
The Anatomy of the SICStus Finite-Domain
Constraint Solver

Mats Carlsson

August 20, 2025

CLP(FD): Embedding in Prolog

CLP(FD): Embedding in Prolog

search Backtrack search!
variables Logical variables with attributes

unification Domain becomes singleton↔ logical variable gets bound
solver state Backtrackable terms, using mutables and memory

management hooks

References
Christian Holzbaur: Metastructures vs. Attributed Variables in the Context of Extensible
Unification. PLILP 1992: 260-268.

Abderrahmane Aggoun, Nicolas Beldiceanu: Time Stamps Techniques for the Trailed Data in
Constraint Logic Programming Systems. SPLT 1990: 487-510.

Indexicals

The Glass-Box Approach to Constraint Programming

Pascal Van Hentenryck et al. suggested a clean approach to constraint
propagation:

Reference
Pascal Van Hentenryck, Vijay A. Saraswat, Yves Deville: Design, Implementation, and Evaluation
of the Constraint Language cc(FD). Constraint Programming 1994: 293-316.

Indexicals

Indexicals: Key Idea

Consider c(x1, x2, x3). When the coroutine wakes up:

dom(x1)← dom(x1) ∩ f1(dom(x2),dom(x3))

dom(x2)← dom(x2) ∩ f2(dom(x1),dom(x3))

dom(x3)← dom(x3) ∩ f3(dom(x1),dom(x2))

Also known as projection constraints.

SICStus Prolog CLPFD

A First Implementation, ≈1998

Attributes for domain variables, unification, and answer constraints
Indexicals for propagation, with a programming API in Prolog
Functional notation for arithmetic & Boolean constraints
Domain representation: lists of unconnected intervals

Reference
Antonio J. Fernández, Patricia M. Hill: A Comparative Study of Eight
Constraint Programming Languages Over the Boolean and Finite
Domains. Constraints 5(3): 275-301 (2000)

SICStus Prolog CLPFD

Pros and Cons of Indexicals

(+)They are lightweight and fast, e.g., for simple arithmetic
constraints
(+)Efficient, simple stack machine implementation
(−)They take a fixed number of arguments
(−)They are stateless—bad for incrementality
(−)They are incapable of deep reasoning and propagate global
constraints weakly
. . .

SICStus Prolog CLPFD

An Evolving Implementation

SICStus evolved into a menagerie of propagator
types:

Indexicals (less and less)
Global constraints (more and more)
Boolean constraints (but no SAT solver)
Daemons
Reals (as of 4.10)

Global Constraints

SICStus Global Constraints
all different/[1,2] all different except 0/1 all distinct/[1,2]
all distinct except 0/1 all equal/1 all equal reif/2
assignment/[2,3] automaton/[3,8,9] bin packing/2
bool and/2 bool channel/4 bool or/2
bool xor/2 case/[3,4] circuit/[1,2]
count/4 cumulative/[1,2] cumulatives/[2,3]
decreasing/[1,2] diffn/[1,2] disjoint1/[1,2]
disjoint2/[1,2] element/[2,3] geost/[2,3,4]
global cardinality/[2,3] increasing/[1,2] keysorting/[2,3]
lex chain/[1,2] maximum/2 maximum arg/2
minimum/2 minimum arg/2 multi cumulative/[2,3]
network flow/[2,3] nvalue/2 regular/2
relation/3 scalar product/[4,5] scalar product reif/[5,6]
seq precede chain/[1,2] smt/1 sorting/3
subcircuit/[1,2] sum/3 symmetric all different/1
symmetric all distinct/1 table/[2,3] value precede chain/[2,3]

Thanks

A lot of joint work with Nicolas Beldiceanu ≈ 2001–2017

Boolean Constraints

Boolean Variables and Constraints

Everything is faster for Boolean (0/1) variables:
Pruning means fixing to 0 or 1
Simpler propagation queue
Internal shortcuts
Do Booleans before globals
Use watchers for disjunctions (x1 ∨ x2 ∨ · · · ∨ xn)

Reference
Moskewicz, Matthew W., et al. Chaff: Engineering an efficient SAT
solver. Proc. 38th annual Design Automation Conference. 2001.

Daemons

Daemons

The problem: many propagators are somewhat heavy and often
prune nothing
A daemon is a quick check whether to run a propagator
A daemon can help maintain propagator state
A daemon knows which variable was pruned
Enqueue the daemon, not the propagator

Daemons

Propagation Queue Structure
By decreasing priority

Daemons

Code Base

Prolog: 14000 loc C: 60000 loc

Floats and Reals

Variables And Constraints Over Reals?

The physical world deals with R-valued quantities
In the physical world, laws of physics apply
Modeling should be convenient
First use case: product configuration
Second use case: MiniZinc

Floats and Reals

Conventional Wisdom: Reals Can Be Modeled As
Rationals
Then solver doesn’t need changing at all

Problems with that:
Modeling gets awkward or loses precision
What about transcendental functions (sin, cos, sqrt, ...)?
Exact rational arithmetic is prone to size explosion
Consider, e.g., 3.14159265

Floats and Reals

Adding Reals: A Bitter Pill To Swallow

Code structure: Polymorphism everywhere?
Propagation: another fixpoint algorithm for reals?
Domain representation?
Rounding errors?
Reals are not floats!

3 · x = 1.0

Constraints or expressions?
Search

Floats and Reals

Adding Reals: Related Work

Interval arithmetic (and constraint solving)
F. Benhamou, W.J. Older, T.J. Hickey, A. Vellino, E. Hyvönen, P.
Van Hentenryck, L. Michel, Y. Deville (to name a few)
CLP(BNR), Numerica, Gecode (C++ based), OR-Tools (C++
based)

Floats and Reals

Adding Reals: Propagation and Domains
Piggy-back on existing fixpoint algorithm

Every real var x has a proxy int var x∗, known to solver
Whenever x gets pruned, increase lb of x∗

Attached to x∗ is a special propagator that runs propagators of x
Domain of x is just an interval of floats

Floats and Reals

Adding Reals: Reals Are Not Floats

Semantically, variables and constraints are over R, not F
x ∈ F stand for a tiny real interval [x − ϵ, x + ϵ]

Let C be a constraint, e.g., 3 · x = 1.0, and RANGE(C) its variables, e.g., {x}
An R-solution of C is a tuple of numbers in R
An assignment to RANGE(C) is a solution if its intervals contain at least one R-solution of C
Propagators endeavor to maintain bounds consistency
Equality (x = y) is not relaxed for rounding errors

Floats and Reals

Adding Reals: Constraints Or Expressions?
Expressions, mainly!

expr ◦ expr

Z : ◦ ∈ {#< #=< #= #\= #> #>=}

R : ◦ ∈ {$=< $= $>=} N.B. No {$< $\= $>}

Most existing functions become polymorphic: x + y , x − y , x ∗ y , ... with compile-time type
inference thanks to ◦
Many new (R → R) functions: SQRT(x), EXP(x), LOG(x), SIN(x), COS(x), ...

New rounding (R → Z) functions: ROUND(x), TRUNCATE(x), FLOOR(x), CEILING(x).

Channeling (R ↔ Z) functions: INTEGER(x), FLOAT(y).

A few, selected constraints become polymorphic.

Floats and Reals

Adding Reals: Search

SICStus search predicate is reminiscent of MiniZinc solve annotation:

MiniZinc SICStus
seq search solve
bool search labeling
int search labeling

float search labeling

R and Z variables must be in separate labeling parts

Ternary choice for R-variables:
1 try middle value
2 try values less than middle
3 try values greater than middle

labeling([precision(p)], . . .) cuts the search if the domain sizes
goes below p, similar to float search.

Floats and Reals

Adding Reals: Examples
A small equation system over two variables that involves a trigonometric
function:

| ?- domain([X,Y], 1.0, 2.0),
tan(X) $= Y,
Xˆ2.0 + Yˆ2.0 $= 5.0,
labeling([precision(1.0E-15)], [X,Y]).

X = 1.0966681287054714,
Y = 1.9486710896099533 ?

Exploring the set of solution to a high-degree equation:

| ?- X in 0.8..1.0,
0.0 $= 35.0*Xˆ256.0 -14.0*Xˆ17.0 + X,
labeling([precision(5.0E-16)], [X]).

X = 0.8479436608273154 ? ;
X = 0.995842494200498 ?

Multi-Var Optimization

Lexicographic Optimization

SICStus
foo([X,Y,A,B]) :-

table([[X,Y,A,B]], [[0,0,1,2],
[0,1,1,1],
[1,0,2,2],
[1,1,2,1]]),

labeling([lex_minimize([A,B])], [X,Y]).

| ?- foo(L).
L = [0,1,1,1] ?

MiniZinc
solve :: lex_minimize([x,-y]) satisfy;

Multi-Var Optimization

Pareto Optimization

SICStus
bar([X,A,B]) :-

table([[X,A,B]], [[1,2,2],
[2,2,3],
[4,3,2],
[5,3,3],
[6,3,1],
[8,1,3]]),

labeling([pareto_minimize([A,B])], [X]).

| ?- bar(L).
L = [8,1,3] ? ;
L = [6,3,1] ? ;
L = [1,2,2] ?

MiniZinc
solve :: pareto_minimize([x,-y]) satisfy;

Performance

How to Build A Solver That Is Robust And Fast

It doesn’t matter how fast your clever globals are if linear
arithmetic and simple Booleans are too slow.
It doesn’t matter how fast your linear arithmetic and simple
Booleans are if general propagation is too slow.
Too much incrementality is bad for performance.
Fuzz testing.
The devil is in the details.

Thank You

Thank You

	CLP(FD): Embedding in Prolog
	Indexicals
	SICStus Prolog CLPFD
	Global Constraints
	Boolean Constraints
	Daemons
	Floats and Reals
	Multi-Var Optimization
	Performance
	Thank You

