
Dependency-Curated
Large Neighbourhood Search

Pierre Flener,
Frej Knutar Lewander, Justin Pearson

Uppsala University
Sweden

21st August 2025

Large Neighbourhood Search (LNS)

LNS is an iterative approach for solving optimisation problems.

In each LNS iteration, a freeze set is selected, where the value of each variable in
the freeze set is kept from the incumbent solution.

The value of each remaining variable is found and assigned via solving.

x1 x2 x3 x4 x5

2 of 23

Large Neighbourhood Search (LNS)

LNS is an iterative approach for solving optimisation problems.

In each LNS iteration, a freeze set is selected, where the value of each variable in
the freeze set is kept from the incumbent solution.

The value of each remaining variable is found and assigned via solving.

x1 x2 x3 x4 x5

2 of 23

Large Neighbourhood Search (LNS)

LNS is an iterative approach for solving optimisation problems.

In each LNS iteration, a freeze set is selected, where the value of each variable in
the freeze set is kept from the incumbent solution.

The value of each remaining variable is found and assigned via solving.

x1 x2 x3 x4 x5

2 of 23

Selection Heuristics

� The selection heuristic selects a freeze set in each LNS iteration.

� A selection heuristic can be generic or specific to a problem.

� Much research has been performed on finding LNS selection heuristics that
select freeze sets that lead to high-quality solutions.

3 of 23

Selection Heuristics

� The selection heuristic selects a freeze set in each LNS iteration.

� A selection heuristic can be generic or specific to a problem.

� Much research has been performed on finding LNS selection heuristics that
select freeze sets that lead to high-quality solutions.

3 of 23

Selection Heuristics

� The selection heuristic selects a freeze set in each LNS iteration.

� A selection heuristic can be generic or specific to a problem.

� Much research has been performed on finding LNS selection heuristics that
select freeze sets that lead to high-quality solutions.

3 of 23

Relaxed Car Sequencing
Running example: relaxed car sequencing (RCS) description

� For each feature and any three
subsequent cars, at most two of
them can have that feature.

� Produce two cars of each car
type.

� Produce at most two cars of
each non-dummy car type.

� Minimise the number of
produced dummy cars.

Car Type Red Paint Windshield

4 of 23

Relaxed Car Sequencing
Running example: relaxed car sequencing (RCS) description

� For each feature and any three
subsequent cars, at most two of
them can have that feature.

� Produce two cars of each car
type.

� Produce at most two cars of
each non-dummy car type.

� Minimise the number of
produced dummy cars.

Car Type Red Paint Windshield

4 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

0
#

0
#

0
#

6
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

0
#

0
#

0
#

6
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

0
#

0
#

0
#

6
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

2
#

1
#

2
#

1
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

2
#

1
#

2
#

1
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Relaxed Car Sequencing
Running example: RCS model & visualisation

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

2
#

2
#

2
#

0
#

Any assignment of the variables {c1, . . . , c6} fixes the values of the remaining
variables.

5 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:

� has variables X ∪ Y , where
� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:
� has variables X ∪ Y , where

� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:
� has variables X ∪ Y , where

� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:
� has variables X ∪ Y , where

� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:
� has variables X ∪ Y , where

� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

Dependency Constraints

Definition: dependency constraint
A dependency constraint c:
� has variables X ∪ Y , where

� X are the input variables and
� Y are the output variables.

� determines the values of the output variables Y given the values of the input
variables X .

We say that c functionally defines output variables Y given input variables X .

Example: dependency constraint
The number of variables in {c1, . . . , c6} that take value .

6 of 23

General Idea

For a generic selection heuristic, any variable can typically be included in the
freeze set.

We want to exclude variables from the freeze set that are functionally defined by
other variables.

Our hope is that doing this will:
� reduce the overall memory footprint and
� lead to high-quality solutions.

7 of 23

General Idea

For a generic selection heuristic, any variable can typically be included in the
freeze set.

We want to exclude variables from the freeze set that are functionally defined by
other variables.

Our hope is that doing this will:
� reduce the overall memory footprint and
� lead to high-quality solutions.

7 of 23

General Idea

For a generic selection heuristic, any variable can typically be included in the
freeze set.

We want to exclude variables from the freeze set that are functionally defined by
other variables.

Our hope is that doing this will:
� reduce the overall memory footprint and

� lead to high-quality solutions.

7 of 23

General Idea

For a generic selection heuristic, any variable can typically be included in the
freeze set.

We want to exclude variables from the freeze set that are functionally defined by
other variables.

Our hope is that doing this will:
� reduce the overall memory footprint and
� lead to high-quality solutions.

7 of 23

Set of Search Variables

Definition: set of search variables
A set of search variables transitively functionally defines all other variables.

Example: set of search variables
� The set of car type variables {c1, . . . c6} is a set of search variables for RCS.
� The set of all variables is a set of search variables.

8 of 23

Set of Search Variables

Definition: set of search variables
A set of search variables transitively functionally defines all other variables.

Example: set of search variables
� The set of car type variables {c1, . . . c6} is a set of search variables for RCS.

� The set of all variables is a set of search variables.

8 of 23

Set of Search Variables

Definition: set of search variables
A set of search variables transitively functionally defines all other variables.

Example: set of search variables
� The set of car type variables {c1, . . . c6} is a set of search variables for RCS.
� The set of all variables is a set of search variables.

8 of 23

Approach

1. Before search starts, find a set S of search variables.

(We are guaranteed to find one as the set of all variables is a set of search
variables.)

2. During each LNS iteration, enforce the freeze set to be a subset of S.

9 of 23

Approach

1. Before search starts, find a set S of search variables.
(We are guaranteed to find one as the set of all variables is a set of search
variables.)

2. During each LNS iteration, enforce the freeze set to be a subset of S.

9 of 23

Approach

1. Before search starts, find a set S of search variables.
(We are guaranteed to find one as the set of all variables is a set of search
variables.)

2. During each LNS iteration, enforce the freeze set to be a subset of S.

9 of 23

The Dependency Graph

The variables and the functional definitions via dependency constraints induce a
directed graph, called the Dependency Graph.

� Each variable is a vertex in the graph.

� For each dependency constraint with input variables X and output
variables Y , there is a vertex d in the graph and

� an arc from each x ∈ X to d and
� an arc from d to each variable y ∈ Y.

10 of 23

The Dependency Graph

The variables and the functional definitions via dependency constraints induce a
directed graph, called the Dependency Graph.

� Each variable is a vertex in the graph.

� For each dependency constraint with input variables X and output
variables Y , there is a vertex d in the graph and

� an arc from each x ∈ X to d and
� an arc from d to each variable y ∈ Y.

10 of 23

The Dependency Graph

The variables and the functional definitions via dependency constraints induce a
directed graph, called the Dependency Graph.

� Each variable is a vertex in the graph.

� For each dependency constraint with input variables X and output
variables Y , there is a vertex d in the graph and

� an arc from each x ∈ X to d and
� an arc from d to each variable y ∈ Y.

10 of 23

Example: the Dependency Graph

Running example: RCS dependency subgraph

ci

Element

Element

fi,r

fi,w

SlidingSum

SlidingSum
Gcc

#

#

Note that not all variables, arcs, and edges are depicted in the subgraph.

11 of 23

Example: the Dependency Graph

Running example: RCS dependency subgraph

ci

Element

Element

fi,r

fi,w

SlidingSum

SlidingSum
Gcc

#

#

Note that not all variables, arcs, and edges are depicted in the subgraph.

11 of 23

Example: the Dependency Graph

Running example: RCS dependency subgraph

ci

Element

Element

fi,r

fi,w

SlidingSum

SlidingSum
Gcc

#

#

Note that not all variables, arcs, and edges are depicted in the subgraph.

11 of 23

Example: the Dependency Graph

Running example: RCS dependency subgraph

ci

Element

Element

fi,r

fi,w

SlidingSum

SlidingSum
Gcc

#

#

Note that not all variables, arcs, and edges are depicted in the subgraph.

11 of 23

The Dependency Curation Scheme (DCS)

We have developed a dependency curation scheme (DCS), that finds a
low-cardinality set of search variables.

� If the dependency graph is acyclic, then the set S of search variables is the set
of source variables.

� Otherwise, we find a set of search variables using an algorithm that:

1. finds the strongly connected components (SCCs) and orders them, before it

2. constructs S while it explores the ordered SCCs in a manner similar to
depth-first search.

12 of 23

The Dependency Curation Scheme (DCS)

We have developed a dependency curation scheme (DCS), that finds a
low-cardinality set of search variables.

� If the dependency graph is acyclic, then the set S of search variables is the set
of source variables.

� Otherwise, we find a set of search variables using an algorithm that:

1. finds the strongly connected components (SCCs) and orders them, before it

2. constructs S while it explores the ordered SCCs in a manner similar to
depth-first search.

12 of 23

The Dependency Curation Scheme (DCS): Example

Running example: RCS set of search variables

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

2
#

1
#

2
#

1
#freeze set must be a subset of this set

13 of 23

The Dependency Curation Scheme (DCS): Example

Running example: RCS set of search variables

c1 c2 c3 c4 c5 c6

f1,r f1,w f2,r f2,w f3,r f3,w f4,r f4,w f5,r f5,w f6,r f6,w

2
#

1
#

2
#

1
#freeze set must be a subset of this set

13 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

Helicopter View

Dependency curation scheme

CP Solving LNSsolver

model instance

search set
model instance

assignment

better solution

best found solution

14 of 23

LNS selection heuristics

We selected five generic LNS selection heuristics:

� Randomised LNS;

� Propagation guided LNS (PG-LNS);

� Reverse propagation guided LNS (RPG-LNS);

� Cost impact guided LNS (CIG-LNS); and

� Variable-relationship guided LNS (VRG-LNS).

15 of 23

Randomised LNS

We have a threshold φ ∈ [0.05, 0.95] that is updated during search.

Inside every LNS iteration and for each variable x in the set of search variables,
we select a uniform random number px ∈ [0, 1].

If px < φ, then x is included in the freeze set, else it is excluded.

16 of 23

Remaining Selection Heuristics

Each of the other generic selection heuristics stores data about the search
variables.

The data is collected during LNS iterations and is exploited to help guide search.

17 of 23

Method

We extended a Gecode-based portfolio solver,
implementing or reimplementing its generic selection
heuristics to follow their descriptions from the literature
more closely.

We created or updated existing MiniZinc models for the:
� job shop problem (JSP),
� steel mill slab design (SMSD),
� relaxed car sequencing problem (RCS), and
� travelling salesperson with time windows (TSPTW).

18 of 23

Method

We extended a Gecode-based portfolio solver,
implementing or reimplementing its generic selection
heuristics to follow their descriptions from the literature
more closely.

We created or updated existing MiniZinc models for the:
� job shop problem (JSP),
� steel mill slab design (SMSD),
� relaxed car sequencing problem (RCS), and
� travelling salesperson with time windows (TSPTW).

18 of 23

Experiment Setup

For each selection heuristic, both with DCS and without DCS, and each problem
instance, we ran 10 independent runs, each under a timeout of 3 minutes from
the same initial incumbent solution.

We used a scoring function where scores range over the interval [0, 100], where a
low score is better than a high one.

19 of 23

Results – Graphs

20 of 23

Results – Graphs

20 of 23

Results – Table

CIG-LNS PG-LNS Randomised RPG-LNS VRG-LNSLNS
DCS no yes no yes no yes no yes no yes

JSP 0.13 7.45 7.30 28.53 0.18 18.37 32.68 18.35 32.20 33.19
RCS 22.11 0.47 9.94 0.48 24.72 0.34 9.93 0.43 20.35 0.63

SMSD 1.62 0.87 4.06 0.67 1.14 0.85 5.64 0.73 6.45 0.81
TSPTW 4.65 1.82 3.67 1.36 4.87 2.18 3.71 1.80 5.41 2.20

21 of 23

Conclusion

We have presented our dependency curation scheme (DCS), which can be used
with any LNS selection heuristic.

We have compared the performance of a generic randomised selection heuristic
and state-of-the-art generic selection heuristics, both with and without DCS.

Our experiments show that the performance of using DCS with the generic
randomised selection heuristic is (amazingly) competitive.

22 of 23

Conclusion

We have presented our dependency curation scheme (DCS), which can be used
with any LNS selection heuristic.

We have compared the performance of a generic randomised selection heuristic
and state-of-the-art generic selection heuristics, both with and without DCS.

Our experiments show that the performance of using DCS with the generic
randomised selection heuristic is (amazingly) competitive.

22 of 23

Conclusion

We have presented our dependency curation scheme (DCS), which can be used
with any LNS selection heuristic.

We have compared the performance of a generic randomised selection heuristic
and state-of-the-art generic selection heuristics, both with and without DCS.

Our experiments show that the performance of using DCS with the generic
randomised selection heuristic is (amazingly) competitive.

22 of 23

Thank You

Thank you for your attention.

23 of 23

Multi-way Dependency Constraints
Some constraints have multiple input sets and multiple output sets. Each such
constraint is represented as multiple vertices in the dependency graph.

Example: multi-way dependency constraint

The constraints x + y = z can be
rewritten:
� z − y = x and
� z − x = y .

x

y z

dxdy

dz

23 of 23

Conditional Dependency Constraints
Some constraints are dependency constraints under specific circumstances.

Example: the table constraint
For each car i , We can replace the element constraints with a table constraint:

table([ci, fi,r, fi,w],

[[, 1, 1],
[, 1, 0],
[, 0, 1],
[, 0, 0]]

)

For the parameter matrix, the values in the first column are distinct.
Therefore, this table constraint is a dependency constraint via which ci
functionally defines fi,r and fi,w.

23 of 23

