The Anatomy of the SICStus Finite-Domain Constraint Solver

Mats Carlsson

August 20, 2025

CLP(FD): Embedding in Prolog

search Backtrack search!

variables Logical variables with attributes

unification Domain becomes singleton ↔ logical variable gets bound

solver state Backtrackable terms, using mutables and memory

management hooks

References

Christian Holzbaur: *Metastructures vs. Attributed Variables in the Context of Extensible Unification*. PLILP 1992: 260-268.

Abderrahmane Aggoun, Nicolas Beldiceanu: *Time Stamps Techniques for the Trailed Data in Constraint Logic Programming Systems*. SPLT 1990: 487-510.

The Glass-Box Approach to Constraint Programming

Pascal Van Hentenryck et al. suggested a clean approach to constraint propagation:

Constraint Processing in cc(FD)

Pascal Van Hentenryck¹, Viiav Saraswat², Yves Deville³

Abstract

Contrain logic programming languages such as CHIP [26,5] have demonstrated the practicality of declarate banganes approximation productions and another intermediate many contraints of the cont

Reference

Pascal Van Hentenryck, Vijay A. Saraswat, Yves Deville: *Design, Implementation, and Evaluation of the Constraint Language cc(FD)*. Constraint Programming 1994: 293-316.

Indexicals: Key Idea

Consider $c(x_1, x_2, x_3)$. When the coroutine wakes up:

- $\bullet \ dom(x_1) \leftarrow dom(x_1) \cap f_1(dom(x_2), dom(x_3))$
- $\bullet \ dom(x_2) \leftarrow dom(x_2) \cap f_2(dom(x_1), dom(x_3))$
- $\bullet \ dom(x_3) \leftarrow dom(x_3) \cap f_3(dom(x_1), dom(x_2))$

Also known as projection constraints.

A First Implementation, ≈1998

- Attributes for domain variables, unification, and answer constraints
- Indexicals for propagation, with a programming API in Prolog
- Functional notation for arithmetic & Boolean constraints
- Domain representation: lists of unconnected intervals

Reference

Antonio J. Fernández, Patricia M. Hill: A Comparative Study of Eight Constraint Programming Languages Over the Boolean and Finite Domains. Constraints 5(3): 275-301 (2000)

Pros and Cons of Indexicals

- (+)They are lightweight and fast, e.g., for simple arithmetic constraints
- (+)Efficient, simple stack machine implementation
- (−)They take a fixed number of arguments
- (−)They are stateless—bad for incrementality
- (-)They are incapable of deep reasoning and propagate global constraints weakly
- ...

An Evolving Implementation

SICStus evolved into a menagerie of propagator types:

- Indexicals (less and less)
- Global constraints (more and more)
- Boolean constraints (but no SAT solver)
- Daemons
- Reals (as of 4.10)

SICStus Global Constraints

```
all_different_except_0/1 all_distinct/[1,2]
all_different/[1,2]
all_distinct_except_0/1
                         all_equal/1
                                                  all_equal_reif/2
assignment/[2,3]
                         automaton/[3,8,9]
                                                  bin_packing/2
bool and/2
                         bool channel/4
                                                  bool_or/2
bool_xor/2
                         case/[3,4]
                                                  circuit/[1,2]
                         cumulative/[1,2]
count/4
                                                  cumulatives/[2,3]
decreasing/[1,2]
                         diffn/[1,2]
                                                  disjoint1/[1,2]
disjoint2/[1,2]
                         element/[2,3]
                                                  geost/[2,3,4]
global_cardinality/[2,3] increasing/[1,2]
                                                  keysorting/[2,3]
lex_chain/[1,2]
                         maximum/2
                                                  maximum_arg/2
minimum/2
                         minimum_arg/2
                                                  multi_cumulative/[2,3]
network_flow/[2,3]
                         nvalue/2
                                                  regular/2
relation/3
                         scalar_product/[4,5]
                                                  scalar_product_reif/[5,6]
seq_precede_chain/[1,2]
                         smt/1
                                                  sorting/3
subcircuit/[1,2]
                         sum/3
                                                  symmetric_all_different/1
symmetric_all_distinct/1 table/[2,3]
                                                  value_precede_chain/[2,3]
```

Thanks

A lot of joint work with Nicolas Beldiceanu \approx 2001–2017

Boolean Variables and Constraints

Everything is faster for Boolean (0/1) variables:

- Pruning means fixing to 0 or 1
- Simpler propagation queue
- Internal shortcuts
- Do Booleans before globals
- Use *watchers* for disjunctions $(x_1 \lor x_2 \lor \cdots \lor x_n)$

Reference

Moskewicz, Matthew W., et al. *Chaff: Engineering an efficient SAT solver.* Proc. 38th annual Design Automation Conference. 2001.

Daemons

- The problem: many propagators are somewhat heavy and often prune nothing
- A daemon is a quick check whether to run a propagator
- A daemon can help maintain propagator state
- A daemon knows which variable was pruned
- Enqueue the daemon, not the propagator

Propagation Queue Structure

By decreasing priority

Code Base

Variables And Constraints Over Reals?

- ullet The physical world deals with \mathbb{R} -valued quantities
- In the physical world, laws of physics apply
- Modeling should be convenient
- First use case: product configuration
- Second use case: MiniZinc

Conventional Wisdom: Reals Can Be Modeled As Rationals

Then solver doesn't need changing at all

Problems with that:

- Modeling gets awkward or loses precision
- What about transcendental functions (sin, cos, sqrt, ...)?
- Exact rational arithmetic is prone to size explosion
- Consider, e.g., 3.14159265

Adding Reals: A Bitter Pill To Swallow

- Code structure: Polymorphism everywhere?
- Propagation: another fixpoint algorithm for reals?
- Domain representation?
- Rounding errors?
- Reals are not floats!
 - $3 \cdot x = 1.0$
- Constraints or expressions?
- Search

Adding Reals: Related Work

- Interval arithmetic (and constraint solving)
- F. Benhamou, W.J. Older, T.J. Hickey, A. Vellino, E. Hyvönen, P. Van Hentenryck, L. Michel, Y. Deville (to name a few)
- CLP(BNR), Numerica, Gecode (C++ based), OR-Tools (C++ based)

Adding Reals: Propagation and Domains

Piggy-back on existing fixpoint algorithm

- Every real var x has a proxy int var x*, known to solver
- Whenever x gets pruned, increase lb of x*
- Attached to x^* is a special propagator that runs propagators of x
- Domain of x is just an interval of floats

Adding Reals: Reals Are Not Floats

- \bullet Semantically, variables and constraints are over $\mathbb R,$ not $\mathbb F$
- $x \in \mathbb{F}$ stand for a tiny real interval $[x \epsilon, x + \epsilon]$
- Let C be a constraint, e.g., $3 \cdot x = 1.0$, and RANGE(C) its variables, e.g., $\{x\}$
- An \mathbb{R} -solution of C is a tuple of numbers in \mathbb{R}
- lacktriangled An assignment to RANGE(C) is a solution if its intervals contain at least one $\mathbb R$ -solution of C
- Propagators endeavor to maintain bounds consistency
- Equality (x = y) is *not* relaxed for rounding errors

Adding Reals: Constraints Or Expressions?

Expressions, mainly!

expr ∘ expr

- Z: ∈ {#< #=< #= #\= #>=}
- \mathbb{R} : $\circ \in \{\$=< \$= \$>=\}$ **N.B.** No $\{\$< \$ \setminus = \$>\}$
- Most existing functions become polymorphic: x + y, x − y, x * y, ... with compile-time type inference thanks to ∘
- Many new $(\mathbb{R} \to \mathbb{R})$ functions: SQRT(x), EXP(x), LOG(x), SIN(x), COS(x), ...
- New rounding $(\mathbb{R} \to \mathbb{Z})$ functions: ROUND(x), TRUNCATE(x), FLOOR(x), CEILING(x).
- Channeling ($\mathbb{R} \leftrightarrow \mathbb{Z}$) functions: INTEGER(x), FLOAT(y).
- A few, selected constraints become polymorphic.

Adding Reals: Search

SICStus search predicate is reminiscent of MiniZinc solve annotation:

MiniZinc	SICStus
seq_search	solve
bool_search	labeling
int_search	labeling
float_search	labeling

- \bullet $\,\mathbb{R}$ and \mathbb{Z} variables must be in separate <code>labeling</code> parts
- Ternary choice for R-variables:
 - try middle value
 - 2 try values less than middle
 - try values greater than middle
- labeling([precision(p)], ...) cuts the search if the domain sizes goes below p, similar to float_search.

Adding Reals: Examples

A small equation system over two variables that involves a trigonometric function:

Exploring the set of solution to a high-degree equation:

```
| ?- X in 0.8..1.0,
      0.0 $= 35.0*X^256.0 -14.0*X^17.0 + X,
      labeling([precision(5.0E-16)], [X]).
X = 0.8479436608273154 ?;
X = 0.995842494200498 ?
```


Lexicographic Optimization

SICStus

MiniZinc

```
solve :: lex minimize([x,-y]) satisfy;
```


Pareto Optimization

SICStus

```
bar([X,A,B]) :-
    table([[X,A,B]], [[1,2,2],
                       [2,2,3],
                       [4,3,2],
                       [5,3,3],
                       [6,3,1],
                        [8,1,3]]),
    labeling([pareto minimize([A,B])], [X]).
\mid ?- bar(L).
L = [8,1,3] ? ;
L = [6,3,1] ? ;
L = [1, 2, 2]?
```

MiniZinc

solve :: pareto_minimize([x,-y]) satisfy;

How to Build A Solver That Is Robust And Fast

- It doesn't matter how fast your clever globals are if linear arithmetic and simple Booleans are too slow.
- It doesn't matter how fast your linear arithmetic and simple Booleans are if general propagation is too slow.
- Too much incrementality is bad for performance.
- Fuzz testing.
- The devil is in the details.

Thank You

