≥ −1

are unsatisfiable even over the reals.

Farkas certificate: positive linear combination of constraints (and literal axioms, e.g.
x4 ≥ 0 .= −x4 ≥ −1) proving this:

C1 + C2 + 2C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 0 ≥ 2

is a contradiction.

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 +
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 13/21



Farkas Certificates
The constraints

C1
.= x1 + x2 + x3 ≥ 2

C2
.= 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= −2x1 − 2x2 − x3 ≥ −1

are unsatisfiable even over the reals.

Farkas certificate: positive linear combination of constraints (and literal axioms, e.g.
x4 ≥ 0 .= −x4 ≥ −1) proving this:

C1 + C2 + 2C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 0 ≥ 2

is a contradiction.

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 +
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 13/21



Farkas Certificates
The constraints

C1
.= x1 + x2 + x3 ≥ 2

C2
.= 3x1 + 2x2 + x3 + x4 ≥ 3

C3
.= −2x1 − 2x2 − x3 ≥ −1

are unsatisfiable even over the reals.

Farkas certificate: positive linear combination of constraints (and literal axioms, e.g.
x4 ≥ 0 .= −x4 ≥ −1) proving this:

C1 + C2 + 2C3 + (x4 ≥ 0) + (x2 ≥ 0) .= 0 ≥ 2

is a contradiction.

VeriPB: pol @C1 @C2 + @C3 2 * + ∼x4 + x2 +
Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 13/21



Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 14/21



Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 14/21



Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 14/21



Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 14/21



Cut Generation: Basics

Cut generation:
▶ Technique borrowed from MIP
▶ Add constraint (cut) implied by input formula
▶ Cuts away rational solution found by LP solver

Example: Minimize x1 + x2 + x3 subject to

C1
.= x1 + x2 ≥ 1

C2
.= x1 + x3 ≥ 1

C3
.= x2 + x3 ≥ 1

▶ Rational optimum x1 = x2 = x3 = 1
2

▶ Adding C1, C2 and C3 yields 2x1 + 2x2 + 2x3 ≥ 3
▶ Cutting planes division by 2 yields x1 + x2 + x3 ≥ 2
▶ VeriPB: pol @C1 @C2 + @C3 + 2 d

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 14/21



Advanced Cut Generation

Cut generation with mixed integer rounding (MIR) rule [MW01, DGN21] more challenging
Reasoning uses integer slack variables (not supported by VeriPB)
Proof logging instead uses proof by contradiction

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 15/21



Empirical Results: Proof Logging Overhead

Usually ⩽ 10%
Decision instances:
worst-case 20%
Optimization instances:
worst-case 50%
Overheads gets smaller
for larger solving times

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

RoundingSat without proof logging (s)

ad
d
it
io
n
a
l
ti
m
e
fo
r
p
ro
of

lo
gg
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 16/21



Empirical Results: Proof Checking Overhead

Usually ⩽ ×6

Decision instances:
worst-case ×10

Optimization instances:
worst-case ×20

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

RoundingSat with proof logging (s)

V
er
iP
B
+
C
ak
eP

B
p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 17/21



Empirical Results: Proof Logging Overhead Sat4j

Usually ⩽ 10%

Worst-case 60%

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

Sat4j without proof logging (s)
ad

d
it
io
n
a
l
ti
m
e
fo
r
p
ro
of

lo
gg
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 18/21



Empirical Results: Proof Checking Overhead Sat4j

Usually ⩽ ×2

Worst-case ×4

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104
timelimit

memout

Sat4j with proof logging (s)
V
er
iP
B
+
C
a
ke
P
B

p
ro
of

ch
ec
k
in
g
(s
)

decision
optimization

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 19/21



Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 20/21



Future Work

Even faster proof logging and checking for pseudo-Boolean optimization
▶ Branch-and-bound search (checking solutions currently a bottleneck)
▶ Native efficient support for simplifications of constraints
▶ Low-level optimizations in VeriPB and formally verified backend CakePB

Faster proof logging and checking for further paradigms:
▶ MaxSAT solving
▶ Subgraph solving
▶ Constraint programming
▶ ...

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 20/21



Conclusion

Efficient proof logging for pseudo-Boolean optimization using VeriPB
First example of practically feasible certified solving beyond SAT
Future directions:

▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 21/21



Conclusion

Efficient proof logging for pseudo-Boolean optimization using VeriPB
First example of practically feasible certified solving beyond SAT
Future directions:

▶ Further improvements for pseudo-Boolean optimization
▶ Efficient certified solving in other paradigms

Is this the start of a new era: practically feasible proof logging beyond SAT?

Thank you! Any questions?

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 21/21



References I

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Metamorphic testing
of constraint solvers. In Proceedings of the 24th International Conference on Principles and Practice of
Constraint Programming (CP ’18), volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, August 2018.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided
MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29),
volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer, July 2023.

[BBN+24] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.
Certifying without loss of generality reasoning in solution-improving maximum satisfiability. In Proceedings
of the 30th International Conference on Principles and Practice of Constraint Programming (CP ’24),
volume 307 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:28, September 2024.

[BCH21] Seulkee Baek, Mario Carneiro, and Marijn J. H. Heule. A flexible proof format for SAT solver-elaborator
communication. In Proceedings of the 27th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’21), volume 12651 of Lecture Notes in Computer Science,
pages 59–75. Springer, March-April 2021.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 22/21



References II

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended resolution. In
Proceedings of the 22nd International Conference on Theory and Applications of Satisfiability Testing
(SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages 71–89. Springer, July 2019.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane proofs.
Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming results. In
Proceedings of the 19th International Conference on Integer Programming and Combinatorial Optimization
(IPCO ’17), volume 10328 of Lecture Notes in Computer Science, pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-Kamp.
Efficient certified RAT verification. In Proceedings of the 26th International Conference on Automated
Deduction (CADE-26), volume 10395 of Lecture Notes in Computer Science, pages 220–236. Springer,
August 2017.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 23/21



References III

[Dev20] Jo Devriendt. Watched propagation of 0-1 integer linear constraints. In Proceedings of the 26th
International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333 of
Lecture Notes in Computer Science, pages 160–176. Springer, September 2020.

[DGD+21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting to the core of
pseudo-Boolean optimization: Combining core-guided search with cutting planes reasoning. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3750–3758, February 2021.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear
programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55, October 2021.
Preliminary version in CPAIOR ’20.

[DHN+25] Simon Dold, Malte Helmert, Jakob Nordström, Gabriele Röger, and Tanja Schindler. Pseudo-boolean proof
logging for optimal classical planning. To appear in Proceedings of the 35th International Conference on
Automated Planning and Scheduling (ICAPS ’25), 2025.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI ’20), pages 1486–1494, February 2020.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 24/21



References IV

[GCS23] Graeme Gange, Geoffrey Chu, and Peter J. Stuckey. Certifying optimality in constraint programming.
Manuscript. Available at https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf,
2023.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume
12333 of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
End-to-end verification for subgraph solving. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI ’24), pages 8038–8047, February 2024.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes:
Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 25/21

https://people.eng.unimelb.edu.au/pstuckey/papers/certified-cp.pdf


References V

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In
Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18,
August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February
2021.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In
Proceedings of the 25th International Conference on Principles and Practice of Constraint Programming
(CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582. Springer, October 2019.

[HHW13] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In
Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 26/21



References VI

[IOT+24] Hannes Ihalainen, Andy Oertel, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and
Jakob Nordström. Certified MaxSAT preprocessing. In Proceedings of the 12th International Joint
Conference on Automated Reasoning (IJCAR ’24), volume 14739 of Lecture Notes in Computer Science,
pages 396–418. Springer, July 2024.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the 6th
International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in
Computer Science, pages 355–370. Springer, June 2012.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of
the 29th International Conference on Principles and Practice of Constraint Programming (CP ’23), volume
280 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:17, August 2023.

[MM25] Matthew McIlree and Ciaran McCreesh. Certifying bounds propagation for integer multiplication
constraints. In Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI ’25), pages
11309–11317, February-March 2025.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 27/21



References VII

[MMN24] Matthew McIlree, Ciaran McCreesh, and Jakob Nordström. Proof logging for the circuit constraint. In
Proceedings of the 21st International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’24), volume 14743 of Lecture Notes in Computer Science,
pages 38–55. Springer, May 2024.

[MW01] Hugues Marchand and Laurence A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49(3):325–468, June 2001.

[NORZ24] Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Rui Zhao. Speeding up
pseudo-Boolean propagation. In Proceedings of the 27th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’24), volume 305 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 22:1–22:18, August 2024.

[Tin24] Cesare Tinelli. Scalable proof production and checking in SMT. In Proceedings of the 27th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’24), volume 305 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1–2:2, August 2024.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 28/21



References VIII

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In
Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September
2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Wietze Koops (LU & UCPH) Practically Feasible Proof Logging for Pseudo-Boolean Optimization August 21, 2025 29/21


	Appendix

