
La mémoire retrouvée: promenade en
PPC liée à mon temps passé à Uppsala

Nicolas Beldiceanu
nicolas.beldiceanu@imt-atlantique.fr

IMT Atlantique, LS2N (CNRS)
Nantes, France

Ary Murnu

“Cock-a-doodle-doo! My Lord Boyar,
Give Me Back My Two-Penny Purse!! ”

– Ion Creangă, Tale

20 August 2025

NordConsNet, Uppsala

nicolas.beldiceanu@imt-atlantique.fr

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Purpose

Illustrate:
▶ My collaboration with Mats through

an intertwined chain of events from 1986 to 2025.
▶ The pleasure of shared moments of discovery.
▶ The need to dismantle what was taken for granted

(to build something simpler).

Dwelling only on the past is boring,
focusing only on the present is arrogant,

only by linking the two do we find clarity.

2 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Purpose

Illustrate:
▶ My collaboration with Mats through

an intertwined chain of events from 1986 to 2025.
▶ The pleasure of shared moments of discovery.
▶ The need to dismantle what was taken for granted

(to build something simpler).

Dwelling only on the past is boring,
focusing only on the present is arrogant,

only by linking the two do we find clarity.

2 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Interlude

“A research result leading to a communication or publication
in a given year is often the product of many years of research,
trial and error, progress and mistakes that have been corrected,
but which have enabled progress to be made.”

– Dominique Glaymann

▶ 1999: manual map of graph invariants at SICS
→ acquiring maps of sharp bounds [CP 2022]

▶ 2000: minor enhancement of alldifferent in SICStus
→ scalable GAC for alldifferent [IJCAI 2025]

▶ 2003: meta-data of the global constraint catalogue
→ Model Seeker [CP 2012]

3 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Interlude

“A research result leading to a communication or publication
in a given year is often the product of many years of research,
trial and error, progress and mistakes that have been corrected,
but which have enabled progress to be made.”

– Dominique Glaymann

▶ 1999: manual map of graph invariants at SICS
→ acquiring maps of sharp bounds [CP 2022]

▶ 2000: minor enhancement of alldifferent in SICStus
→ scalable GAC for alldifferent [IJCAI 2025]

▶ 2003: meta-data of the global constraint catalogue
→ Model Seeker [CP 2012]

3 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Circumstances that led me to Uppsala

▶ 198?: Visit of SICS at ECRC (Seif and ?)
▶ 1987: Contact with ECRC (they reviewed my 1st paper)
▶ 1988: I join ECRC
▶ 1990: Mats supported our ICLP paper (with Abder)
▶ 05/1999: Abder suggested contacting Mats wrt academy
▶ 06/1999: Went for an interview at SICS (Seif, Mats, Per)
▶ 07/1999: Visit Stockholm with family (and met Mats)
▶ 11/1999: Join SICS in Uppsala

4 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Contents

1. Memory regained
2. The automata chronicle
3. The double life of alldifferent
4. Building Maps of hidden links between combinatorial objects
5. MDD and global constraints

5 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Part 1: Memory regained

Two things were made explicit:

▶ It is useful to describe the meaning of constraints
independently from their use.

▶ Constraints are not just algorithms but modelling tools
(independent from CP, MIP, SAT).

6 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Memory regained

▶ Introduce global constraints at ECRC
(an example of introduction of global constraints in CHIP:
application to block theory problems) [TR-LP-49,1990]

▶ Introduce a few global constraints before joining SICS
[Math Comput. Modelling, 1993, 1994]
(but from my first day at SICS,
I started with my memory and a blank page)

▶ What should I start with ?
– Went back to my classics, Laurière and Pitrat:

(toward efficiency through generality) [IJCAI 1979]
– Rediscovered by many persons:

“general methods that leverage computation are ultimately
the most effective” – Rich Sutton, 2019

7 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Global constraint catalogue ancestor

To regain memory, I decided to:

▶ Identify useful modelling abstractions

▶ Define their meaning explicitly
(independently from CP, MIP, SAT)

▶ Find ways to synthesise code from this description
(initially described with graph properties)

Lead to a first textual version in 2000 of the catalogue
[SICS Technical Report, T2000:01]

8 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Global constraint catalogue

▶ Mats defined the electronic version of the catalogue and wrote
a program that produced the textual version of the catalogue.

▶ Each constraint was described by:
– Many Prolog facts for various aspects of a constraint,
– A textual LATEX part consisting of several fields.

▶ Constraint meaning described by metadata:
– graph properties,
– finite automata, register automata, transducers,
– first-order logic formulae,
– reformulation.

Metadata used in the Model Seeker (with Helmut), [CP2012].

9 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Current status of the catalogue

▶ Less effort into the catalogue.

▶ More effort to develop an atlas of sharp bounds
over combinatorial objects:

– digraph,
– tree,
– forest,
– permutation,
– partition,
– sequence,
– cyclic sequence,
– time series.

consists of maps describing sharp bounds of
a combinatorial object’s characteristics along with their relations

10 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Part 2: the automata chronicle

Three things that were made explicit:

▶ An automaton can replace
a dedicated hand-crafted filtering algorithm.

▶ Making explicit the meaning of the transitions of
an automaton simplifies things.

▶ Using libraries of algorithms on automata is useful
for checking properties of regexp in the context
of quantitative regexp and cyclic automata.

11 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

How it all began

▶ 2001: Visit of the York group to Uppsala, where
the topic of symmetry constraints arose,
I was not there.

▶ 2002: A. M. Frisch, et al.
(global constraints for lexicographic orderings) [CP]
dedicated filtering algorithm.

▶ Question: How can we replace an ad hoc filtering algorithm
with some method derived from some first principle?

▶ Answer : Mats and myself, [ESOP 04/2004]
(from constraints to finite automata to filtering algorithms)
automaton based filtering for lex ordering and lex_chain.

12 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

How it all began

▶ 2001: Visit of the York group to Uppsala, where
the topic of symmetry constraints arose,
I was not there.

▶ 2002: A. M. Frisch, et al.
(global constraints for lexicographic orderings) [CP]
dedicated filtering algorithm.

▶ Question: How can we replace an ad hoc filtering algorithm
with some method derived from some first principle?

▶ Answer : Mats and myself, [ESOP 04/2004]
(from constraints to finite automata to filtering algorithms)
automaton based filtering for lex ordering and lex_chain.

12 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

How it all began

▶ 2001: Visit of the York group to Uppsala, where
the topic of symmetry constraints arose,
I was not there.

▶ 2002: A. M. Frisch, et al.
(global constraints for lexicographic orderings) [CP]
dedicated filtering algorithm.

▶ Question: How can we replace an ad hoc filtering algorithm
with some method derived from some first principle?

▶ Answer : Mats and myself, [ESOP 04/2004]
(from constraints to finite automata to filtering algorithms)
automaton based filtering for lex ordering and lex_chain.

12 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

How it continued

▶ Mats and myself, [CP 2004]
(deriving filtering algorithms from constraint checkers)

– Choose to use registers
alternative wrt encoding registers in states

– Reformulation rather than a dedicated algorithm
preserves GAC when no register

▶ Pesant, [CP 2004]
(a regular language membership constraint)
dedicated filtering algorithm that unfolds the automaton

13 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

How it continued

▶ Mats and myself, [CP 2004]
(deriving filtering algorithms from constraint checkers)

– Choose to use registers
alternative wrt encoding registers in states

– Reformulation rather than a dedicated algorithm
preserves GAC when no register

▶ Pesant, [CP 2004]
(a regular language membership constraint)
dedicated filtering algorithm that unfolds the automaton

13 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Development: from automata to transducers

Mats encodes many constraints on sequences of the catalogue
using automata with registers.
▶ A fun programming exercise: create constant-size automata

with the fewest registers possible.

NG
RO

UP
=

C

sC ← 0

r

0

1,

C
←

C
+

1

1

0

Automata for the group constraint: number of groups

MI
N
=

m
in
(C

,D
)

sC ← 0

r

0

1,

D
←

1

1,

D ← D + 1

0,

C
←

m
in
(C

,D
)

Automata for the group constraint: number of groups, smallest size

MAX = max(C ,D)

s

C ← 0

D ← 0

1,

D
←

D
+

1

0,

C
←

m
ax(C

,D
),D
←

0

Automata for the group constraint: number of groups, smallest size, biggest size

14 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Development: from automata to transducers

Mats encodes many constraints on sequences of the catalogue
using automata with registers.
▶ A fun programming exercise: create constant-size automata

with the fewest registers possible.

NG
RO

UP
=

C

sC ← 0

r

0

1,

C
←

C
+

1

1

0

Automata for the group constraint: number of groups

MI
N
=

m
in
(C

,D
)

sC ← 0

r

0

1,

D
←

1

1,

D ← D + 1

0,

C
←

m
in
(C

,D
)

Automata for the group constraint: number of groups, smallest size

MAX = max(C ,D)

s

C ← 0

D ← 0

1,

D
←

D
+

1

0,

C
←

m
ax(C

,D
),D
←

0

Automata for the group constraint: number of groups, smallest size, biggest size

14 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Development: from automata to transducers

Mats encodes many constraints on sequences of the catalogue
using automata with registers.
▶ A fun programming exercise: create constant-size automata

with the fewest registers possible.

NG
RO

UP
=

C

sC ← 0

r

0

1,

C
←

C
+

1

1

0

Automata for the group constraint: number of groups

MI
N
=

m
in
(C

,D
)

sC ← 0

r

0

1,

D
←

1

1,

D ← D + 1

0,

C
←

m
in
(C

,D
)

Automata for the group constraint: number of groups, smallest size

MAX = max(C ,D)

s

C ← 0

D ← 0

1,

D
←

D
+

1

0,

C
←

m
ax(C

,D
),D
←

0

Automata for the group constraint: number of groups, smallest size, biggest size

14 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Development: from automata to transducers

Mats encodes many constraints on sequences of the catalogue
using automata with registers.
▶ A fun programming exercise: create constant-size automata

with the fewest registers possible.

NG
RO

UP
=

C

sC ← 0

r

0

1,

C
←

C
+

1

1

0

Automata for the group constraint: number of groups

MI
N
=

m
in
(C

,D
)

sC ← 0

r

0

1,

D
←

1

1,

D ← D + 1

0,

C
←

m
in
(C

,D
)

Automata for the group constraint: number of groups, smallest size

MAX = max(C ,D)

s

C ← 0

D ← 0

1,

D
←

D
+

1

0,

C
←

m
ax(C

,D
),D
←

0

Automata for the group constraint: number of groups, smallest size, biggest size

14 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers (the aha moment)

▶ Transitions carry an implicit meaning
▶ Making this meaning explicit simplifies things

(mentions of arcs corresponding to mismatches in few papers)

▶ We realised that there was a common pattern
in Mats manual register automata

– Could give a semantic to the transitions:
represent the discovery phases of a pattern.

– Could implement this as
the output alphabet of a transducer.

Automaton for counting the number of peaks, i.e. ‘ < (< | =)∗(> | =)∗ > ’

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

15 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers (the aha moment)

▶ Transitions carry an implicit meaning
▶ Making this meaning explicit simplifies things

(mentions of arcs corresponding to mismatches in few papers)
▶ We realised that there was a common pattern

in Mats manual register automata
– Could give a semantic to the transitions:

represent the discovery phases of a pattern.
– Could implement this as

the output alphabet of a transducer.

Automaton for counting the number of peaks, i.e. ‘ < (< | =)∗(> | =)∗ > ’

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

15 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers (the aha moment)

▶ Transitions carry an implicit meaning
▶ Making this meaning explicit simplifies things

(mentions of arcs corresponding to mismatches in few papers)
▶ We realised that there was a common pattern

in Mats manual register automata
– Could give a semantic to the transitions:

represent the discovery phases of a pattern.
– Could implement this as

the output alphabet of a transducer.

Automaton for counting the number of peaks, i.e. ‘ < (< | =)∗(> | =)∗ > ’

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

15 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers (the aha moment)

▶ Transitions carry an implicit meaning
▶ Making this meaning explicit simplifies things

(mentions of arcs corresponding to mismatches in few papers)
▶ We realised that there was a common pattern

in Mats manual register automata
– Could give a semantic to the transitions:

represent the discovery phases of a pattern.
– Could implement this as

the output alphabet of a transducer.

Automaton for counting the number of peaks, i.e. ‘ < (< | =)∗(> | =)∗ > ’

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

≥ sR ← 0

≤ r ≥ t

≥

<

>

R ← R + 1
≤ >

=
<

15 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers
(example of peak, i.e. ‘ < (< | =)∗(> | =)∗ > ’)

≥ s

≤ r ≥ t

≥ : out

< : out

> : found

≤ : maybeb

> : in

= : maybea
< : outa

> = > < < > = < < < > < = = >
s s s s r r t t r r r t r r r t

o o o o mb f ma oa mb mb f oa mb mb foutput
states
input

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10V11V12V13V14V15V16

16 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

From automata to transducers (results)

Led to the time-series catalogue

▶ 2016: Beldiceanu, Carlsson, et al.
(Using finite transducers for describing and synthesising
structural time-series constraints)

[Constraints]

▶ 2016: Arafailova, et al.
(Global Constraint Catalogue, Vol. II, Time-Series Constraints)
[CoRR]

17 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Getting bogged down with extensions
(and hitting walls)

▶ As we could not handle all patterns we spent a lot of effort
trying to extend the phase letters with some limited success.

▶ But we hit two walls:
– Handling patterns containing many disjunctions.
– Resynchronise the computation in constant time

(register update) when we have a mismatch.

▶ In 2019, a colleague of mine, Hervé Grall, discovered a novel
simple transducer model solving the problem with the first wall
(I implemented his approach in SICStus during Covid)

18 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata in SICStus
with two unusual applications

▶ 2015-2025: my course on modelling with automata at IMT

▶ 2017 : SICStus library on regexp/automata (by Mats)

▶ 2017 : quantitative regexp
(checking properties on regexp)

▶ 2025 : circular automaton
(started with a question in a master’s internship)

19 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(checking properties)

▶ Question: come up with θ(n) checkers for
sliding time series constraints.

▶ Example : check the sum of increasing sequences,
i.e. ‘ < (< | =)∗ < | < ’, in every time window of size 10.

> < = > > = < = = < = > > < =

3

1

3 3
2

1 1

2 2 2

4 4
3

1

2 2

7 151111111414

Many properties of regexp allow one
to come up with efficient algorithms

20 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(checking properties)

▶ Question: come up with θ(n) checkers for
sliding time series constraints.

▶ Example : check the sum of increasing sequences,
i.e. ‘ < (< | =)∗ < | < ’, in every time window of size 10.

> < = > > = < = = < = > > < =

3

1

3 3
2

1 1

2 2 2

4 4
3

1

2 2

7 151111111414
Many properties of regexp allow one
to come up with efficient algorithms

20 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Example: convexity of a regexp (definition)

Definition
L is convex if for any word w = s1s2 . . . sn−1 in L and for any pair of
factors u = scsc+1 . . . sd and v = sese+1 . . . sf of w such that, both
u and v are words in L, smin(c,e)smin(c,e)+1 . . . smax(d ,f) is also in L.

Example

The langage ‘ < (< | =)∗(> | =)∗ > ’ describing a peak is convex.

Most patterns of the time-series catalogue are convex.

21 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Example: convexity of a regexp (definition)

Definition
L is convex if for any word w = s1s2 . . . sn−1 in L and for any pair of
factors u = scsc+1 . . . sd and v = sese+1 . . . sf of w such that, both
u and v are words in L, smin(c,e)smin(c,e)+1 . . . smax(d ,f) is also in L.

Example

The langage ‘ < (< | =)∗(> | =)∗ > ’ describing a peak is convex.

Most patterns of the time-series catalogue are convex.

21 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Example: convexity of a regexp (proof)

Definition
L is convex if for any word w = s1s2 . . . sn−1 in L and for any pair of
factors u = scsc+1 . . . sd and v = sese+1 . . . sf of w such that, both
u and v are words in L, smin(c,e)smin(c,e)+1 . . . smax(d ,f) is also in L.

▶ Sketch for proving L is convex using the library on regexp,
where Σ is the alphabet of L, and s a letter not in Σ.
(case when u and v are disjoint: look for counter-example)

⋂


shuffle(shuffle(L, s), s)
Σ∗s L Σ∗ L s Σ∗

Σ∗s (Σ+ \ L) s Σ∗

 = ∅

22 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Example: convexity of a regexp (proof)

Definition
L is convex if for any word w = s1s2 . . . sn−1 in L and for any pair of
factors u = scsc+1 . . . sd and v = sese+1 . . . sf of w such that, both
u and v are words in L, smin(c,e)smin(c,e)+1 . . . smax(d ,f) is also in L.

▶ Sketch for proving L is convex using the library on regexp,
where Σ is the alphabet of L, and s a letter not in Σ.
(case when u and v are disjoint: look for counter-example)

⋂


shuffle(shuffle(L, s), s)
Σ∗s L Σ∗ L s Σ∗

Σ∗s (Σ+ \ L) s Σ∗

 = ∅

22 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Results

▶ N. Beldiceanu, M. Carlsson, et al.
(classifying pattern and feature properties to get a θ(n) · · ·) [CoRR 2019]

▶ A. Hien, et al.
(automata based multivariate time series analysis · · ·) [ITISE 2023]

23 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(cyclic automata)

▶ Context: Cyclic constraints are often mentioned but not
systematically defined or addressed.

▶ Problem: compute the cyclic automaton of a finite automaton
(last position of a sequence is adjacent to the first position)

▶ Examples (with 0/1 alphabet):
– global_contiguity

1 2 3

0

1

1

0

0
(A)

0

1 2 3

4 5 6

0

1

0

1

1

0

0

1

0

0

1

1

(B)

– forbidden pattern “11”
1 2

0
1

0

(C)
0 1 2

3 4 5

0

1

0
1

0

0

0
1

0

(D)

24 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(cyclic automata)

▶ Context: Cyclic constraints are often mentioned but not
systematically defined or addressed.

▶ Problem: compute the cyclic automaton of a finite automaton
(last position of a sequence is adjacent to the first position)

▶ Examples (with 0/1 alphabet):
– global_contiguity

1 2 3

0

1

1

0

0
(A)

0

1 2 3

4 5 6

0

1

0

1

1

0

0

1

0

0

1

1

(B)

– forbidden pattern “11”
1 2

0
1

0

(C)
0 1 2

3 4 5

0

1

0
1

0

0

0
1

0

(D)

24 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(cyclic automata)

▶ Context: Cyclic constraints are often mentioned but not
systematically defined or addressed.

▶ Problem: compute the cyclic automaton of a finite automaton
(last position of a sequence is adjacent to the first position)

▶ Examples (with 0/1 alphabet):
– global_contiguity

1 2 3

0

1

1

0

0
(A)

0

1 2 3

4 5 6

0

1

0

1

1

0

0

1

0

0

1

1

(B)

– forbidden pattern “11”
1 2

0
1

0

(C)

0 1 2

3 4 5

0

1

0
1

0

0

0
1

0

(D)

24 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(cyclic automata)

▶ Context: Cyclic constraints are often mentioned but not
systematically defined or addressed.

▶ Problem: compute the cyclic automaton of a finite automaton
(last position of a sequence is adjacent to the first position)

▶ Examples (with 0/1 alphabet):
– global_contiguity

1 2 3

0

1

1

0

0
(A)

0

1 2 3

4 5 6

0

1

0

1

1

0

0

1

0

0

1

1

(B)

– forbidden pattern “11”
1 2

0
1

0

(C)
0 1 2

3 4 5

0

1

0
1

0

0

0
1

0

(D)

24 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

A library on regexp and automata
(e.g., computing the cyclic automata for global_contiguity)

1 2 3

0

1

1

0

0

1

0

2 3

1

0

0

2

1

3

0

3

0

0

1 2 3

4 5 6

0

1

0

1

1

0

0

1

0

0

1

1

concat

concat

concat

union =

Suffix automata wrt states 1, 2, 3 Prefix automata wrt states 1, 2, 3

























25 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Generating cyclic automata (remarks)

▶ Building the cyclic automata by hand is horrible
(as states have to record how the sequence starts

to know how the sequence can end).

▶ If the original automaton has n states,
the cyclic version may have O(n2) states.

▶ Use SICStus library on regexp to generate circular automata
(an hour for generating an automaton with 80000 states).

▶ Automata associated with global constraints are structured
(exploiting this structure may very likely speed up
many operations on automata).

26 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Part 3: the double life of alldifferent

One thing we made explicit:

▶ Don’t be a prisoner to what you’ve learned
during your early studies (Tarjan algorithm).

27 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

The double life of alldifferent a flood of events, whether

related or unrelated, visible or not, · · · and the curse of DFS

▶ 1970: Berge (edges belonging to a maximum matching) [Graphes]

▶ 1972: Tarjan (DFS and linear graph algorithms) [SIAM J. Comp]

▶ 1973: Hopcroft, Karp (an n
5
2 · · · graphs) [SIAM J. Comp]

▶ 1976: Laurière (Alice) [HDR]

▶ 1994: Régin (GAC for alldiff) [AAAI]

▶ 2002: Dahlhaus, et al. (Partially complemented representations
of digraphs) [Discrete Math. Theor. Comput. Sci.]

▶ 2008: Gent, et al. (GAC for alldiff: empirical survey) [Constraints]

▶ 2018-2023: (4 papers for enhancing GAC for alldiff) [IJCAI]

▶ 2023: Tardivo, et al. (GPU for GAC alldiff) [J. Log. Computing]

28 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

The double life of alldifferent
a stream of widely spaced events

▶ 2000: Carlsson, myself (hook in the SICStus GAC alldiff) SICStus

▶ 2025: Le Bozec-Chiffoleau, et al. (Scalable GAC for alldiff) [IJCAI]

29 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

GAC for alldifferent: hook for computing scc
in SICStus in 2000

▶ In some cases no need to explore all arcs:
if a DFS builds a single path visiting all nodes and comes back
to the initial node, find one scc in O(n) rather than in O(m)
(save time for dense graphs).

30 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Scalable GAC for alldifferent in 2025

▶ Le Bozec-Chiffoleau, et al., [IJCAI]
(bimodal depth-first search for scalable GAC for alldifferent)

▶ Theoretical worst-case complexity of bimodal DFS:
O(n + ~m)
where m̃ is the sum, for each vertex v ,

of the minimum between
• the numbers of successors and
• the non-successors of v .

31 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Our approach: key question and key idea

▶ Start from the edge classification in a DFS.

▶ Knew that:
– Need to accelerate the visit of unvisited nodes in a DFS.
– The graph needs to be represented implictly

from the domains and matching.
– Can compute the scc during the post visit of each node.

▶ Key question:
how to efficiently scan over unvisited successors of a node v ?

▶ Key idea: for each node v , dynamically choose between
– Iterating over the successors of v : explore the unvisited ones.
– iterating over the unvisited ones : find the successors of v .

▶ How: use a data structure (tracking list)
to handle the unvisited nodes.

32 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Illustration of the key idea of bimodal DFS
(example from Sulian)

Bimodal Depth-First Search for Scalable GAC for AllDi�erent
Paper N°4956
Sulian Le Bozec-Chi�oleau1, Nicolas Beldiceanu1, Charles Prud’homme1, Gilles Simonin1, Xavier Lorca2
1IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
2Centre Génie Industriel, IMT Mines Albi, Université de Toulouse, Albi
sulian.le-bozec-chi�oleau@imt-atlantique.fr

Motivation: The Alldifferent Constraint
Alldifferent(x0, x1, . . . , xn≠1) © xi ”= xj , ’i ”= j with Régin’s GAC algorithm [Régin, AAAI 1994]

æ a key constraint in Constraint Programming (CP)

• MAIN BOTTLENECK: Computing the strongly connected components (SCCs) is time-consuming [Gent et al., AIJ 2008]

• OPTIMISATIONS : [Zhang et al., IJCAI 2018], [Li et al., IJCAI 2023], [Zhen et al., IJCAI 2023], [Tardivo et al., J. Log. Comput. 2023]
æ none of them lead to theoretical improvements!

• OUR CONTRIBUTION: Bimodal DFS to construct a DFS-tree faster when computing the SCCs
æ theoretical and practical improvements on large graphs!

Literature [Dahlhaus et al., DMTCS 2002]
Partially-Complemented Graph G̃:
– If |N+(v)| < |N+(v)| æ store N+(v)
– If |N+(v)| Ø |N+(v)| æ store N+(v)

With G̃, a DFS-tree can be found in O(n+m̃) time,
where m̃ =

q
vœV min(d+(v), n ≠ d+(v))

Graphs Representations in CP
Graphs are implicitly derived from

integer variable domains.

Operations over a domain D ™ [1, N]:

Operation Complexity
check a value in D O(1)
iteration over D O(|D|)
iteration over D O(N)

Cannot use the partially-complemented DFS

Our Bimodal DFS
æ Construct a DFS-tree in O(n + m̃) time

on a graph derived from integer domains.

Complexity Assumptions:
– check if an arc (v, w) exists in O(1) time
– iteration over N+(v) in O(d+(v)) time

æ Use a doubly linked list for
the unvisited vertices.

Don’t suppress links from removed nodes!

Bimodal DFS: Build a DFS-Tree in O(n+ m̃) Time
Example: build a DFS-tree from vertex a (focus on vertex i).

First visit of i æ N+(i) = {a, c, d, e, j, k, l,m} and Unvisited = {b, f, g, h, k, l}.
|Unvisited| < |N+(i)| =∆ Iterate over Unvisited instead of N+(i)
to find the vertices to explore from i .

Record with pi the last node traversed in Unvisited
before finding the next unvisited successor of i to explore.

old new
Next vertex to explore fromFirst visit of

Second visit of i æ Iterate over Unvisited from pi

to avoid iterating from scratch. (Repeat this for future visits)

old

new Second Next vertex to explore from
visit of

First visit

Second visit

THEORETICAL GUARANTEE: exploring a vertex v takes
O(n≠d+(v)+d+

DFS(v)) time when iterating over Unvisited.

=∆ A DFS-tree can be found in O(n + m̃) time.

This result is extended to the computation of SCCs.

Experiments using choco-solver

Four strategies for our bimodal approach:

Name Iterate over Unvisited when
CLASSIC Never
COMP Always
PARTIAL |Unvisited| < |D(x)|
TUNED


|Unvisited| < |D(x)|

Three built-in algorithms in choco-solver:
REGIN, ZHANG and BC (Bound Consistency)

COMP and TUNED perform best, with growing speedup as the input size increases!

GAC is now close to the speed of BC, but solves more problems!

Link To Paper

BIMODAL DFS
C O N S T R A I N T P R O G R A M M I N G

Bimodal Depth-First Search for Scalable GAC for AllDi�erent
Paper N°4956
Sulian Le Bozec-Chi�oleau1, Nicolas Beldiceanu1, Charles Prud’homme1, Gilles Simonin1, Xavier Lorca2
1IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
2Centre Génie Industriel, IMT Mines Albi, Université de Toulouse, Albi
sulian.le-bozec-chi�oleau@imt-atlantique.fr

Motivation: The Alldifferent Constraint
Alldifferent(x0, x1, . . . , xn≠1) © xi ”= xj , ’i ”= j with Régin’s GAC algorithm [Régin, AAAI 1994]

æ a key constraint in Constraint Programming (CP)

• MAIN BOTTLENECK: Computing the strongly connected components (SCCs) is time-consuming [Gent et al., AIJ 2008]

• OPTIMISATIONS : [Zhang et al., IJCAI 2018], [Li et al., IJCAI 2023], [Zhen et al., IJCAI 2023], [Tardivo et al., J. Log. Comput. 2023]
æ none of them lead to theoretical improvements!

• OUR CONTRIBUTION: Bimodal DFS to construct a DFS-tree faster when computing the SCCs
æ theoretical and practical improvements on large graphs!

Literature [Dahlhaus et al., DMTCS 2002]
Partially-Complemented Graph G̃:
– If |N+(v)| < |N+(v)| æ store N+(v)
– If |N+(v)| Ø |N+(v)| æ store N+(v)

With G̃, a DFS-tree can be found in O(n+m̃) time,
where m̃ =

q
vœV min(d+(v), n ≠ d+(v))

Graphs Representations in CP
Graphs are implicitly derived from

integer variable domains.

Operations over a domain D ™ [1, N]:

Operation Complexity
check a value in D O(1)
iteration over D O(|D|)
iteration over D O(N)

Cannot use the partially-complemented DFS

Our Bimodal DFS
æ Construct a DFS-tree in O(n + m̃) time

on a graph derived from integer domains.

Complexity Assumptions:
– check if an arc (v, w) exists in O(1) time
– iteration over N+(v) in O(d+(v)) time

æ Use a doubly linked list for
the unvisited vertices.

Don’t suppress links from removed nodes!

Bimodal DFS: Build a DFS-Tree in O(n+ m̃) Time
Example: build a DFS-tree from vertex a (focus on vertex i).

First visit of i æ N+(i) = {a, c, d, e, j, k, l,m} and Unvisited = {b, f, g, h, k, l}.
|Unvisited| < |N+(i)| =∆ Iterate over Unvisited instead of N+(i)
to find the vertices to explore from i .

Record with pi the last node traversed in Unvisited
before finding the next unvisited successor of i to explore.

old new
Next vertex to explore fromFirst visit of

Second visit of i æ Iterate over Unvisited from pi

to avoid iterating from scratch. (Repeat this for future visits)

old

new Second Next vertex to explore from
visit of

First visit

Second visit

THEORETICAL GUARANTEE: exploring a vertex v takes
O(n≠d+(v)+d+

DFS(v)) time when iterating over Unvisited.

=∆ A DFS-tree can be found in O(n + m̃) time.

This result is extended to the computation of SCCs.

Experiments using choco-solver

Four strategies for our bimodal approach:

Name Iterate over Unvisited when
CLASSIC Never
COMP Always
PARTIAL |Unvisited| < |D(x)|
TUNED


|Unvisited| < |D(x)|

Three built-in algorithms in choco-solver:
REGIN, ZHANG and BC (Bound Consistency)

COMP and TUNED perform best, with growing speedup as the input size increases!

GAC is now close to the speed of BC, but solves more problems!

Link To Paper

BIMODAL DFS
C O N S T R A I N T P R O G R A M M I N G

33 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Illustration of the key idea of bimodal DFS

Bimodal Depth-First Search for Scalable GAC for AllDi�erent
Paper N°4956
Sulian Le Bozec-Chi�oleau1, Nicolas Beldiceanu1, Charles Prud’homme1, Gilles Simonin1, Xavier Lorca2
1IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
2Centre Génie Industriel, IMT Mines Albi, Université de Toulouse, Albi
sulian.le-bozec-chi�oleau@imt-atlantique.fr

Motivation: The Alldifferent Constraint
Alldifferent(x0, x1, . . . , xn≠1) © xi ”= xj , ’i ”= j with Régin’s GAC algorithm [Régin, AAAI 1994]

æ a key constraint in Constraint Programming (CP)

• MAIN BOTTLENECK: Computing the strongly connected components (SCCs) is time-consuming [Gent et al., AIJ 2008]

• OPTIMISATIONS : [Zhang et al., IJCAI 2018], [Li et al., IJCAI 2023], [Zhen et al., IJCAI 2023], [Tardivo et al., J. Log. Comput. 2023]
æ none of them lead to theoretical improvements!

• OUR CONTRIBUTION: Bimodal DFS to construct a DFS-tree faster when computing the SCCs
æ theoretical and practical improvements on large graphs!

Literature [Dahlhaus et al., DMTCS 2002]
Partially-Complemented Graph G̃:
– If |N+(v)| < |N+(v)| æ store N+(v)
– If |N+(v)| Ø |N+(v)| æ store N+(v)

With G̃, a DFS-tree can be found in O(n+m̃) time,
where m̃ =

q
vœV min(d+(v), n ≠ d+(v))

Graphs Representations in CP
Graphs are implicitly derived from

integer variable domains.

Operations over a domain D ™ [1, N]:

Operation Complexity
check a value in D O(1)
iteration over D O(|D|)
iteration over D O(N)

Cannot use the partially-complemented DFS

Our Bimodal DFS
æ Construct a DFS-tree in O(n + m̃) time

on a graph derived from integer domains.

Complexity Assumptions:
– check if an arc (v, w) exists in O(1) time
– iteration over N+(v) in O(d+(v)) time

æ Use a doubly linked list for
the unvisited vertices.

Don’t suppress links from removed nodes!

Bimodal DFS: Build a DFS-Tree in O(n+ m̃) Time
Example: build a DFS-tree from vertex a (focus on vertex i).

First visit of i æ N+(i) = {a, c, d, e, j, k, l,m} and Unvisited = {b, f, g, h, k, l}.
|Unvisited| < |N+(i)| =∆ Iterate over Unvisited instead of N+(i)
to find the vertices to explore from i .

Record with pi the last node traversed in Unvisited
before finding the next unvisited successor of i to explore.

old new
Next vertex to explore fromFirst visit of

Second visit of i æ Iterate over Unvisited from pi

to avoid iterating from scratch. (Repeat this for future visits)

old

new Second Next vertex to explore from
visit of

First visit

Second visit

THEORETICAL GUARANTEE: exploring a vertex v takes
O(n≠d+(v)+d+

DFS(v)) time when iterating over Unvisited.

=∆ A DFS-tree can be found in O(n + m̃) time.

This result is extended to the computation of SCCs.

Experiments using choco-solver

Four strategies for our bimodal approach:

Name Iterate over Unvisited when
CLASSIC Never
COMP Always
PARTIAL |Unvisited| < |D(x)|
TUNED


|Unvisited| < |D(x)|

Three built-in algorithms in choco-solver:
REGIN, ZHANG and BC (Bound Consistency)

COMP and TUNED perform best, with growing speedup as the input size increases!

GAC is now close to the speed of BC, but solves more problems!

Link To Paper

BIMODAL DFS
C O N S T R A I N T P R O G R A M M I N G

Bimodal Depth-First Search for Scalable GAC for AllDi�erent
Paper N°4956
Sulian Le Bozec-Chi�oleau1, Nicolas Beldiceanu1, Charles Prud’homme1, Gilles Simonin1, Xavier Lorca2
1IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
2Centre Génie Industriel, IMT Mines Albi, Université de Toulouse, Albi
sulian.le-bozec-chi�oleau@imt-atlantique.fr

Motivation: The Alldifferent Constraint
Alldifferent(x0, x1, . . . , xn≠1) © xi ”= xj , ’i ”= j with Régin’s GAC algorithm [Régin, AAAI 1994]

æ a key constraint in Constraint Programming (CP)

• MAIN BOTTLENECK: Computing the strongly connected components (SCCs) is time-consuming [Gent et al., AIJ 2008]

• OPTIMISATIONS : [Zhang et al., IJCAI 2018], [Li et al., IJCAI 2023], [Zhen et al., IJCAI 2023], [Tardivo et al., J. Log. Comput. 2023]
æ none of them lead to theoretical improvements!

• OUR CONTRIBUTION: Bimodal DFS to construct a DFS-tree faster when computing the SCCs
æ theoretical and practical improvements on large graphs!

Literature [Dahlhaus et al., DMTCS 2002]
Partially-Complemented Graph G̃:
– If |N+(v)| < |N+(v)| æ store N+(v)
– If |N+(v)| Ø |N+(v)| æ store N+(v)

With G̃, a DFS-tree can be found in O(n+m̃) time,
where m̃ =

q
vœV min(d+(v), n ≠ d+(v))

Graphs Representations in CP
Graphs are implicitly derived from

integer variable domains.

Operations over a domain D ™ [1, N]:

Operation Complexity
check a value in D O(1)
iteration over D O(|D|)
iteration over D O(N)

Cannot use the partially-complemented DFS

Our Bimodal DFS
æ Construct a DFS-tree in O(n + m̃) time

on a graph derived from integer domains.

Complexity Assumptions:
– check if an arc (v, w) exists in O(1) time
– iteration over N+(v) in O(d+(v)) time

æ Use a doubly linked list for
the unvisited vertices.

Don’t suppress links from removed nodes!

Bimodal DFS: Build a DFS-Tree in O(n+ m̃) Time
Example: build a DFS-tree from vertex a (focus on vertex i).

First visit of i æ N+(i) = {a, c, d, e, j, k, l,m} and Unvisited = {b, f, g, h, k, l}.
|Unvisited| < |N+(i)| =∆ Iterate over Unvisited instead of N+(i)
to find the vertices to explore from i .

Record with pi the last node traversed in Unvisited
before finding the next unvisited successor of i to explore.

old new
Next vertex to explore fromFirst visit of

Second visit of i æ Iterate over Unvisited from pi

to avoid iterating from scratch. (Repeat this for future visits)

old

new Second Next vertex to explore from
visit of

First visit

Second visit

THEORETICAL GUARANTEE: exploring a vertex v takes
O(n≠d+(v)+d+

DFS(v)) time when iterating over Unvisited.

=∆ A DFS-tree can be found in O(n + m̃) time.

This result is extended to the computation of SCCs.

Experiments using choco-solver

Four strategies for our bimodal approach:

Name Iterate over Unvisited when
CLASSIC Never
COMP Always
PARTIAL |Unvisited| < |D(x)|
TUNED


|Unvisited| < |D(x)|

Three built-in algorithms in choco-solver:
REGIN, ZHANG and BC (Bound Consistency)

COMP and TUNED perform best, with growing speedup as the input size increases!

GAC is now close to the speed of BC, but solves more problems!

Link To Paper

BIMODAL DFS
C O N S T R A I N T P R O G R A M M I N G

34 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

Three built-in algorithms in CHOCO:
REGIN, ZHANG and BC

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

Three built-in algorithms in CHOCO:
REGIN, ZHANG and BC

1000 2000 3000 4000 5000 6000
Size of the queens4_N Instance (N)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

BC
CLASSIC
COMP
PARTIAL
TUNED
REGIN
ZHANG

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

Three built-in algorithms in CHOCO:
REGIN, ZHANG and BC

1000 2000 3000 4000 5000 6000
Size of the queens4_N Instance (N)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

BC
CLASSIC
COMP
PARTIAL
TUNED
REGIN
ZHANG

COMP and TUNED are close to the speed of BC and solve more problems!

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

Three built-in algorithms in CHOCO:
REGIN, ZHANG and BC

1000 2000 3000 4000 5000 6000
Size of the queens4_N Instance (N)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

BC
CLASSIC
COMP
PARTIAL
TUNED
REGIN
ZHANG

COMP and TUNED are close to the speed of BC and solve more problems!

COMP and TUNED offer growing speedups compare to the other GAC algorithms
as the input size increases!

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Experiments using CHOCO (Sulian, Charles)

Mainly carried by alldifferent for which the size is gradually increased.

Four strategies for our bimodal approach:

Name Iterate over Unvisited when

CLASSIC Never

COMP Always

PARTIAL |Unvisited | < |D(x)|
TUNED

√
|Unvisited | < |D(x)|

Three built-in algorithms in CHOCO:
REGIN, ZHANG and BC

1000 2000 3000 4000 5000 6000
Size of the queens4_N Instance (N)

0

200

400

600

800

1000

Ti
m

e
(s

ec
on

ds
)

BC
CLASSIC
COMP
PARTIAL
TUNED
REGIN
ZHANG

COMP and TUNED are close to the speed of BC and solve more problems!

COMP and TUNED offer growing speedups compare to the other GAC algorithms
as the input size increases!

GAC may now be chosen over BC as the default
consistency level for propagating alldifferent!

35 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Post-Mortem Analysis

▶ The bottleneck for computing the scc has been recognised
inside and outside the CP community
(motivating a few GPU-based approaches for scc).

▶ Scc computation usually taught
using Tarjan or Kosaraju algorithms
(both implicitly assume that every arc needs to be scanned).

▶ Potentially relevant work gets unnoticed,
(the partial complementary representation of Dahlhaus et al.).

36 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Post-Mortem Analysis (continued)

▶ In CP, we derive many graphs from the domain store of
a subset of variables + some extra linear size information
(e.g. for alldifferent domain store + maximum matching)

– Copying/creating explicitly these graphs kills you,
and motivated bound-consistency algorithms.

▶ Remark from Laurière’s HDR in 1976:
– No use of ad hoc graph algorithms for alldifferent

as intelligent systems should not rely on black-box algorithms,
but should rather be able to reconstruct them
from some kind of first principles.

37 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Part 4: building maps of hidden links between
combinatorial objects

One thing we made explicit:

▶ It is very difficult to define what is a simple formula.

38 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Genesis of the idea of a map

▶ Observations in 1999:
– Many constraints of CHIP had a lot of arguments (up to 16).
– These arguments do not vary independently.
– It is impossible to catch all their interactions

within a single filtering algorithm.

So I planned capturing these interactions in a systematic way
with so-called map.

39 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

First map of sharp bounds at SICS in 2000

MIN_NCC=NVERTEX MIN_NSCC=0 NCC=1 NSCC=1 NSOURCE=0 NSINK=0

MIN_NCC=MAX_NCC
NSCC=NCC

NCC=1

MIN_NCC=1

NCC=1

NCC=1

NSOURCE=0
NSINK=0

NCC=1
NCC=1NCC=ceil(NVERTEX/MAX_NCC)?

MAX_NCC=NVERTEX-NCC+1?

MIN_NCC=NVERTEX

NSCC=1+(MIN_NCC>NVERTEX)?

NSINK=0

NSOURCE=0

NSINK=0

At that time, the notion of learning bounds from data was not there,
so in 2019, I started a project to learn such maps

(with Claude-Guy, Jovial, Ramiz, Rémi)

40 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

First map of sharp bounds at SICS in 2000

MIN_NCC=NVERTEX MIN_NSCC=0 NCC=1 NSCC=1 NSOURCE=0 NSINK=0

MIN_NCC=MAX_NCC
NSCC=NCC

NCC=1

MIN_NCC=1

NCC=1

NCC=1

NSOURCE=0
NSINK=0

NCC=1
NCC=1NCC=ceil(NVERTEX/MAX_NCC)?

MAX_NCC=NVERTEX-NCC+1?

MIN_NCC=NVERTEX

NSCC=1+(MIN_NCC>NVERTEX)?

NSINK=0

NSOURCE=0

NSINK=0

At that time, the notion of learning bounds from data was not there,
so in 2019, I started a project to learn such maps

(with Claude-Guy, Jovial, Ramiz, Rémi)

40 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Some context

▶ Combinatorial object: mathematical structure with
a finite number of elements
(permutation, partition).

▶ Characteristics: metric characterising an instance
of the combinatorial object
(number of cycles of a permutation).

41 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Some context

▶ Conjecture: assumed formula, linking characteristics.

▶ Invariant: conjecture having been proven
sharp bound on number of arcs in a digraph:

m ≤ n2.

▶ Formula bias: the space of formula considered by invariants.

42 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

What sets conjecture acquisition apart from
typical machine learning tasks

▶ Need to fit perfectly all positive examples.

▶ The formula bias is huge.

▶ Need to select the most significant conjectures
from many and prove them.

43 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Map example of interrelated sharp bounds
Upper bounds of number of arcs a of a digraph wrt:
▶ number of vertices v ,
▶ number of connected components c ,
▶ size of the smallest connected component c .2 Nicolas Beldiceanu and Athanael Jousselin

(A)

∂ a  (c� 1) · c2 + (v � (c� 1) · c)2

K2 K2 K3 : v = 7, c = 3, c = 2, a = 17

(B)

∑ a  c2 + (v � c)2

∞ c = (v = c) ? 1 : 2

K2 K5 : v = 7, c = 2, a = 29

(C)

∏ a  (c� 1) + (v � (c� 1))2

± c = (c = 1) ? v : 1

K1 K1 K5 : v = 5, c = 3, a = 27

(D)

π a  v2

≤ c = v ≥ c = 1

K7 : v = 7, a = 49

∞ ±

≤ ≥

{v, c, c}

{v, c} {v, c}

{v}

44 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Bound for the BACP: sharp lower bound on
sum of the squares of the parts of a partition

▶ n is the number of elements of the partition,
▶ P is its number of parts,
▶ M is its size of the smallest part,
▶ M is its size of the biggest part.

S ≥ 2 · a · nn + ss + nn − a2 · vv − a · vv

vv = (P = 1 ? 0 : P − 2)

nn = max(n − M − M, 0)

a =


⌊nn
vv

⌋
if P > 2

0 else

ss =

{
M2 + M

2
if P ≥ 2

M2 else

45 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Bound for the BACP: sharp lower bound on
sum of the squares of the parts of a partition

▶ n is the number of elements of the partition,
▶ P is its number of parts,
▶ M is its size of the smallest part,
▶ M is its size of the biggest part.

S ≥ 2 · a · nn + ss + nn − a2 · vv − a · vv

vv = (P = 1 ? 0 : P − 2)

nn = max(n − M − M, 0)

a =


⌊nn
vv

⌋
if P > 2

0 else

ss =

{
M2 + M

2
if P ≥ 2

M2 else

45 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Sharp lower bound on sum of the squares
(intuition when P ≥ 2 from Jovial)

Minimising the sum of squares means
balancing the load as effectively as possible,
while considering the feasibility constraints.

46 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Sharp lower bound on sum of the squares
(intuition when P ≥ 2 from Jovial)

S ≥ M
2 · 1 +M2 · 1 + (a + 1)2 · (nn mod vv) + a2 · (vv − (nn mod vv))

Smin =
∑

i Sizei
2 × number of parts of size Sizei

with Sizei ∈ {M,M, a + 1, a}

1 + 1 + nn mod vv + vv − (nn mod vv) = P parts

▶ P : number of parts,
▶ nn : number of elements remaining without the largest and smallest parts,
▶ vv : number of remaining parts without the largest and smallest parts,
▶ a : average size of parts excluding the largest and smallest parts.

47 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Application to BACP [CPAIOR 2025]

(minimising the sum of squares of students’ load)

SICStus Chuffed
Number of Average time Number of Average time
instances to prove instances to prove
solved optimality solved optimality

Model 1 (Boolean) 29 1 min 30 0.2 min

Model 2 (Partition) 11 2.5 min 31 0.2 min

Model 3 (Cumulative) 29 1.2 min 27 1.6 min

No model proved optimality without the sharp bounds.

48 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Bound Seeker on 8 combinatorial objects

Combinatorial object # of maps # of conjectures

Digraphs 16 2413

Rooted trees 10 189

Rooted forests with isolated vertex 20 1862

Rooted forests without isolated vertex 20 1779

Non empty partitions 10 779

Partitions with empty set 10 343

Sequences of 0/1 20 4603

Cyclic Sequences of 0/1 20 4162

Total 126 16130

49 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Part 5: MDD and global constraints

Two observations and one question:

▶ The appeal of representing all solutions
as memory capacity and core count grow.

▶ The wide gap between a general method
and dedicated filtering algorithms.

Are they really irreconcilable?

50 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

MDD in CP

▶ Probably introduced in CP by me and Mats,
see case constraint, [SICStus Release 3.9.0, 2002].

▶ Motivated:
– originally by configuration problems

(putting together several element constraints),
– later by constraints on sequences, and
– recently for encoding large corpus

(generating text with LLM and CP).

▶ Later on, a lot of work on MDD in CP:
e.g., Yap, Van Hoeve, Cire, Régin, Michel.

▶ Relaxation of global constraints with limited-width MDDs.

51 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

The MDD paradox

▶ On the one hand, MDD are general.

▶ On the other hand, global constraints (cumulatives, diffn,
lex_chain, stable_keysort) have dedicated filtering algorithms.

▶ But many (configuration) problems would benefit from a tight
integration of both worlds.

Question: how to do such tight integration?

52 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Conclusion

▶ After industry, I could start my academic career
at SICS in Uppsala with Mats, where

– I found support.
– A non-competitive atmosphere (compete just with yourself).
– Lagom (got an annual review in a casual park setting during

a company outing).
– Publications are the result of a work, not a goal per se.

There are so many potential research topics that all you have to do
is look around and scratch the surface a little.

53 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Epilogue

▶ Prolog Day Symposium, 10 November 2022, in Paris.

▶ Price won by people using SICStus,
(train traffic control, Siemens).

▶ Video about Colmerauer returning
to Europe and creating Prolog;

54 / 55

Memoryregained Automata Double life of alldifferent Maps MDDand global constraints Conclusion

Epilogue
▶ Prolog Day Symposium, 10 November 2022, in Paris.

▶ Price won by people using SICStus,
(train traffic control, Siemens).

▶ Video about Colmerauer returning
to Europe and creating Prolog;
in fact Colmerauer told me once:

“Mats was a person of few words
but understood Prolog more than him.” Fontainebleau

55 / 55

	Memory regained
	Automata
	Double life of alldifferent
	Maps
	MDD and global constraints
	Conclusion

