The Anatomy of the SICStus Finite-Domain
Constraint Solver

Mats Carlsson

RI.
SE

August 20, 2025

CLP(FD): Embedding in Prolog

CLP(FD): Embedding in Prolog

search Backtrack search!
variables Logical variables with attributes
unification Domain becomes singleton <« logical variable gets bound

solver state Backtrackable terms, using mutables and memory
management hooks

References

Christian Holzbaur: Metastructures vs. Attributed Variables in the Context of Extensible
Unification. PLILP 1992: 260-268.

Abderrahmane Aggoun, Nicolas Beldiceanu: Time Stamps Techniques for the Trailed Data in
Constraint Logic Programming Systems. SPLT 1990: 487-510.

nxo

Indexicals

The Glass-Box Approach to Constraint Programming

Pascal Van Hentenryck et al. suggested a clean approach to constraint
propagation:

Constraint Processing in cc(FD) c c HA T

Pascal Vau Hentenryek!, Vijay Saraswat?, Yves Deville

=" IS AN

Indexical?

Carneades.org

Reference

Pascal Van Hentenryck, Vijay A. Saraswat, Yves Deville: Design, Implementation, and Evaluation
of the Constraint Language cc(FD). Constraint Programming 1994: 293-316.

Rl
SE

Indexicals

Indexicals: Key ldea

Consider c(x1, x2, X3). When the coroutine wakes up:

@ dom(xq) < dom(x1) N fy(dom(xz), dom(x3))
@ dom(xz) < dom(xz) N fo(dom(x1), dom(xs))
@ dom(x3) + dom(x3) N f3(dom(x1), dom(xz))

Also known as projection constraints.

nx

SICStus Prolog CLPFD

A First Implementation, ~1998

@ Attributes for domain variables, unification, and answer constraints
@ Indexicals for propagation, with a programming APl in Prolog

@ Functional notation for arithmetic & Boolean constraints

@ Domain representation: lists of unconnected intervals

Reference

Antonio J. Fernandez, Patricia M. Hill: A Comparative Study of Eight
Constraint Programming Languages Over the Boolean and Finite
Domains. Constraints 5(3): 275-301 (2000)

nxo

SICStus Prolog CLPFD

Pros and Cons of Indexicals

@ (+)They are lightweight and fast, e.g., for simple arithmetic
constraints

(+)Efficient, simple stack machine implementation
(—)They take a fixed number of arguments
(—)They are stateless—bad for incrementality

(—)They are incapable of deep reasoning and propagate global
constraints weakly

nx

SICStus Prolog CLPFD

An Evolving Implementation

SICStus evolved into a menagerie of propagator
types:

e Indexicals (less and less)

e Global constraints (more and more)

e Boolean constraints (but no SAT solver)

e Daemons

e Reals (as of 4.10)

nx
m=

SICStus Global Constraints

all different/[1,2]
all_distinct_except_0/1
assignment/[2, 3]
bool_and/2

bool_xor/2

count/4
decreasing/[1,2]
disjoint2/[1,2]
global_cardinality/[2, 3]
lex_chain/[1,2]
minimum/2
network_flow/[2, 3]
relation/3
seqg.precede_chain/[1,2]
subcircuit/[1, 2]
symmetric_all_distinct/1

Thanks

all different_except_-0/1 all_distinct/[1,2]

all_equal/1l
automaton/[3,8,9]
bool_channel/4
case/[3,4]
cumulative/[1, 2]
diffn/[1,2]
element/[2, 3]
increasing/[1,2]
maximum/2
minimum_arg/2
nvalue/2
scalar_product/[4,5]
smt/1

sum/ 3

table/[2, 3]

A lot of joint work with Nicolas Beldiceanu ~ 2001-2017

all equal_reif/2
bin_packing/2

bool_or/2

circuit/[1,2]
cumulatives/[2, 3]
disjointl/[1,2]
geost/[2,3,4]
keysorting/[2, 3]
maximum.arg/2
multi_cumulative/[2, 3]
regular/2
scalar_product_reif/[5, 6]
sorting/3

symmetric.all different/1
value_precede_chain/[2, 3]

nx

Boolean Constraints

Boolean Variables and Constraints

Everything is faster for Boolean (0/1) variables:
@ Pruning means fixing to 0 or 1

Simpler propagation queue

Internal shortcuts

Do Booleans before globals

°
o
°
@ Use watchers for disjunctions (x1 V X2 V - - - V Xp)

Watcher 1 Watcher 2

x1 | x2 | x3 | x4 | x5 | x6

Reference

Moskewicz, Matthew W., et al. Chaff: Engineering an efficient SAT
solver. Proc. 38th annual Design Automation Conference. 2001. RI

SE

Daemons

Daemons

@ The problem: many propagators are somewhat heavy and often

prune nothing

@ A daemon is a quick check whether to run a propagator
@ A daemon can help maintain propagator state
@ A daemon knows which variable was pruned

@ Enqueue the daemon, not the propagator

x2 x3 x4 x5

AR A

d2 d3 d4 d5

P
IR W '3 %ae
propagator

x6

!

d6

nx

Daemons

Propagation Queue Structure

By decreasing priority

directory

false implications

true implications
0/1 disequations
0/1 watchers

0/1 cardinalities

daemons

globals on val

globals on minmax
globals on dom

queue
free —_—
items | quede |
Freo items 2
free
items 1

queue

free

items

queue

free

items 2

free

items 1

queue

indexicals —_—

queue

items 2

free

items 1

free

items

free

queue

free

items

free

queue

items 2

free

items 1

Rl

SE

Code Base

Prolog: 14000 loc

Search

Compilation

Plumbing

Reals

Globals

C: 60000 loc

FlatZinc Indexicals

Plumbing

Search

Reals

Globals

nx

Floats and Reals

Variables And Constraints Over Reals?

@ The physical world deals with R-valued quantities
@ In the physical world, laws of physics apply

@ Modeling should be convenient

@ First use case: product configuration

@ Second use case: MiniZinc

nx

Floats and Reals

Conventional Wisdom: Reals Can Be Modeled As
Rationals

Then solver doesn’t need changing at all

Problems with that:
@ Modeling gets awkward or loses precision
@ What about transcendental functions (sin, cos, sqrt, ...)?
@ Exact rational arithmetic is prone to size explosion
@ Consider, e.g., 3.14159265

nx

Adding Reals: A Bitter Pill To Swallow

Code structure: Polymorphism everywhere?
Propagation: another fixpoint algorithm for reals?
Domain representation?
Rounding errors?
Reals are not floats!
e3-x=1.0
@ Constraints or expressions?
@ Search

nx

Adding Reals: Related Work

@ Interval arithmetic (and constraint solving)
@ F. Benhamou, W.J. Older, T.J. Hickey, A. Vellino, E. Hyvénen, P.
Van Hentenryck, L. Michel, Y. Deville (to name a few)

@ CLP(BNR), Numerica, Gecode (C++ based), OR-Tools (C++
based)

nx

Floats and Reals

Adding Reals: Propagation and Domains
Piggy-back on existing fixpoint algorithm

solver vars

(int var)

(int var)

(int var)

real var

(proxy)

(domain)

(propagators)

int domain
“proxy / b
int var
(domain) =
(propagators) fvar_propagator
(var)
propagator real var
name) (proxy)
e (domain)
oD (propagators)
(tail)
T propagator

real var

real domain

(proxy)

b

(name)
(var) /
(var)

(domain)

ub

(tail) \(piopagators)

@ Every real var x has a proxy int var x*, known to solver
@ Whenever x gets pruned, increase Ib of x*
@ Attached to x* is a special propagator that runs propagators of x
@ Domain of x is just an interval of floats

nx

Adding Reals: Reals Are Not Floats

‘ ‘
0.333333333333 0.333333333333
33330 33337

Semantically, variables and constraints are over R, not IF

x € F stand for a tiny real interval [x — ¢, X + €]

Let C be a constraint, e.g., 3 - x = 1.0, and RANGE(C) its variables, e.g., {x}

An R-solution of C is a tuple of numbers in R

An assignment to RANGE(C) is a solution if its intervals contain at least one R-solution of C
Propagators endeavor to maintain bounds consistency

Equality (x = y) is not relaxed for rounding errors

Rl
SE

Floats and Reals

Adding Reals: Constraints Or Expressions?

Expressions, mainly!

expr o expr

Z:o € {#< #=< #= #\= #> #>=}
R:o€ {$=< $= $>=} N.B.No {$< s\= $>}

Most existing functions become polymorphic: x + y, x — y, X = y, ... with compile-time type
inference thanks to o

Many new (R — R) functions: SQRT(x), EXP(X), LOG(X), SIN(X), COS(X), ...

New rounding (R — Z) functions: ROUND(X), TRUNCATE(X), FLOOR(X), CEILING(X).
Channeling (R <> Z) functions: INTEGER(X), FLOAT(y).

A few, selected constraints become polymorphic.

nx

Adding Reals: Search

@ SICStus search predicate is reminiscent of MiniZinc solve annotation:

MiniZinc SICStus
seg_search solve
bool_search labeling
int_search labeling

float_search | labeling

@ R and Z variables must be in separate 1abeling parts
@ Ternary choice for R-variables:

@ try middle value
@ try values less than middle
@ try values greater than middle

@ labeling([precision(p)],...) cuts the search if the domain sizes
goes below p, similar to fl1oat_search.

Rl
SE

Adding Reals: Examples

A small equation system over two variables that involves a trigonometric
function:

| ?- domain([X,Y], 1.0, 2.0),
tan(X) $=Y,
X"2.0 + Y"2.0 $= 5.0,
labeling([precision(1.0E-15)1, [X,Y]).
X 1.0966681287054714,
Y = 1.9486710896099533 2

Exploring the set of solution to a high-degree equation:

| ?2- X in 0.8..1.0,
0.0 $= 35.0%X"256.0 -14.0%xX"17.0 + X,
labeling([precision(5.0E-16)], [X]).
X = 0.8479436608273154 7
X = 0.995842494200498 2

14

nx

Multi-Var Optimization

Lexicographic Optimization

SICStus
foo([X,Y,A,B]) :—

table([[X,Y,A,B]], [[0,0,1,2],
(0,1,1,11,
[1101212]1
(1,1,2,111),
labeling([lex_minimize ([A,B])], [X,Y])
| ?2— foo(L).
L = 1[0,1,1,1] 2
MiniZinc
solve :: lex_minimize([x,-y]) satisfy;

nx

Multi-Var Optimization

Pareto Optimization

SICStus
bar ([X,A,B]) :-
table ([[X,A,B]], I

14 14 4

[1
[21 14 14
[41
[5
[6,

14

L»JU)U)NN
r—lwwwl\)

]
]
] 4
]
]
]

[813]),

labeling ([pareto_minimize ([A,B])]1, I[X]).

| ?—= bar(L).

L [(8,1,31 2 ;

L =1[6,3,1] 2 ;

L =11,2,21 2

MiniZinc

solve :: pareto_minimize ([x,-y]) satisfy; §|I='

How to Build A Solver That Is Robust And Fast

@ It doesn’t matter how fast your clever globals are if linear
arithmetic and simple Booleans are too slow.

@ It doesn’t matter how fast your linear arithmetic and simple
Booleans are if general propagation is too slow.

@ Too much incrementality is bad for performance.
@ Fuzz testing.
@ The devil is in the details.

nx

Thank You

Thank You

	CLP(FD): Embedding in Prolog
	Indexicals
	SICStus Prolog CLPFD
	Global Constraints
	Boolean Constraints
	Daemons
	Floats and Reals
	Multi-Var Optimization
	Performance
	Thank You

