
Seeking Practical CDCL Insights from
Theoretical SAT Benchmarks

to appear in IJCAI 2018

Jan Elffers, Jesús Giráldez Cru, Stephan Gocht,
Jakob Nordström and Laurent Simon

29.05.2018



The SAT Problem

I Literal a: Boolean variable x or its negation x (or ¬x)

I Clause C = a1 ∨ · · · ∨ ak : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

I CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Has F satisfying assignment?

Stephan Gocht CDCL on Theory Benchmarks 2/ 24



The Power of so called CDCL SAT Solvers

2017 SAT Competition [BHJ17]
I largest solved benchmark (g2-T96.1.1.cnf)

I 8 905 808 variables
I 32 322 587 clauses
I verifiable UNSAT in 4126.12s

I smallest unsolved (mp1-bsat222-777.cnf)
I 222 variables
I 777 clauses
I timelimit 5000s

Explanation?

Stephan Gocht CDCL on Theory Benchmarks 3/ 24



Understanding Performance

Problem instance determines:

I solver performance

I which algorithms / heuristics are important / good

Solvers essentially do resolution
⇒ well understood through proof complexity

I scalable UNSAT problems

I extremal w.r.t. certain property
⇒ lower bound on runtime

I expect different behaviour

Stephan Gocht CDCL on Theory Benchmarks 4/ 24



Our Project

Goal:

I understand which / when settings are important

Our approach for reaching this goal:

I crafted benchmarks1, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

1generated using CNFGen [LENV17]

Stephan Gocht CDCL on Theory Benchmarks 5/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



Related Work

I instrumentation [LM02, KSM11]

I decision heuristics [BF15]

I restart schemes [Hua07]

I structural restricted benchmarks [PJ09]

I random k-SAT [CA96, SLM92]

I analysing and evaluating theory formula [MN14]

I resolution space on theory formula [JMNŽ12]

Our approach:

I crafted benchmarks, using knowledge from proof complexity
I benchmarks are

I scalable
I easy
I extremal (or close to)

I instrument solver to switch between algorithms / heuristics

Stephan Gocht CDCL on Theory Benchmarks 6/ 24



The CDCL Algorithm [DP60, DLL62, MS99, MMZ+01, . . . ]

Used Implementations: MiniSat [ES04], Glucose [AS09]

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit (fact) propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT

9: k ← amount of clause erasure
10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions

14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 7/ 24



The CDCL Algorithm [DP60, DLL62, MS99, MMZ+01, . . . ]

Used Implementations: MiniSat [ES04], Glucose [AS09]

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit (fact) propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 7/ 24



Restart Policy

Variable Decisions

Phase Saving Clause Erasure

Clause Assessment

no LBD

luby 100luby 1000

VSIDS .99

VSIDS .95

VSIDS .80

VSIDS . 65random

fixed

lrb

dynamic random

fixed zero

fixed random

counter

standard

none

random VSIDS

LBD

none

linear glucose

minisat

problem.cnf

... 67 years later

Runtime:

Number of Conflicts:
solve!

11
27

11
26

..
.

running 672 configurations
(757344 combinations)...

...

Stephan Gocht CDCL on Theory Benchmarks 8/ 24



Heatmaps

I row: setting

I column: scaled instances

I colour: runtime

Stephan Gocht CDCL on Theory Benchmarks 9/ 24



Analysing PAR-Score

PAR-X -score: runtime if solved, otherwise X · timelimit
(X = 2 used)

Analyse:

I fix some “knobs”

I compute expected score
(average of settings containing fixed “knobs”)

I compare to global average, but:
I always some difference
I choose random subset of settings
⇒ yields standard deviation

(used to “value” expected score)

Stephan Gocht CDCL on Theory Benchmarks 10/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 11/ 24



Clause Learning, Going Beyond Treelike Resolution

0

50

100

150

200

do
m

in
at

in
g

se
t

ev
en

co
lo

rin
g

or
de

rin
g

pr
in

ci
pl

e

pa
rt

ite
cl

iq
ue

pe
bb

lin
g

re
la

tiv
iz

ed
P

H
P

su
bs

et
ca

rd
in

al
ity

st
on

e

ts
ei

tin

Family

S
ol

ve
d 

in
st

an
ce

s

Clause learning: off on

Stephan Gocht CDCL on Theory Benchmarks 12/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 13/ 24



DB Size on Theoretical Time-Space Trade-Off Formulas

Tseitin formulas on grid graphs (5 rows)

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000

Number of variables

C
P

U
 ti

m
e

0

10

20

30

0 500 1000 1500 2000

Number of variables
M

ill
io

n 
co

nf
lic

ts

Clause erasure: glucose linear minisat

database size: minisat < glucose < linear

Stephan Gocht CDCL on Theory Benchmarks 14/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 15/ 24



Clause Assessment

−40

−20

0

20

random − LBD random − activity−based

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 16/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 17/ 24



Variable Decision

−40

−20

0

20

VSIDS .99 − random VSIDS .99 − .65

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 18/ 24



Variable Decision

0

1000

2000

3000

4000

5000

0 2000 4000 6000

Number of variables

C
P

U
 ti

m
e

VSIDS decay factor
0.65

0.80

0.95

0.99

Partial ordering principle formulas

Stephan Gocht CDCL on Theory Benchmarks 19/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 20/ 24



Restarts for Unrestricted Resolution

0

1000

2000

3000

4000

5000

0 1000 2000 3000

Number of variables

C
P

U
 ti

m
e

Restarts
LBD

Luby 100

Luby 1000

no restarts

on width 3 chain, #stones = #nodes / 2
Stone formulas

Stephan Gocht CDCL on Theory Benchmarks 21/ 24



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: assign v to chosen phase
4: do unit propagation
5: if conflict then
6: add clause learned from conflict
7: if decision to be undone then undo bad decisions
8: else return UNSAT
9: k ← amount of clause erasure

10: if k > 0 then
11: remove k clauses with bad clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 22/ 24



Phase Saving

0

1000

2000

3000

4000

5000

0 1000 2000 3000

Number of variables

C
P

U
 ti

m
e

Phase:

counter

dynamic
random

fixed zero

fixed random

standard

on width 3 chain, #stones = #nodes / 2
Stone formulas

Stephan Gocht CDCL on Theory Benchmarks 23/ 24



Conclusions

I clause learning is important
(if you need to go beyond treelike resolution)

I choose the right database size
(required space vs. overhead)

I restarts help to harness the full power of resolution
(if necessary)

I VSIDS is good for variable decisions
(but can go badly wrong)

Thank you for your attention!

Stephan Gocht CDCL on Theory Benchmarks 24/ 24



Conclusions

I clause learning is important
(if you need to go beyond treelike resolution)

I choose the right database size
(required space vs. overhead)

I restarts help to harness the full power of resolution
(if necessary)

I VSIDS is good for variable decisions
(but can go badly wrong)

Thank you for your attention!

Stephan Gocht CDCL on Theory Benchmarks 24/ 24



References I

Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09), pages 399–404, July 2009.

Armin Biere and Andreas Fröhlich.
Evaluating CDCL variable scoring schemes.
In Proceedings of the 18th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’15), volume 9340 of Lecture Notes in Computer
Science, pages 405–422. Springer, September 2015.

Tomáš Balyo, Marijn JH Heule, and Matti Jäarvisalo.
Proceedings of sat competition 2017: Solver and benchmark descriptions.
2017.

James M. Crawford and Larry D. Auton.
Experimental results on the crossover point in random 3-SAT.
Artificial Intelligence, 81(1-2):31–57, March 1996.
Preliminary version in AAAI ’93.

Martin Davis, George Logemann, and Donald Loveland.
A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, July 1962.

Stephan Gocht CDCL on Theory Benchmarks 1/ 4



References II

Martin Davis and Hilary Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In 6th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’03), Selected Revised Papers, volume 2919 of Lecture Notes in
Computer Science, pages 502–518. Springer, 2004.

Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI ’07), pages 2318–2323, January 2007.

Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný.
Relating proof complexity measures and practical hardness of SAT.
In Proceedings of the 18th International Conference on Principles and Practice of
Constraint Programming (CP ’12), volume 7514 of Lecture Notes in Computer
Science, pages 316–331. Springer, October 2012.

Stephan Gocht CDCL on Theory Benchmarks 2/ 4



References III

Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva.
Empirical study of the anatomy of modern SAT solvers.
In Proceedings of the 14th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’11), volume 6695 of Lecture Notes in Computer
Science, pages 343–356. Springer, June 2011.

Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals.
CNFgen: A generator of crafted benchmarks.
In Proceedings of the 20th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’17), volume 10491 of Lecture Notes in Computer
Science, pages 464–473. Springer, August 2017.

Inês Lynce and João P. Marques-Silva.
Building state-of-the-art SAT solvers.
In Proceedings of the 15th European Conference on Artificial Intelligence
(ECAI ’02), pages 166–170. IOS Press, May 2002.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference (DAC ’01), pages
530–535, June 2001.

Stephan Gocht CDCL on Theory Benchmarks 3/ 4



References IV

Mladen Mikša and Jakob Nordström.
Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, pages 121–137. Springer, July 2014.

João P. Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, May 1999.
Preliminary version in ICCAD ’96.

Justyna Petke and Peter Jeavons.
Tractable benchmarks for constraint programming.
Technical Report RR-09-07, Oxford University Computing Laboratory, 2009.
Available at https://www.cs.ox.ac.uk/files/2366/RR-09-07.pdf.

Bart Selman, Hector J. Levesque, and David G. Mitchell.
A new method for solving hard satisfiability problems.
In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI ’92), pages 440–446, July 1992.

Stephan Gocht CDCL on Theory Benchmarks 4/ 4

https://www.cs.ox.ac.uk/files/2366/RR-09-07.pdf

	Appendix

