# Using CP for Compound Dispensing between Microplates

Ramiz Gindullin<sup>1</sup>, María Andreína Francisco Rodríguez<sup>1</sup>, Brinton Seashore-Ludlow<sup>2</sup>, Ola Spjuth<sup>1,3</sup>

<sup>1</sup>Uppsala Universitetet, Uppsala, Sweden,
<sup>2</sup>Karolinska Institutet, Stockholm, Sweden,
<sup>3</sup>Phenaros Pharmaceuticals AB, Uppsala, Sweden

August 20, 2025

#### Contents

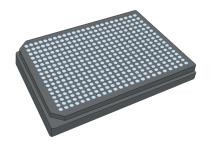
- 1 Context
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

#### Contents

Context ●0000

- 1 Context
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

# Microplates



#### Dispensing solutions

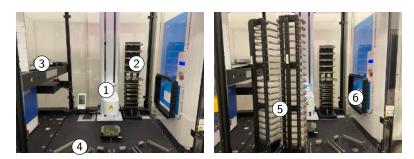
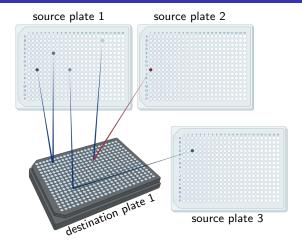


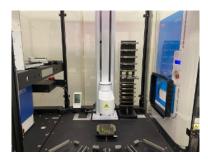
Figure: 1) the robotic arm, 2) the plate deliddler, 3) the sealer, 4) base for plate hotels, 5) plate hotels, 6) the dispenser.

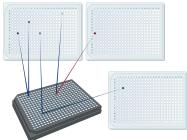
# Testing drug combinations





# Plate swaps

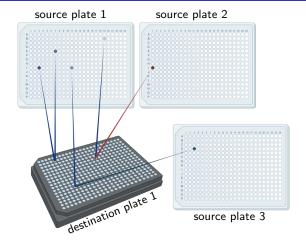




#### Contents

- 1 Context
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

#### Full and simplified problems



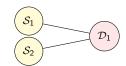
| Source plates | De | stin | ation | n pla | ites, | $i \in$ | [1, c] |
|---------------|----|------|-------|-------|-------|---------|--------|
| j=1           | 1  | 1    | 1     | 1     | 1     | 1       |        |
| j = 2         | 0  | 0    | 1     | 0     | 1     | 0       |        |
| j = 3         | 0  | 1    | 0     | 0     | 0     | 0       |        |
| i = 4         | 0  | 0    | 0     | 1     | 0     | 1       |        |

Table: Matrix  $\mathcal{C}^1$  to denote which source plates are required for any given experiment, where 0 denotes false and 1 denotes true.

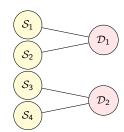
#### Two steps process

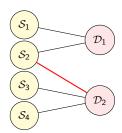
- Distribute combinations b/w plates (SPP)
- Calculate the minimal possible number of swaps

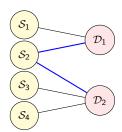
# Counting swaps: basics

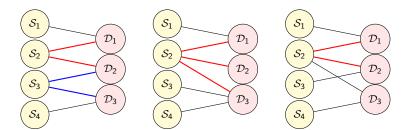


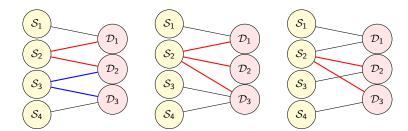
# Counting swaps: basics











#### Contents

- 1 Context
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

# Three groups of variables

- Destination plates placement variables, P
- Bipartite network variables, A
- Valid transitions variables, T

# Variable representations

- Destination plates placement variables, P:
  - Boolean matrix (P¹)
  - integer array (P<sup>II</sup>)
  - $\blacksquare$  array of sets of integers  $(P^{III})$
- Bipartite network variables, A
- Valid transitions variables, T

# Variable representations

- Destination plates placement variables, P:
  - Boolean matrix (P¹)
  - integer array (P<sup>II</sup>)
  - $\blacksquare$  array of sets of integers  $(P^{III})$
- Bipartite network variables, A:
  - Boolean adjacency matrix  $(A^A)$
  - $\blacksquare$  array of sets of integers (adjacency list) ( $\mathcal{A}^B$ )
- Valid transitions variables, T

# Variable representations

- Destination plates placement variables, P:
  - Boolean matrix (P¹)
  - integer array  $(P^{\hat{I}\hat{I}})$
  - $\blacksquare$  array of sets of integers  $(P^{III})$
- Bipartite network variables, A:
  - Boolean adjacency matrix  $(A^A)$
  - lacktriangle array of sets of integers (adjacency list) ( $\mathcal{A}^B$ )
- *Valid transitions* variables, *T*:
  - array of integers

Representation III:  $P_i^{III} = \{j \mid \exists j \in [1, c]\}$ 

Representation III:  $P_i^{III} = \{j \mid \exists j \in [1, c]\}$ :

PARTITION\_SET 
$$\left(\left\langle P_1^{III}, P_2^{III}, \dots, P_d^{III} \right\rangle, \left\langle 1, 2, \dots, c \right\rangle \right)$$
 (1)

Modeling

# Six models

| P <sup>1</sup>    |           | $P^{II}$   | $P^{III}$   |  |  |
|-------------------|-----------|------------|-------------|--|--|
| $\mathcal{A}^{A}$ | Model I-A | Model II-A | Model III-A |  |  |
| $\mathcal{A}^{B}$ | Model I-B | Model II-B | Model III-B |  |  |

#### Contents

- 1 Contex
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

#### **Benchmark**

#### Synthetic dataset:

- number of destination plates:  $d \in \{2, 5, 10, 15\},$
- number of wells in a single destination plate:  $w \in \{2, 4, 6, 8\},$
- number of source plates:  $s \in \{2, 5, 10\},$
- 10 examples for each combination,
- 480 total instances:
  - 180 small instances,
  - 180 medium instances,
  - 180 large instances

# Computational experiments

- Six models in MiniZinc,
- Solvers compared:
  - Chuffed 0.13.2,
  - CP-SAT 9.11.4210,
  - Gurobi 11.0.3,
- 2024 MacBook Air with 8 cores Apple M3,
- 300-second timeout,
- available at https://github.com/astra-uu-se/multiplates

#### Results - Chuffed

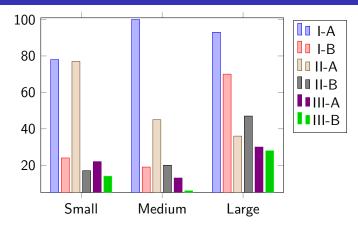


Figure: Number of instances when a model showed best performance

#### Results - CP-SAT

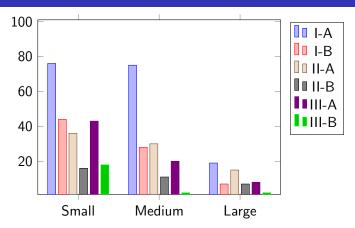


Figure: Number of instances when a model showed best performance

#### Results - Gurobi

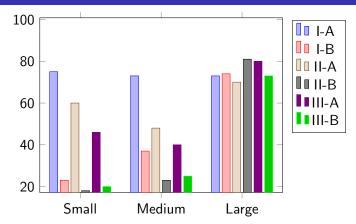


Figure: Number of instances when a model showed best performance

#### Contents

- 1 Contex
- 2 Problem formulation
- 3 Modeling the problem
- 4 Evaluation
- 5 Conclusion

#### Conclusion

- OR methods and CP are useful for experiment planning,
- The problem is an SPP with a bipartite graph network,
- 6 CP models constructed and evaluated on different solvers